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Abstract

In this paper, a direct application of the physics-informed
neural networks to consider the coupled flow and transport
system as a forward solver is presented. We address the clas-
sical challenge of solving the coupled system with multi-
ple variables involving the convection-dominated regime of
the transport. The comparisons of the approximated solutions
from neural networks and the exact solutions are presented
with the sensitivity analyses regarding the hyper-parameters
and number of the training data.

Introduction
Since pioneering work in 1943 on neural networks (NN)
based on a brain model (McCulloch and Pitts 1943), the
development of NN and deep learning (DL) in the form of
deep neural networks (DNNs) have been accelerated with
the help of big data analytic and the advancement of pow-
erful computational resources. Despite the numerous suc-
cesses obtained with DL, limitations remain concerning ap-
plications in scientific problems. In many scientific and engi-
neering problems, collecting a large amount of data to guar-
antee model accuracy is expensive and often not possible
(Ahmed, Jones, and Marks 2015). In addition, the training
of the DL model is only based on the available data, and
no physical laws are involved during the training, which
may lead to physically unreasonable predictions (Xiao et al.
2016; Wang, Wu, and Xiao 2017; Raissi, Perdikaris, and
Karniadakis 2019; Kutz 2017; Wang et al. 2018; Zhang et al.
2019b).

To overcome the above limitations of NN and DL, sci-
entific machine learning (SciML) based on physical sci-
ences incorporates scientific knowledge and physics-based
partial differential equations (PDEs) into DL architectures.
New approaches that solve PDEs based on DL include a
deep Ritz (Weinan 2017; Weinan and Yu 2018), PDE-Net
(Long, Lu, and Dong 2019), a deep Galerkin (Sirignano and
Spiliopoulos 2018), variational Galerkin (Kharazmi, Zhang,
and Karniadakis 2019; Khodayi-Mehr and Zavlanos 2019),
Bayesian deep convolutional networks (Zhu et al. 2019), a
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deep domain decomposition (Li et al. 2019), theory-guided
data science (Karpatne et al. 2017a), a physics-guided NN
(Karpatne et al. 2017b), a theory-guided NN (Wang et al.
2020), physics-informed NN (Raissi, Perdikaris, and Karni-
adakis 2019; Kadeethum, Jørgensen, and Nick 2020b,a), and
others (Owhadi 2015; Jagtap, Kharazmi, and Karniadakis
2020; Lu et al. 2019; Raissi, Yazdani, and Karniadakis 2020;
D’Elia et al. 2020; Kadeethum, Jørgensen, and Nick 2020b;
Fraces, Papaioannou, and Tchelepi 2020). The requirement
of large amount of training examples is mitigated using these
new research idea, and the physical laws are naturally em-
bedded through systems of PDEs (Lu et al. 2019; Raissi,
Yazdani, and Karniadakis 2020; D’Elia et al. 2020; Raissi,
Perdikaris, and Karniadakis 2019; Kadeethum, Jørgensen,
and Nick 2020a).

In this paper, we utilize the idea of physics-informed NN
(PINN) to solve a coupled flow and transport system in
porous media (Fraces, Papaioannou, and Tchelepi 2020; Cai
et al. 2020; He et al. 2020). Sensitivity analyses in respect
to the hyper parameters (number of layers and neurons) and
the number of training data points are discussed. Moreover,
we present the performance of the PINN for solving the
advection-dominated transport system when the flux is also
computed by PINN.

Computational Algorithms
In this section, we introduce the governing system and the
main ingredients of PINN with a rationale based on previous
studies (Raissi, Perdikaris, and Karniadakis 2019).

Governing equations
We consider an initial-boundary value problem of the cou-
pled flow and transport problem in the computational do-
main Ω ⊂ R2 where the time domain is denoted by T =
(0,T] with a given final time T > 0. The coupled system
derived from the conservation of mass (volume) is defined
as the following

−∇ · (κ∇p) = f,

v := −κ∇p,
∂

∂t
c+∇ · (vc) = g,

(1)



where the unknown variables are the scalar pressure function
(p) and the scalar transport function (c). Here, f and g are the
body forces for each equations, and v is the velocity vector
defined with the given coefficient κ, which is assumed to be
a constant in this paper for the simplicity.

The boundary condition on ∂Ω for the pressure equation
can be decomposed to pressure (Dirichlet) and flux (Neu-
mann) boundaries, ∂Ωp and ∂Ωq , respectively. Also, the
transport equation is supplemented by both Dirichlet and
Neumann boundaries, ∂Ωc and ∂Ωr, respectively. Moreover
the initial condition for the concentration c(·, t = 0) = c0 is
given.

Physics-Informed Neural Networks
Recently developed Physics-Informed Neural Networks
(PINN) (Raissi, Perdikaris, and Karniadakis 2019) seek the
solutions satisfying PDEs by utilizing the residuals of each
equation in the governing system and boundary/initial con-
ditions as part of the training. Here, the solution of PDEs
is formulated as the solution to a constrained optimization
problem. A couple of main advantages to this approach in-
clude i) the size of the training set is considerably reduced by
utilizing the governing equations as an implicit regulariza-
tion term in an objective function to be minimized (D’Elia
et al. 2020), and ii) it is a mesh-free approach, where the NN
is trained on batches of randomly sampled time and space
points. In particular, PINNs have been further extended to
solve fractional PDEs (Pang, Lu, and Karniadakis 2019),
stochastic PDEs (Nabian and Meidani 2018; Yang, Zhang,
and Karniadakis 2020; Zhang, Guo, and Karniadakis 2020;
Zhang et al. 2019a), and nonlocal models (D’Elia et al.
2020).

Neural network architecture An example of a neural net-
work architecture is presented in Figure 1 (Rumelhart, Hin-
ton, and Williams 1986; LeCun, Bengio, and Hinton 2015;
Hinton and Salakhutdinov 2006). The number of input and
output nodes in the NNs shown in this figure are determined
from the given formulation of the problem. For example, if
the problem is solving a time dependent PDE, we have three
input nodes (x, y and t), where t is time, x and y are co-
ordinates in x- and y-directions, respectively (i.e i = 3 in
Figure 1). The output nodes will be the solution functions
satisfying the given system of PDEs. In the coupled flow
and transport problem as defined in (1), we have two output
nodes c and p, where c represents the concentration, and p is
the pressure. Thus, we have k = 2 in Figure 1.

The number of hidden layers (Nhl) and the number of
neurons (Nn) act as hyper-parameters, which means they are
problem-specific and needed to be adjusted according to the
natures of each problem (Goodfellow, Bengio, and Courville
2016). Each neuron (e.g., H1,1 ... H1,Nn ) is connected to
the nodes of the previous layer with adjustable weights (W)
and also has an adjustable bias (b). These variables are
learned during a training phase (Hinton and Salakhutdinov
2006; Goodfellow, Bengio, and Courville 2016) by utiliz-
ing the hyperbolic tangent (tanh) as an activation function,
and second-order Limited-memory BFGS as an optimizer
by minimizing loss functions (LOSS).
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Figure 1: An example of general neural network architec-
ture (Rumelhart, Hinton, and Williams 1986; LeCun, Ben-
gio, and Hinton 2015; Hinton and Salakhutdinov 2006). The
input layer contains up to i input nodes, and the output layer
is composed of 1, ..., k output nodes. Nhl refers to the num-
ber of hidden layers, and each hidden layer is composed of
Nn neurons. Each neuron (e.g., H1,1 ... H1,Nn ) is connected
to the nodes of the previous layer with adjustable weights
and also has an adjustable bias. This figure is adapted from
(Kadeethum, Jørgensen, and Nick 2020b,a)

Based on the algorithm established in (Raissi, Perdikaris,
and Karniadakis 2019; Lu et al. 2019), the PINN utilizes two
NNs. One NN is employed to impose the boundary/initial
conditions of the system with the adjustable W and b, and
the other NN is for the information given by the differen-
tial operators as regularizing terms of the loss functions for
each PDEs. The latter loss functions could be defined by
the residual of the PDEs. Thus, the training examples that
are used to evaluate these extra regularizing terms are dif-
ferent from those used to train the network with the bound-
ary/initial conditions (BC/ICs). In other words, BC/ICs are
imposed using training data and the equation residuals are
imposed in a data-free manner by automatic differentiation
of the predicted states at randomly chosen interior colloca-
tion points. This additional NN with the residuals as loss
functions are known as the PINN (Raissi, Perdikaris, and
Karniadakis 2019). In order to minimize PINN, we adjust
all the W and b from the first NN. Throughout this paper,
the NNs are built on the Tensorflow platform (Abadi et al.
2015) and the numerical code is built on DeepXDE (Lu et al.
2019).

Loss functions The loss functions (LOSS), which we
minimize through the machine learning process, is com-
posed of two parts as discussed in the previous section. One
is the error on the training data (MSEtr), which includes the
boundary and initial conditions for the first NN. The other
one is the mean square value of the regularization term given



by the physics-informed functions (MSEΠ).
We encode the underlying physical information to the

NNs through the so-called physics-informed functions (Π)
as following,

Πp := −∇ · (κ∇p)− f, (2)

Πc :=
∂

∂t
c+∇ · ((−κ∇p)c)− g, (3)

which are the residuals of the given PDEs. These residuals
(Πp,Πc) will act as the additional regularizing terms in the
loss function defined below.

Thus, the loss function of our problem is

LOSS := MSEtr + MSEΠp + MSEΠc , (4)

where the boundary and initial conditions are incorporated
into the MSEtr. Here, the value of the mean squared er-
ror (MSE) is defined as MSE := 1

n

∑n
i=1(φ(xi, ti) −

φh(xi, ti))
2 for a given function φ and an approximated

function φh.

Numerical Results
In this final section, we present and discuss the capabilities
and the performance of the algorithm by solving the the cou-
pled flow and transport system shown in (1).

Example 1
First, to test the accuracy of the proposed algorithm, we set
the exact solutions as

c(x, y, t) := sin (t+ x+ y), (5)

and
p(x, y, t) := cos (t+ x+ y), (6)

for the transport and the pressure, respectively, in the com-
putational domain Ω× T = (0, 1)2 × (0, 1]. Here, the body
forces f and g are computed with the given solutions where
κ is chosen to be κ = 1, and the Dirichlet boundary condi-
tions are given on ∂Ω for both pressure and transport.

Figure 2 illustrates the approximated solutions of pressure
(p) at time t = 0.1 and transport (c) at time t = 0.1, 0.5 and
t = 1 by utilizing PINN. In addition, Figure 3 presents the
comparisons with the exact solution over the line for each
given time steps. We observe that the PINN with the given
loss functions provide accurate approximations to the multi-
variable coupled flow and transport system. We note that the
algorithm does not have the time marching steps.

Here, the number of the training data points for approx-
imating the initial condition (NΩ(t=0)), the boundary con-
ditions (N∂Ω), and inside the domain (NΩ) are all set to be
1000. The number of hidden layers is 4, and the number
of neurons for each layer is 10. The second-order Limited-
memory BFGS method is employed for the optimization,
and the number of epochs (iterations of training) is set to
be 10, 000. Moreover, tanh function is utilized for the acti-
vation function.

Next, Table 1 illustrates the sensitivity test regarding to
the choice of the hyper-parameters (number of hidden layers

(a) p at t = 0.1. (b) c at t = 0.1.

(c) c at t = 0.5. (d) c at t = 1.

Figure 2: (a) illustrates the approximated pressure value p at
t = 0.1, and (b)-(d) are the approximated transport values c
for each time t = 0.1, 0.5 and t = 1.

(a) p at t = 0.5 (b) p at t = 1.

(c) c at t = 0.5 (d) c at t = 1.

Figure 3: The comparison of the approximated pressure and
transport solutions, p, c, with the exact solution over the line
(0, 0.5)-(1, 0.5).

(Nhl) and neurons (Nn)). Here, the error is computed by the
following definition,

‖φ(x, t)−φh(x, t)‖L∞ := maxi (|φ(xi, ti)− φh(xi, ti)|) ,
where φ denotes the exact solution, and φh is the approxi-
mated solution, which is either pressure or transport in this
case. In addition, for this test, the number of training points
for the initial/boundary conditions (NΩ(t=0), N∂Ω) and in-
side the domain for the residual (NΩ) are fixed to be 1000.
We observe that the algorithm does depend on these hyper-
parameters, but the results do not vary too much.

Moreover, Table 2 presents the algorithm’s sensitivity
test regarding the number of training points for the ini-
tial/boundary conditions and inside the domain for the resid-
ual. Here the hyper-parameters are fixed to be Nhl = 4 and



Nn\Nhl 4 8 16
10 2.65e-03 2.19e-03 7.79e-04
20 6.23e-04 1.86e-03 7.61e-04
40 3.32e-03 8.89e-04 1.75e-03

Nn\Nhl 4 8 16
10 1.47e-03 3.11e-03 1.08e-03
20 6.10e-04 1.05e-03 9.60e-04
40 5.00e-03 2.56e-03 2.89e-03

Table 1: Comparison of the error depending on number of
the hidden layers and the neurons. The top table is for the
pressure and the bottom one is for the transport. The row
indicates different number of hidden layers (Nhl) and the
columns are for different number of neurons Nn.

Nn = 20. To provide a general result, the average of 5 dif-
ferent realizations are shown in the table.

(NΩ(t=0), N∂Ω)\NΩ 10 100 1000
(10,10) 1.25e-03 1.04e-03 1.44e-03

(100,100) 1.04e-03 9.99e-04 6.40e-04
(1000,1000) 1.56e-03 8.02e-04 1.08e-03

(NΩ(t=0), N∂Ω)\NΩ 10 100 1000
(10,10) 4.73e-03 2.06e-03 2.32e-03

(100,100) 1.23e-03 1.94e-03 1.08e-03
(1000,1000) 1.48e-03 1.20e-03 1.20e-03

Table 2: Comparison of the error depending on number of
the training points. The top table is for the pressure and the
bottom one is for the transport. The column indicates differ-
ent (NΩ(t=0), N∂Ω) and the rows are for NΩ.

Example 2
In the final example, we solve a simple flow and transport
problem in Ω × T = (0, 1)2 × (0, 1] by setting f = g = 0.
The boundary conditions for the transport and the pressure
are given as {

c = 1, if x = 0,

∇c · n = 0, else where,

and 
p = 1, if x = 0,

p = 0, if x = 1,

κ∇p · n = 0, else where .

The initial condition for the transport equation is set to be
c(·, t = 0) = 0. Thus, we are transporting the c = 1 from
the left boundary to the right boundary with the computed
velocity. Here, the hyper-parameters are fixed to be Nhl = 4
and Nn = 20, and NΩ(t=0) = N∂Ω = NΩ = 1000.

Figure 4 illustrates the solution of the pressure p and
the transport c for each given time. We note that the pres-
sure and the velocity are constant over the time domain, as
shown in Figure 4(a). However the value of c is transported
from left to the right as expected (Figure 4(b)-(d)). The so-
lutions of c over the line (0, 0.5) − (1, 0.5) for each time

t = 0.1, 0.3, 0.5, 0.7 and 0.9 are plotted in the same domain
in Figure 5. We do not observe any spurious oscillations or
over/under shooting (violation of the maximum principle) in
this advection dominated case (Wang, Teng, and Perdikaris
2020; Fuks and Tchelepi 2020).

(a) p at t = 0.1 (b) c at t = 0.1

(c) c at t = 0.5 (d) c at t = 1.

Figure 4: The solution of the pressure p and the transport c
for each given time step.

Figure 5: Solution of c over the line (0, 0.5) − (1, 0.5) is
plotted for each time t = 0.1, 0.3, 0.5, 0.7 and 0.9. We do
observe the moving step functions as expected.

Conclusion
This paper utilizes PINN to solve one of the multi-physics
problems, coupled flow and transport systems. The sensitiv-
ity tests regarding to the parameters for training NN and the
loss functions for PINN are presented. The numerical ex-
periments illustrate the accuracy and the capabilities of the
algorithm. Detailed comparison with the existing numeri-
cal methods such as finite element method, and extension
to consider nonlinear problems in heterogeneous media are
ongoing work.
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