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Abstract

Current diagnostic tools for characterizing a system are often
costly, limited and invasive, i.e. interrupt the system’s nor-
mal operation. A Virtual Diagnostic (VD) is a deep learn-
ing tool that can be used to predict the diagnostic output. For
practical usage of VDs, it is necessary to quantify the pre-
diction’s reliability, namely the uncertainty in that prediction.
In this paper, we applied an ensemble of neural networks to
create uncertainty and explore various ways of analyzing pre-
diction’s uncertainty using experimental data from the Linac
Coherent Light Source particle accelerator at SLAC National
Laboratory. We aim to accurately and confidently predict the
longitudinal properties of the electron beam as given by their
phase-space images. The ability to make informed decisions
under uncertainty is crucial for reliable deployment of deep
learning tools on safety-critical systems as particle accelera-
tors.

Introduction

Particle accelerators are ubiquitous in many applications
ranging from chemistry, physics to biology experiments.
Those experiments require increased accuracy of diagnos-
tics tools to measure the electron beam properties during its
acceleration, transport and delivery to users. Current state-
of-the-art diagnostics (Marx et al. 2018a) have limited ap-
plicability. Their limitation is enhanced as the complexity of
the experiments grows. Virtual diagnostic (VD) tools pro-
vide a shot-to-shot non-invasive measurement of the beam
in cases where the diagnostic has limited resolution or is un-
available.

Current VD provides predictive models based on training
a neural network mapping between non-invasive diagnos-
tic input to invasive output measurement (Emma et al. 2018,
2019; Hanuka et al. 2020). This type of mapping is known as
supervised regression. Previous work has demonstrated VD
to predict the electron beam current profile and Longitudinal
Phase Space (LPS) distribution (Marx et al. 2018b) along the
accelerator using either scalar controls (Emma et al. 2018)
or spectral information (Hanuka et al. 2020) as the non-
invasive input to the VD. For reliable deployment of the VD
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in critical-safety systems such as particle accelerators, it is
required to estimate the uncertainty in the prediction.

In this work, we apply deep learning tools to provide a
confidence interval of the virtual diagnostic prediction us-
ing experimental data from the Linac Coherent Light Source
(LCLS) at SLAC. Our results show an accurate prediction of
the diagnostic output along with estimating an interval pre-
senting the prediction’s uncertainty. Reliable VD would aid
in interpreting experimental results, and enable the system’s
users to make informed decisions.
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Figure 1: Example of virtual diagnostic input and output: (a)
three different spectra as inputs, and (b)-(d) matching longi-
tudinal phase space (LPS) images as outputs.

Particle Accelerators

High brightness beam linear accelerators typically operate in
single-pass, multi-stage configurations where a high-density
electron beam is accelerated and manipulated prior to deliv-
ery to users in an experimental station. An example of such
a facility is the X-ray Free Electron Laser facility at SLAC
National Lab. At SLAC’s Linac Coherent Light Source, the
electron beam is manipulated to emit coherent X-ray pulses.
An important monitored property is the longitudinal phase



space (LPS) of the electron beam. LPS images inform about
the longitudinal properties of the electron beam, and can
give insight to the quality of the emitted X-ray. Currently,
LPS is measured by X-band transverse deflecting cavity
(XTCAV) (Marx et al. 2018a). This measurement is inva-
sive, i.e. the beam cannot be diagnosed and used in the ex-
periments at the same time. Therefore, a new set of diag-
nostic tools capable predicting the LPS continuously are re-
quired.

Methods

In this work, we train a virtual diagnostic to predict the lon-
gitudinal phase space (LPS). We used ensemble method to
estimate the prediction uncertainty.

Data set. The input was spectral information, as can be
collected non-destructively by an infrared spectrometer. The
output was the corresponding LPS image as measured at the
XTCAV. Three examples of the inputs and outputs are shown
in Figure 1. The data set contains ~ 4000 pairs of spectrum
and matching LPS images. The data was randomly shuffled
and split to 80% and 20% partitions for training and testing.

VD architecture. The neural network (NN) architecture
we used is a dense feed-forward NN with three hidden layers
of size 200, 100, 50 with rectified linear unit activation func-
tion. Training was done in batches of 32, with 500 epochs
and an Adam optimizer with fixed learning rate of 0.001
(Hanuka et al. 2020). The hyper-parameter tuning of the NN
was performed before selecting the ones that have been used
in the work. The NN training involved minimizing the stan-
dard Mean Squared Error (MSE) loss function on the train-
ing set. We used Keras and TensorFlow libraries (Chollet
et al. 2015; Abadi et al. 2015) to build and train the models.

Ensemble methods. A deep ensemble is a group of
neural networks that are restarted with different parame-
ter initializations and are trained independently. It has been
shown that ensemble methods can improve uncertainty es-
timates when used with large neural networks and non-
convex loss surfaces (Lakshminarayanan, Pritzel, and Blun-

dell 2017). The predicted LPS for a test shot Epredicted =

M1 Z%Zl l;rcdictod,m is the mean prediction of an en-
semble with M neural network predictions (Ipredicted,m )-
The uncertainty for a VD prediction is taken as the stan-
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dard deviation of the neural network predictions ¢ =

\/M_l Zﬁ/{:l(l;redicted,m - f/predicted)g' HCI'C, we used
random initializations of glorot uniform distribution (Glorot
and Bengio 2010) with an ensemble size of M = 8. This en-
semble size was chosen since it yielded a small MSE while
capturing the statistics.

Metrics for model evaluation. To evaluate the mean
prediction of the VD, we used the mean squared error
(MSE) metric. To evaluate the quality of the mean predic-
tion we plot the difference between the VD prediction and
the ground truth (see Figure 2a). To evaluate the uncertainty
intervals provided by the predictive standard deviation, we

use a custom accuracy metric:

T.E
te=1 Xt,e L

Z;Ezl LIanasurcd,t,e

where Qe = 1if Llowcr,t,e < measurcd,t,e < Luppcr,t,e
and O otherwise. We used bounds of Ly cdicted,t,e T 204
where o, . is predictive standard deviation at time ¢ and en-
ergy level e. In order to visualize the accuracy, we plot the
ground truth with red pixels indicating where the ground
truth lies within the £20 (see Figure 2b).
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Accuracy =

Results and Discussion

The average MSE of the VD on the test set is 6.714e-04
with an accuracy of 0.538. In what follows we present two
common prediction errors: shape and translational. Figure 2
shows an example of a poor test shot with MSE of 8.585e-4
and a low accuracy of 0.264. In order to analyze and vi-
sualize the prediction quality we present plots of the shot’s
difference and Accuracy metrics as presented in the Meth-
ods Section. The large MSE can be explained by looking
at Figure 2a depicting the difference between the prediction
and the ground truth. Here, the shape of the prediction and
the measured images do not match. We refer to this error as
shape error.
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Figure 2: A test shot with prevalent shape error.

Another poor shot is shown in Figure 3a with an MSE of
5.604e-4 and accuracy of 0.380. However, this lower perfor-
mance is due to translational error, not shape error as seen
in the previous example. Since the shape tells us the most
about the physical properties of the beam, we can translate
the prediction to match the ‘center of mass’ for the measured
value (see Figure 3b). Applying such translation correction,
yields an MSE of 2.017e-4 and and accuracy of 0.603 which
indicates an improvement of 64.6% and 58.7% respectively.
Additionally, we can better understand how the shape of the
measured and predicted differs. Before the translation cor-
rection, these slight differences were masked by the trans-
lational error. Both types of errors could potentially be re-
duced if spatial connectivity was leveraged in a more so-
phisticated network architecture.

Conclusions and Outlook

In this work, we presented methods, metrics, and visualiza-
tion tools to predict and quantify prediction uncertainty for
single shot electron beam longitudinal properties in phase-
space. Although looking at individual shots allows us pin-
point data set features and analyze problems with our virtual
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Figure 3: Difference and Accuracy before and after center-
of-mass correction for translational error.

diagnostic (VD), it does not give much insight into how the
VD performs on the data set as a whole. Since the ground-
truth will not be available during real-time operations, such
insight is important in order to evaluate the VD reliability. In
future research, we will investigate methods to asses and vi-
sualize the predicted uncertainty over an entire test set. This
would allow users to make informed decisions regarding the
machine operations and data analysis.
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