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Abstract

Determining the proper level of details to develop and solve
physical models is usually difficult when one encounters new
engineering problems. Such difficulty comes from how to
balance the time (simulation cost) and accuracy for the phys-
ical model simulation afterwards. We propose a framework
for automatic development of a family of surrogate models
of physical systems that provide flexible cost-accuracy trade-
offs to assist making such determinations. We present both a
model-based and a data-driven strategy to generate surrogate
models. The former starts from a high-fidelity model gener-
ated from first principles and applies a bottom-up model or-
der reduction (MOR) that preserves stability and convergence
while providing a priori error bounds, although the resulting
reduced-order model may lose its interpretability. The latter
generates interpretable surrogate models by fitting artificial
constitutive relations to a presupposed topological structure
using experimental or simulation data. For the latter, we use
Tonti diagrams to systematically produce differential equa-
tions from the assumed topological structure using algebraic
topological semantics that are common to various lumped-
parameter models (LPM). The parameter for the constitutive
relations are estimated using standard system identification
algorithms. Our framework is compatible with various spa-
tial discretization schemes for distributed parameter models
(DPM), and can supports solving engineering problems in
different domains of physics.

Introduction
Determining the appropriate level of granularity (LOG) to
model a physical system for computer-aided simulation is
a nontrivial problem, as cost-accuracy tradeoffs are rarely
clear upfront. Generally, when encountered with a new prac-
tical problem, physicists and engineers attempt to model the
system as accurately as possible, starting from the first prin-
ciples. For example, Fig. 1 illustrates a multiphysics simu-
lation of a piston operating in high pressure and tempera-
ture conditions. Generally, to make such predictions accu-
rate, various details of the geometric and physical models
might be accounted for, such as the small geometric features
(e.g., holes and grooves), complex material distribution over
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Figure 1: Displacement and thermal fields of a piston simu-
lated by solving its finite element model

the geometry, etc. Resolving these details often leads to sig-
nificant computational time and cost that may turn out to be
overkill to predict the desired properties up to an adequate
accuracy. The tradeoffs are simply unknown until the model
is simulated many times under various assumptions and us-
ing different LOGs.

High-fidelity models (HFMs) for DPM are commonly
specified by one or more partial differential equations
(PDEs) and initial/boundary conditions (ICs/BCs). To solve
these equations, one often performs a discretization in space
over a mesh, e.g., using finite difference [20], finite element
[3], and finite volume [12] or spectral methods [15], and se-
lects a time-stepping (e.g., Euler or Runge Kutta [8]) scheme
for integration. The mesh resolution or the number of ba-
sis functions are determined by the user, to satisfy accuracy
and stability requirements. The computational time and cost
grows at a quadratic (in 2D) or cubic (in 3D) rate with de-
creasing mesh length, if not worse [6, 18]. For example, the
deformation and temperature fields of the piston in Fig. 1 is
governed by two coupled PDEs describing the elastodynam-
ics and transient heat transfer. A typical dynamic thermo-
elastic simulation for a system like this with geometric de-
tails and heterogeneous materials may take anywhere from
minutes to hours or days, depending on the mesh resolution,
integration time-step, and available computing power. Using
such HFM and simulations for every part of a complex en-
gineering system (e.g., an entire automobile) is impractical
and in most cases even unnecessary.

A common solution to this problem is to use reduced-
order models (ROM) that make compromises in accuracy



to achieve a better computational performance. However, it
is not easy to determine what kind of geometric or material
features may be omitted or simplified to retain the key prop-
erties one cares about. For example, decreasing the resolu-
tion across the model or “de-featuring” the mesh may result
in prohibitively large errors, while a much simpler model,
perhaps engineered with a careful consideration of what fea-
tures are important for the predictive outcome, may still cap-
ture the essential properties at a small fraction of the HFM
simulation cost. The domain insight or validation data for
such determinations are not always available. A systematic
and domain-agnostic approach that can be applied automat-
ically to generate flexible ROMs from a given HFM or data
is missing. This paper aims to close that gap by providing
such a framework that further provides users with “knobs” to
adjust cost-accuracy tradeoffs, with guaranteed properties,
prior to committing to an LOG for simulation; to customize
interpretable structures that can be trained by data; and a
combination of both, if applicable.

We present a framework (Fig. 2) that can systematically
generate a family of ROMs for a system that span the cost-
accuracy tradeoff spectrum. At the one end of this spectrum,
one has the HFM described by a number of PDEs, semi-
discretized (i.e., discretized in space but not in time) into
a large system of coupled ordinary differential equations
(ODEs) or differential algebraic equations (DAEs). One may
also have access to data sets representing the behavior, i.e.,
response of the HFM (or actual physical system) to certain
stimuli such as ICs/BCs or source/sink terms.

The generated family of surrogate models may pro-
vide one or a combination of properties: (1) flexible cost-
accuracy tradeoffs (2) a priori error bounds (3) a priori guar-
antees of preserving properties that are critical for physical
fidelity (4) interpretability. Equipped with this framework,
physicists and engineers can quickly choose the LOG at
which the ROM can model the system and predict its be-
haviors most efficiently up to the required accuracy.

Contributions
This paper has three major contributions:

1. A MOR approach from the system and control theory
is adapted in developing ROMs for DPMs, using semi-
discretization (i.e., discretization in space, but not time)
to covert PDEs to a large system of ODEs/DAEs.

2. A domain-agnostic mechanism is proposed to automat-
ically translate a presupposed topological structure for
LPMs to a system of ODEs, which supports both single
physics and multiphysics couplings.

3. A hybrid approach for surrogate modeling is proposed,
which, not only maintains all desirable properties of the
model-based method, but also retrieves the interpretability
of the physical system through imposing LPM structure.

Related work
Different approaches to surrogate modeling of physical sys-
tems can be broadly categorized into model-based and data-
driven methods. The model-based methods such as MOR

Figure 2: Framework for surrogate modeling

are generally used when a “white box” HFM is available.
Bottom-up MOR techniques aim at finding a good approx-
imation of the HFM such that the approximation is numer-
ically efficient and stable while preserving certain physical
and numerical properties of the HFM [19, 4]. The MOR pro-
cess usually starts with a large system of ODEs and pro-
duces a significantly smaller system of ODEs that is guaran-
teed to predict a similar solution for given stimulus. Fig. 3
(a) illustrates the key ideas in MOR. By contrast, the data-
driven methods, including machine learning (ML) or regres-
sion approaches to parameter estimation for a small system
of ODEs, are generally used if the HFM is a “black box”,
where some input and output data sets are given, but the
model’s inner working mechanism is not available.

The commonly-used MOR methods for linear time-
invariant (LTI) systems are the balanced truncation (BT)
method [9, 26, 31] and the rational Krylov subspace (RKS)
method [1, 2, 14, 16], which are based on projection. The
principle of the BT method is to remove the states that have
weak controllability and observability [9]. The BT method
is not time-efficient for large-scale models that have more
than a few thousands of variables because finding out such
states is a time-consuming process. By contrast, the RKS
method matches several most significant terms of the Tayler
series expansion of the ROM transfer function, expanded
around carefully selected frequencies, to those of the HFM.
Although RKS is more scalable than BT, it has several draw-
backs; for example, it does not guarantee preservation of the
HFM’s stability (i.e., even if the HFM is stable, the ROM
may not be) and the Taylor series expansion frequencies
have to be selected manually, which is nontrivial.

To overcome the above limitations of RKS, researchers
have developed an improved method based on an iterative
algorithm [17], which allows adaptively choosing the ex-
pansion frequencies using the mirror image of the poles of
the obtained transfer function of ROM. This algorithm is
considered as a “gold standard” among the projection-based
MOR methods that minimize the norm of approximation er-
ror between ROM and HFM transfer functions for a given
target model order1. Compared to RKS, the IRKA has the
advantage of the ability to automatically choose expansion

1The “order” of a model is the number of state variables, and
the number of first-order ODEs, in the state-space representation.



frequencies by iteration while maintaining the model sta-
bility [17]. The algorithm of IRKA is summarized in Fig.
3 (b). However, it can neither guarantee monotonically de-
creasing errors with every iteration, nor ensure that the error
converges to a local minimum [5]. The CUmulative REduc-
tion (CURE) scheme [22] was later developed to improve
several critical properties of the IRKA. The algorithm of
the CURE scheme can be found in [22] and is repeated in
Fig. 3 (c). Particularly, to maintain the model stability, a
stability-preserving, adaptive rational Krylov (SPARK) al-
gorithm was developed [22], which is usually embedded
in the CURE scheme to generate a family of stable ROMs
with increasing model orders by sequential accumulation in
a single MOR process. Both IRKA and SPARK share the
same model-reduction principle as the RKS methods and are
both numerically efficient. However, compared to the IRKA
method, the SPARK+CURE has further advantages such as
ensuring stability, monotonic convergence, and a priori er-
ror guarantees, as well as automatic model order decision
making capabilities.

Table 1 illustrates a comparison of the properties of the
four MOR methods mentioned above. The major drawback
of all of these projection-based MOR techniques is the loss
of physics-based structure and interpretability. There ex-
ist structure-preserving (e.g., symplectic) MOR approaches
[24] that can remedy this shortcoming; however, the added
interpretability may come at the expense of losing the de-
sirable properties in Table 1. We will present a simple hy-
bridization strategy to augment CURE with a data-driven
approach to retrieve the physical structure with a small com-
promise in the a priori error guarantees.

Table 1: Comparison of properties of four commonly-used
MOR methods (CURE is uniquely positioned)

Popular data-driven methods include, but are not lim-
ited to, symbolic regression [29, 30], recurrent neural net-
works [32], evolved regulatory networks [13], and physics-
informed neural networks [25]. These methods have demon-
strated the ability to accurately replicate HFM after suffi-
cient training and testing. Their development often requires
domain-specific insight to select the proper set of differen-
tial equations and directly build these equations into a con-
strained learning structure and/or penalize the loss function
by residual errors. In this paper, however, we provide an ap-
proach that only requires the user insight in choosing an ap-
propriate LPM topology while the system equations can be
automatically generated in a domain-agnostic fashion.

Methods and Algorithms
Below, we introduce our model-based and data-driven ap-
proaches to bottom-up MOR of white box systems and top-
down surrogate modeling of black box systems, respectively.
At the end, we provide guidelines on how to use both ap-
proaches in a hybrid setting for “gray box” systems.

A Model-Based Approach
For the model-based approach, we use the SPARK+CURE
[22] due to its rigorous mathematical underpinnings that
lead to strong guarantees for numerical simulation. In
a nutshell, this method has several important properties,
namely: (1) automatic discovery of proper expansion fre-
quencies; (2) guaranteed preservation of stability; (3) guar-
anteedH2−error convergence; and (4) an a prioriH2−error
bound.2 More specifically, the method not only allows adap-
tively choosing the expansion frequencies using the poles of
the obtained ROM (e.g., similarly to IRKA), but also enables
incrementally increasing the model order by cumulatively
updating the ROM error transfer function. Particularly, the
error of the obtained ROM monotonically converges to zero
(i.e., ROM converges to HFM) in the accumulation process.
The SPARK+CURE scheme can also receive a tolerance for
error, based on which a termination criterion for cumulative
reduction can be defined. In other words, the user provides
not only the HFM matrices but also a maximal value of er-
ror that can be overlooked, and the algorithm generates the
lowest-order ROM (hence the fastest to simulate) that is still
guaranteed to remain within the error tolerance, without ac-
tually performing any numerical simulation.

A Data-Driven Approach
In a recent article [34], common reference semantics for
lumped parameter system modeling were presented, based
on algebraic topological foundations of network theory
[27, 7], which can serve as a unifying abstraction of system
modeling languages such as Modelica [11], Simulink [10],
linear graphs [28], and bond graphs [23], etc. A key advan-
tage of using this abstraction is the ability to automatically
map a given topological structure for the LPM (e.g., a cir-
cuit graph or mass/spring/damper network) to a set of gov-
erning ODEs. These ODEs have built-in conservation laws
in the LPM context such as Kirchhoff’s current and volt-
age laws for electrical and thermal circuits, superposition of
forces and Newton’s laws of motion in multi-body dynam-
ics, and so on. They also include constitutive laws associ-
ated with lumped components such as springs and dampers
in mechanical systems, resistors and capacitors in analog cir-
cuits, conductors in heat transfer, and so on. The recipe for
generating the ODEs from system topology in [34] is given
by Tonti diagrams [33] of network theory (Fig. 4 (c)). The
Tonti diagram is a composition of topological and algebraic
operators that map data associated with different cells in an
oriented cell complex representation of the LPM network;
for instance, in an electrical circuit, the superposition of in-
coming/outgoing currents on incident wires (i.e., 1−cells) to

2TheH2−error is defined as the L2−norm of the error transfer
function over the imaginary line in the frequency domain.



Figure 3: The workflow for the model-based approach to LPM construction. The user provides (a) the HFM, obtained by
semi-discretization of a set of PDEs into a large system of ODEs/DAEs (e.g., via finite element spatial discretization). The
algorithm re-arranges the second-order equations into twice as many first-order equations in the state-space representation. The
state-space representation can be projected to a lower-dimensional space by various MOR techniques, e.g., (b) IRKA. We use
an improved version of IRKA, called (c) the CURE scheme. The diagram in (c) is adopted from [22] with modification.

a junction (i.e., 0−cells) is captured by a boundary operator
(from 1−cells to 0−cells), whereas resistance, capacitance,
inductance, and other constitutive relations are in-place al-
gebraic relations that keep data on 1−cells. These operators
are represented by different types of arrows on the Tonti di-
agram. The key advatange of using this approach to equa-
tion generation is its generalizability to various domains of
physics and possible multi-physics, as the underlying topo-
logical and algebraic operations are common to mechanical,
electrical, thermal, and other systems [33].

Constitutive relationships in LPM capture “effective”
phenomenological properties of the system at a certain LOG
of choice, unlike the constitutive relations in DPM de-
rived directly from well-documented material properties.
Except in cases where an LPM is directly generated from
a system model with modular components (e.g., actual
springs/dampers in an automobile suspension assembly), the
parameters for the artificial LPM components are not eas-
ily obtained from geometric and material properties. These
parameters must be estimated from data by solving an opti-
mization problem (e.g., least squares regression).

Figure 4 illustrates the workflow for the data-driven LPM
construction. Given an experimental or simulation data set
and an LPM topology in Fig. 4 (a), we first convert the
LPM from the domain-specific format (e.g., Modelica) to
the domain-agnostic canonical form (i.e., oriented cell com-
plex) as shown in Fig. 4 (b), using the semantics provided in
[34]. Each 1−cell is associated with a symbolic constitutive
relation and given an initial value to the constitutive parame-
ter. After selecting a state variable of interest, the state equa-
tions (i.e., system of second-order ODEs/DAEs) are gen-
erated by tracing groups of paths along the Tonti diagram
of network theory with the appropriate physical types [34].
There are a total of 8 different options for state variables,
each of which corresponds to a different groups of paths
[34]. Once the system of ODEs/DAEs are assembled, we

use ordinary least squares regression—although other ob-
jective functions and optimization techniques are certainly
applicable—to iteratively update the constitutive parameters
until the solution of the state equation fits the given data.

In a later section, we will apply this method to obtain
an LPM for a mechanical problem (single physics) and a
thermo-mechanical problem (coupled multiphysics).

A Hybrid Approach
Both of the model-based and data-driven approached men-
tioned above have pros and cons; in particular:
• The model-based approach has the advantage of starting

from first principles and requiring no data other than basic
material properties that are used in the HFM (e.g., consti-
tutive part of the PDEs).

• The model-based method also provides rigorous guaran-
tees that are rarely avialble in data-driven methods; how-
ever, the resulting ROMs are often not interpretable.

• The data-driven method provides a mechanism to specify
the desired LPM with interpretable constitutive relations
(“artificial” components as 1−cells in the cell complex) if
the user has insight to choose an appropriate structure.
In particular, even though the SPARK+CURE method

has several useful properties, it has the following limita-
tions: (1) the HFM itself must be dissipative (hence stable)
to begin with (2) the resulting HFM is a system of first-
order ODEs/DAEs with dense state-space matrices which
may not be refactored into a second-order system (e.g., with
mass, spring, and damper matrices in mechanical LPM) for
component-wise interpretability and (3) the rigorous guar-
antees are only valid for LTI systems, although there are
several ways in which it can be generalized to nonlinear sys-
tems, some of which are ongoing research.

On the other hand, the regression-based system identifi-
cation for data-driven fitting becomes impractical when the



Figure 4: The workflow for the data-driven approach to LPM construction. The user provides (a) a topology for the LPM (i.e.,
symbolic network of inter-connected components), which is then converted to (b) the common language of abstract oriented
cell complexes [34]. (c) The Tonti diagram [33] converts the cell complex representation to (d) a system of symbolic ODEs
with unknown constitutive parameters. The parameters are learned from data using standard system identification techniques.

HFM is too costly to simulate (to obtain synthetic data) and
the experimental measurements of adequate quality are not
available. One can always use as many data points as one
can obtain within the computational and experimental bud-
get, but the lack of guarantees in predicting out-of-training
inputs undermines the ROM’s reliability.

To remedy the shortcomings of the the model-based and
data-driven approaches, we developed a “hyrbid” approach
to achieve the best of both worlds. For each generated ROM
M from the SPARK+CURE method, we use this ROM to
produce training data for another surrogate LPM M′ of the
same order r � n via system identification. Although the
training data is itself erroneous, itsH2−error is bounded by
the CURE framework (denoted by εM). The error between
the two ROMs (denoted by ε̄rel), on the other hand, can be
computed by solving two small-scale algebraic Lyapunov
equations.3 Hence, theH2−error for the surrogate LPM can
also be guaranteed via a triangular inequality:

ε̄M′ ≤ ε̄M + ε̄rel. (1)

Applications and Results
Spatial Discretization
To generate data for our data-driven method by using the
ROM generated from the SPARK+CURE method, we will
use LTI models and FEA discretization [3], but virtually
every spatial discretization works as long as it generates a
system of LTI ODEs/DAEs. Note that we do not perform
temporal discretization for MOR, as the SPARK+CURE
method is best described in terms of continuous and differ-
entiable functions in time. Temporal discretization, on the

3Note that solving such a system for the full-order HFM would
be almost as prohibitive as numerical simulation.

other hand, comes into play for numerical simulation of the
system of ODEs/DAEs (before or after MOR) by finite time-
stepping to approximate integration with given ICs.

Mechanical and Thermal Examples
We will generate data using two geometric domains; namely,
a simple cylinder (Fig. 6) to illustrate the basic ideas with a
closed-form ground truth to compare against, and a piston
assembly (Fig. 8) to demonstrate a slightly more compli-
cated case involving one-way coupled thermo-elasticity. In
both examples, we assume linear elastic material properties
undergoing dynamic mechanical and/or thermal loads. The
BCs in these examples are fixed displacement at some sur-
faces and uniform pressure and heat fluxes at other surfaces.
In principle, the approach can be applied to domains of ar-
bitrary shapes, material distributions, ICs/BCs, and excita-
tions. More extensive testing with strongly (e.g., two-way)
coupled mutliphysics problems is required to further vali-
date the approach, which is suitable for a full paper.

Preliminary Results
Consider the homogeneous cylinder in Fig. 6 (a) with one
end fixed to the ground and the other end bearing a constant
unit pressure. The cylinder is discretized using second-order
tetrahedral finite elements, leading to 17,430 nodal displace-
ment variables. Using the vertical average displacement of
the top surface of the cylinder as the solution of interest, we
use the SPARK+CURE to generate a family of ROMs. Fig-
ure 5 (a) shows the a priori relative H2−error bounds for
each of them. It can be observed that the error bound mono-
tonically decreases with increasing order of the ROMs. For
visualization, we compare the simulation results of the ROM
and the original HFM (finite elements simulation) as shown



(a) A priori relativeH2−error bound

(b) Simulation results comparison

Figure 5: Simulation results comparison between HFM and
a family of ROMs, and a priori relativeH2−error bounds.

in Fig. 5 (b). We select the ROM of order r = 50 to generate
simulation data, whose a priori relative H2−error bound is
10−2.4509 ≈ 0.35% as shown in Fig. 5 (a).

To find an interpretable ROM with a desired topologi-
cal structure, we initialize an oriented cell complex (Fig.
6 (c)) representing a lumped mass-spring-damper network
with 2 degrees of freedom (Fig. 6 (d)). We label the 1−cells
with L3, L6 for masses, L2, L5 for springs, and L1, L4 for
dampers. The Tonti diagram of mechanical LPM is shown in
Fig. 7a, and the paths traced to generate the system of ODEs
are shown in Fig. 7 (b). We apply an ordinary least squares
regression [21] to find the values of the lumped masses, stiff-
ness coefficients, and damping coefficients and compare the
simulation result for the optimal LPM against the ROM and
the HFM (Fig. 6 (e)). It can be observed that the simula-
tion results between the ROM and the HRM are close and
the simulation results between the optimal LPM and the
ROM match well, with a normalized root-mean-square error

(a) Cylinder (b) Mesh (c) Cell complex (d) mass-spring-
damper system

(e) Simulation results comparison

Figure 6: The topological structure of the physical space of
a lumped mass-spring-damper system and the comparison
of simulation results between the HFM, the reduced FEA
model, and the optimal model

(NRMSE)4 of 4.52%. The relative H2−error bound com-
puted from (1) against HFM is 0.184.

Next, we apply the approach to a slightly more complex
problem with weak thermo-elastic coupling, over a piston
geometry shown in Fig. 8 (a), in which the temperature
change has an impact on structural field, not vice versa. Parts
of the piston are combined into one single part to avoid rela-
tive motion. The piston bears a unit pressure (red arrows) on
the top surface, a constant heat flux (blue pins) on the pis-
ton head, and the crank is fixed (green pins). The solution of
interest is the vertical average displacement of the top sur-
face. The data is obtained by simulating a ROM generated
from the SPARK+CURE method, with an a priori relative
H2−error bound of 0.0031, computed from (1).

To retrieve interpretability, we initialize a pair of con-
nected oriented cell complexes representing a mechanical
LPM (mass-spring-damper network) connected to a thermal
LPM (resistance-conductance network) by a transformer
(TF) (Fig. 11), where we label the 1−cells with L3, L6

for masses, L2, L5 for springs, L1, L4 for dampers, L7,
L10, L11 for thermal resistors, and L8, L9 for thermal con-
ductors. The Tonti diagram of generalized network systems

4The NRMSE is defined as the L2−norm of the error signal
(between ROM and LPM) in the time domain, normalized by the
variation interval of the ROM.



(a) Tonti diagram (b) Paths

Figure 7: Tonti diagram of lumped mass-spring-damper sys-
tem (with lumped sources) and paths for generating govern-
ing equations from LPM topology.

(a) Piston (b) Mesh of piston

Figure 8: A Piston and its FEA mesh for HFM simulation.

(a) Generalized Tonti diagram (b) Paths

Figure 9: Generalized Tonti diagram of multi-domain LPM
and paths for generating governing equations.

[34] is shown in Fig. 9 (a) and the paths traced to generate
ODEs of the multi-domain lumped parameter systems are
shown in Fig. 9 (b). We apply an ordinary least squares re-
gression to obtain the optimal values of the lumped mass,
stiffness coefficients, damping coefficients, thermal conduc-
tance, and thermal resistance. We compare the solutions
of the HFM, the ROM and the optimal LPM in Fig. 12,
where the NRMSE of the parameter estimation is 3.11%
and the relativeH2−error bound computed from (1) against
the HFM is 0.0124. Note that the mechanical vibration time
scale in this case is much faster than the heat diffusion, so the
displacement reaches steady-state value of −1.393 × 10−4

meters early on. The displacement visible in the figure is
caused by thermal expansion.

Figure 10: A thermo-mechanical LPM with a TF.

Figure 11: The topological structure of the physical space
of a thermo-mechanical LPM with a transformer (TF) coou-
pling the two physics.

Conclusions
We proposed a framework for automatically generating a
family of surrogate models of physical systems with dif-
ferent cost-accuracy tradeoffs. We presented model-based,
data-driven, and hybrid techniques that provide a priori guar-
antees of preserved properties including stability, conver-
gence, and error bounds, as well as an ability to enforce an
interpretable topological structure while assessing its impact
on the error bound at a small computational cost. In particu-
lar, we used the SPARK+CURE algorithm to develop a first
instance of a ROM for rapid simulation and data generation.
We use this ROM to train another surrogate ROM (inter-
pretable LPM) and measure the additional errors by solving
algebraic Lyapunov equations. To systematically develop an
interpretable LPM, we used Tonti diagrams of network the-
ory to generate systems of ODEs from the presupposed topo-
logical structure and system identification to estimate the un-
known constitutive parameters. This approach avoids simu-
lating the HFM and enables quantifying how well the as-
sumed topology fits the ROM.

This framework can assist researchers and engineers in
making decisions on the proper LOG to develop physical
models of new engineering problems, and will open up new
research directions. Possible areas of further research in-
clude extension to nonlinear systems using methods such as
piecewise linearization, dynamic mode decomposition, and
Koopman operator, and applying the ROM models to solve
inverse problems (e.g., engineering design).
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Figure 12: Comparsion of simulation results between the re-
duced FEA model and the algebraic topological model of a
thermo-mechanical system.
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