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Abstract

Artificial intelligence (AI) has been increasingly applied in
scientific activities for decades; however, it is still far from
an insightful and trustworthy collaborator in the scientific
process. Most existing AI methods are either too simplis-
tic to be useful in real problems faced by scientists or too
domain-specialized (even dogmatized), stifling transforma-
tive discoveries or paradigm shifts. We present an AI research
associate for early-stage scientific discovery based on (a) a
novel minimally-biased ontology for physics-based modeling
that is context-aware, interpretable, and generalizable across
classical and relativistic physics; (b) automatic search for
viable and parsimonious hypotheses, represented at a high-
level (via domain-agnostic constructs) with built-in invari-
ants, e.g., postulated forms of conservation principles implied
by a presupposed spacetime topology; and (c) automatic com-
pilation of the enumerated hypotheses to domain-specific, in-
terpretable, and trainable/testable tensor-based computation
graphs to learn phenomenological relations, e.g., constitutive
or material laws, from sparse (and possibly noisy) data sets.

Introduction
Data-driven AI methods have been applied extensively in the
past few decades to distill nontrivial physics-based insights
(scientific discovery) and to predict complex dynamical be-
havior (scientific simulation) (Stevens et al. 2020). Notwith-
standing their effectiveness and efficiency in classification,
regression, and forecasting tasks, statistical learning meth-
ods can hardly ever evaluate the soundness of a function fit,
explain the reasons behind observed correlations, or provide
sufficiently strong guarantees to replace parsimonious and
explainable scientific expressions such as differential equa-
tions (DE). Hybrid methods such as constructing “physics-
informed/inspired/guided” architectures for neural nets and
loss functions that penalize both predication and DE resid-
ual errors (Raissi, Perdikaris, and Karniadakis 2019; Wei
and Chen 2019; Daw et al. 2020) and graph-nets based on
control theory and combinatorial structures (Cranmer et al.
2019; Seo and Liu 2019; Sanchez-Gonzalez et al. 2020)
are all important steps towards explainability; however, the
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built-in ontological biases in most machine learning (ML)
frameworks prevent them from thinking outside the box to
discover not only the known-unknowns, but also unknown-
unknowns, during early stages of the scientific process.

Contributions
We present ‘cyber-physicist’ (CyPhy), our novel AI re-
search associate for early-stage scientific process of hypoth-
esis generation and initial (in)validation, grounded in the
most invariable mathematical foundations of classical and
relativistic physics. Our framework distinguishes itself from
existing rule-based reasoning, statistical learning, and hy-
brid AI methods by:

(1) an ability to rapidly enumerate and test a diverse set
of mathematically sound and parsimonious physical hy-
potheses, starting from a few basic assumptions on the
embedding spacetime topology;

(2) a distinction between non-negotiable mathematical truism
(e.g., conservation laws or symmetries), that are directly
implied by properties of spacetime, and phenomenolog-
ical relations (e.g., constitutive laws), whose characteri-
zation relies indisputably on empirical observation, jus-
tifying targeted use of data-driven methods (e.g., ML or
polynomial regression); and

(3) a “simple-first” strategy (following Occam’s razor) to
search for new hypotheses by incrementally introducing
latent variables that are expected to exist based on topo-
logical foundations of physics.

Background
AI-assisted discovery of scientific knowledge has been an
active area of research (Langley 1998) long before the rise
of GPU-accelerated deep learning (DL). As computational
power and data sources are becoming more ubiquitous,
model-based, data-driven, and hybrid AI methods are play-
ing an increasingly more important role in various scientific
activities (Kitano 2016; Raghu and Schmidt 2020).

Related efforts to our approach to scientific hypothesis
generation and evaluation are mostly engineered after how
humans approach scientific discovery, including sequential
rule-based symbolic regression (Schmidt and Lipson 2009;
Udrescu and Tegmark 2020), latent space representation
learning via deep neural net auto-encoders (Iten et al. 2020;
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Nautrup et al. 2020) and strategic combinations of divide-
and-conquer, unsupervised learning, simplification by pe-
nalizing description lengths in the loss function, and a pos-
teriori unification by clustering (Wu and Tegmark 2019).
While these and other efforts have shown great promise for
elevating AI to the role of an autonomous, creative, and in-
sightful collaborator that can offer human scientists a set of
viable options to consider, their applications have remained
limited to rather basic examples.

On the more domain-specialized end, DL has been widely
successful in classification, regression, and forecasting tasks
in scientific areas as diverse as turbulence (Miyanawala and
Jaiman 2017; Wang et al. 2020), chaotic particle dynam-
ics (Breen et al. 2020), molecular chemistry and materials
science (Butler et al. 2018), and protein engineering (Yang,
Wu, and Arnold 2019), among others. Most specialized DL
architectures are ad hoc, designed (by humans) using nar-
row, domain-specific, and (by construction) biased knowl-
edge and expertise, stifling innovation and surprise. More-
over, DL models that successfully capture nontrivial patterns
in data are often difficult to explain, lack guarantees even
within their training space, and poorly extrapolate to out-of-
training scenarios (Mehta et al. 2019). Training such models
for high-dimensional physics problems requires enormous
data, which is either unavailable or too costly to obtain in
many experimental sciences.

The Cyber-Physicist
We introduce an AI tool that can bridge multiple levels of ab-
straction, using a domain-agnostic representation scheme to
express a wide range of mathematically viable physical hy-
potheses by exploiting common structural invariants across
physics. Our approach entails:

(a) defining a relatively unbiased ontology rooted in funda-
mental abstractions that are common to all known theories
of classical and relativistic physics;

(b) constructing a constrained search space to enumerate vi-
able hypotheses with postulated invariants, e.g., built-in
conservation laws that are consistent with the presup-
posed spacetime topology; and

(c) automatically assembling interpretable ML architectures
for each hypothesis, to estimate parameters for phe-
nomenological relations from empirical data.

At the core of (a) is a powerful mathematical abstraction
of physical governing equations rooted in algebraic topol-
ogy and differential geometry (Frankel 2011). This abstrac-
tion leads to an ontological commitment to the relationship
between physical measurement and basic properties of the
embedding spacetime—but nothing more, to leave room for
innovation and surprise. This relationship has been shown
to be responsible for the analogies and common structure
across physics (Tonti 2013), exploited in (b), along with
search heuristics based on analogical reasoning. Each vi-
able hypothesis is automatically compiled to an interpretable
“computation graph”—tensor-based architecture, akin to a
neural net with convolution layers to compute differenti-
ation/integration and (non)linear local operators for con-
stitutive equations—for a given cellular decomposition of

embedding spacetime using well-established concepts from
cellular homology (Hatcher 2001) and exterior calculus of
differential and discrete forms (Bott and Tu 1982; Hirani
2003) that are under-utilized in AI.

Topological Foundations of Physics
The key enabler of our AI framework is a simple type sys-
tem for (a) physical variables, based on how they are mea-
sured in spacetime; and (b) physical relations, based on their
(topological vs. metric) nature, and the variables they con-
nect. Following the ground-breaking discoveries by a num-
ber of mathematicians, physicists, and electrical engineers
(Kron 1963; Roth 1955; Branin 1966) towards a general
network theory, Tonti explained the fascinating analogies
across classical and relativistic physics in his pioneering life-
long work (Tonti 2013) by reframing them in the language
of cellular homology, leading to informal classification dia-
grams. Tonti diagrams can be formalized as directed graphs
with strongly typed nodes for variables and edges for rela-
tions. The variable are typed as (d1,d2)−forms based on
their measurement on d1− and d2−dimensional submani-
folds (d1− and d2−cells) of space and time, respectively.
For instance, to model heat transfer in (3+1)D spacetime,
temperature is typed as a (0, 1)−form because it is mea-
sured at spatial points (0−cells) and during temporal inter-
vals (1−cells), whereas heat flux is typed as a (2, 1)−form
because it is measured over spatial surfaces (2−cells) and
during temporal intervals (1−cells). In classical calculus,
both of these variables reduce to scalar and vector fields,
probed at spatial points and at temporal instants, to write
down compact pointwise DEs; however, keeping track of
the topological and geometric character of DEs is key to a
deeper understanding of how known physical theories work,
and building on top of it for AI-assisted discovery of new
physics grounded in mathematical foundations.

The spatiotemporal cells (or embedding manifolds) are
further classified as primary or secondary, endowed with in-
ner or outer orientations, respectively, depending on how the
variables change sign in a hypothetical reversal of spacetime
orientation (Mattiussi 2000). The cells are related by topo-
logical duality (Fig. 1 (a)). For example, an inner-oriented
curve (1−cell, σ1) sitting in primary space, along which
temperature variations are measured, is dual to an outer-
oriented surface (2−cell, σ̃2) sitting in secondary space, over
which heat flux is measured, and the two cells are spatially
registered and consistently oriented, if we embed them in
two co-located “copies” of 3D space.

The relations among variables on the Tonti diagrams are
typed based on the pairs of variables they relate, as well as
the nature of the relation itself:

• Topological relations map spatiotemporal forms to forms
of one higher dimension in space or time via incidence
relations, and are responsible for propagation of informa-
tion in spacetime through incident cells.

• Metric relations locally map forms defined over dual cells
to one another based on phenomenological properties,
spatial lengths, and temporal durations, and are respon-
sible for local distortion of information.



Figure 1: A topology-aware representation for physics (Tonti 2013): (a) variables associated with spatial and temporal cells
of various dimensions give rise to primary forms and secondary forms (also called pseudo-forms); (b) resulting in 32 possible
types for spatio-temporal forms, and an underlying structure for fundamental theories of physics.

Figure 2: Tonti diagrams are recipes to generate governing equations in different contexts, defined by a continuum, discrete,
or semi-discrete setting and a topological embedding of the variables based on how they are measured. The conservation laws
in terms of co-boundary operators result directly from assumed properties of space (or spacetime), while constitutive relations
must be learned from data (e.g., via regression/ML).



• Algebraic relations are in-place, i.e., map a given form
to another from of the same type, and can be used to
capture initial/boundary conditions, external source/sink
terms, or cross-physics couplings between variables of the
same type on different diagrams.

The relations are drawn in Fig. 1 as vertical arrows, horizon-
tal (or horizontal-diagonal) arrows, and loops (1−cycles),
respectively. The interpretation of these relations to sym-
bolic or numerical operations depends on the choice of a
cellular decomposition of spacetime on which they operate.
For example, using a continuum spacetime with infinitesi-
mal cells, the variables are viewed as differential forms and
the topological operators on them are interpreted as exte-
rior derivatives (Bott and Tu 1982). In elementary calculus,
these operators give rise to gradient, curl, and divergence
in space and partial derivative in time in terms of scalar
and vector fields that are proxy to these forms, leading to
partial DEs (PDEs). In a discrete (or semi-discrete) setting,
on the other hand, the same diagram can be used to pro-
duce integral (or integro-differential) equations that capture
the same fundamental conservation and constitutive reali-
ties, where the variables are viewed as co-chains, also called
discrete forms (or mixed forms, e.g., discrete in space, dif-
ferential in time, or vice versa) and the topological oper-
ators become co-boundary operators that are fundamental
in cellular homology (Hatcher 2001). For example, using a
semi-discretization in space with integral quantities associ-
ated with 0−, 1−, 2− and 3−cells on a pair of staggered
unstructured meshes in 3D, while keeping time as a contin-
uum, the semi-discrete form of the heat equation as a system
of ordinary DEs (ODEs) (Fig. 2 (a)). Upon discretization of
time, one obtains algebraic equations that can be solved or
parameter estimated via tensor-based ML.

It is important to note that 3D meshes in space and 1D
time-stepping are not the only ways to provide a combi-
natorial topology to interpret Tonti diagrams in a discrete
setting. Another example is a directed graph representation
of lumped-parameter networks such as system models in
Modelica or electrical circuits in Spice. The variables in
this case are associated with nodes, edges, and meshes (i.e.,
primitive cycles) and incidence relations are obtained from
graph connectivity and edge directions. The same topolog-
ical operator that leads to a spatial divergence, discretized
by a sum of fluxes on the incident faces of a volume in a
3D mesh, also leads to a superposition of forces on interact-
ing planets, sum of currents in/out of junctions in electrical
circuits, and superposition of torques on kinematic chains
(Fig. 2 (b, c, d)). Both ODEs and PDEs and their integral
or integro-differential forms upon full or semi-discretization
can be captured with the same (abstract) operators, and Tonti
diagrams serve as recipes to compose them to generate gov-
erning equations.

Figure 3 shows a few other examples of Tonti diagrams
for fundamental theories in classical and relativistic physics.
The differences amount to (a) topological and metric con-
text; (b) relevant variables and their dimensions/units; and
(c) phenomenological relations.

An Ontology for Scientific Process
We present a novel representation, called ‘interaction net-
works’ (I-nets), based on a generalization of Tonti dia-
grams that is expressive and versatile enough to accom-
modate novel scientific hypotheses, while retaining a basic
commitment to philosophical principles such as parsimony
(Occam’s razor), measurement-driven classification of vari-
ables, and separation of non-negotiable mathematical prop-
erties of spacetime (homology) from domain-specific empir-
ical knowledge (phenomenology). Data science is employed
to help only with the latter.

• We conceptualize three levels of abstraction related by in-
heritance: abstract (symbolic) I-nets→ discrete (cellular)
I-nets→ numerical (tensor-based) I-nets.

• At each level, an I-net instance is contextualized by user-
defined assumptions on spacetime topology, semantics of
physical quantities, and structural restrictions on allow-
able diagrams based on analogical reasoning and domain-
specific insight (if available).

• Every I-net instance distinguishes between topological
and metric operators; however, it has additional degrees
of freedom (beyond Tonti diagrams) for the latter to allow
for phenomenological relations among variables that may
not be dual to each other.

The latter is motivated by the observation that some exist-
ing middle-ground theories use phenomenological relations
to capture a combination of topological and metric aspects.

We define an abstract (symbolic) I-net on a single
D−space as a finite collection of primary and/or secondary
co-chain complexes that are inter-connected by phenomeno-
logical links, as shown in Fig. 4 (a). Each co-chain complex
is a sequence of (symbolic) d−forms related by (symbolic)
co-boundary operators from d−forms to (d + 1)−forms
(0 ≤ d ≤ D). The interpretation of d → (d + 1) maps de-
pends on the embedding dimension D; for instance, if D = 1
the only option for the input is d = 0 leading to a simple
partial derivative (0 → 1), whereas for D = 3, we can have
d = 0, 1, 2 leading to gradient (0 → 1), curl (1 → 2), and
divergence (2→ 3) operations, respectively.

These sequences may represent different (mechanical,
electrical, thermal, etc.) domains of physics. Although, for
most known physics, each domain’s theory appears as one
pair of (primary and secondary) sequences in tandem, con-
nected by horizontal (or horizontal-diagonal) constitutive
relations leading to Tonti diagrams, we do not make any
such restriction when looking for new theories. The cross-
sequence links can thus represent both single-physics con-
stitutive relations and mutli-physics coupling interactions.
Conservation laws, on the other hand, are represented by a
balance between the output of a topological operator and an
external source/sink, the latter being represented by a loop.

It is often more convenient to define product spaces (e.g.,
separate 3D space and 1D time, as opposed to 4D spacetime)
in which conservation laws are stated as sums of incom-
ing topological relations being balanced against an external
source/sink. To accommodate such representations, we de-
fine abstract (symbolic) I-nets on a product of a D1−space



Figure 3: Tonti diagrams capture the common structure responsible for analogies across classical and relativistic physics with a
clear distinction between topological and phenomenological relations that follow certain rules.

Figure 4: I-nets are generalizations of Tonti diagrams for finite topological products of finite-dimensional spaces with relaxed
rules for feasible phenomenological links to accomodate middle-ground theories.

and a D2−space as multi-sequences of co-chains, connected
by phenomenological links, as before. It is possible to form
22 = 4 possible such multi-sequences with various ori-
entation combinations, two of which lead to so-called me-
chanical and field theories (Tonti 2013), shown in Fig. 1
for (3+1)D spacetime and repeated in Fig. 4 (b) for higher-
dimensional pairs of abstract topological spaces. This con-
struction is generalized to products of more than two spaces
in a straightforward combinatorial fashion.

Based on the topological context, the semantics for co-
boundary operators is unambiguously determined by the di-
mensions of the two variables (i.e., co-chains) they relate.
However, phenomenological links require specifying a pa-
rameterization of possibly nonlinear, in-place, and purely
metric relations they represent, using unknown parameters
that must be learned from data.

Once one or more hypotheses are specified in the lan-
guage of abstract (symbolic) I-nets with unknown phe-
nomenological parameters (e.g., thermal conductivity in the
earlier heat transfer example), the parameters can be opti-
mized to fit the data and the regression error can be used to
evaluate the fitness of hypotheses.

A Search for Viable Hypotheses
Having defined a combinatorial representation of viable hy-
potheses that are partially ordered in terms of complexity,

the next step is to generate and test the hypotheses in a
“simple-first” fashion. The search space is defined by a di-
rected acyclic graph (DAG) whose nodes (i.e., ‘states’) rep-
resent symbolic I-net instances. The edges (i.e., state tran-
sitions) represent generating a new I-net structure by incre-
mentally adding complexity to the parent state. Each action
can be one or composition of (a) defining a new symbolic
variable, in an existing co-chain complex, by applying a
topological operator to an existing variable; (b) defining a
new variable in a latent co-chain complex; and (c) adding
phenomenological links of prescribed form and unknown
parameters, connecting existing variables. The search is
guided by a loss function determined by how well the hy-
potheses represented by these I-net structures explain a
given dataset. The algorithm may also be equipped with
user-specified heuristic rules to prune the search space or
prioritize paths that are perceived as “more likely” due to
structural analogies with existing theories.

The input to the search algorithm includes the bare min-
imum contextual information such as the assumed under-
lying topology, a preset number of physical domains, and
the types of measured variables, e.g., spatiotemporal as-
sociations, tensor ranks and shapes, and dimensions/units.
The search starts from an “initial” I-net instance (i.e., the
‘root’) that embodies only measured variable(s) with no ini-
tial edges except the ones that are asserted a priori, e.g.,



Figure 5: The search space for the dynamics of a pendulum in 1D time. The complete hypotheses (yellow nodes) correspond
to I-net structures that pose new nontrivial equations to be tested against data, whereas incomplete hypotheses (white nodes)
have “dangling” branches that are completed in their child states.

Figure 6: The hypotheses H-04 and H-08 of Fig. 5 are enumerated and visualized by the software and evaluated against data
(split 0.7-0.3 for training/testing). Both energy (first-order) and and torque (second-order) forms of the governing equation are
discovered without human intervention. The former was quite unexpected, since its I-net structure does not correspond to a
Tonti diagram. The latter has a larger error due to finite difference discretization.

loops for initial/boundary conditions or source terms, if ap-
plicable. The spatio-temporal types and physical semantics
for these variables are provided by the experimentalist.

For example, consider a simple pendulum (Fig. 5 (a)). We
have only 1D time, leading to a topological space of inter-
connected time instants τ0, τ̃0 = τ0 + ε/2 and time intervals
τ1 = (τ0, τ0 + ε), τ̃1 = (τ̃1, τ̃1 + ε) to which data may
be associated. Suppose we are given time series data for an-
gular position θ(τ0). The initial I-net instance is a single
symbolic variable for this 0−form, which can be differen-
tiated only once in primary 1D time to obtain angular ve-
locity as a 1−form: θ(τ0) → ω(τ1) = δ[θ](τ1) at the root
of the search DAG (Fig. 5 (b)). The DAG is expanded by
adding new phenomenological links, either between two ex-
isting variables, or between an existing variable and one in a
newly added latent co-chain sequence (Fig. 5 (c)). In this ex-
ample, the hypotheses are numbered H-00 (the root) through
H-15, enumerating all possible I-net structures formed by at
most one latent co-chain complex in 1D time. The user can
specify the maximum number of latent variables that the al-
gorithm may consider, to keep the search tractable.

Not every introduction of new variables or relations
makes nontrivial statements about physics. For example,

the hypothesis H-01 produces a new variable typed as a
1−pseudo-form T (τ̃1) = f1(θ(∗τ̃1)), where the ∗−operator
takes τ̃1 to its dual: ∗(τ̃0, τ̃0 + ε) = τ̃0 + ε/2. However,
until this new variable is reached through another path to
close a cycle and pose a nontrivial equation, we do not
have a complete hypothesis to (in)validate against data. Fur-
ther down the search DAG, H-08 defines a new variable
typed as a 0−pseudo-form L(τ̃0) = f2(ω(∗τ̃0)) where
∗τ̃0 = (τ̃0 − ε/2, τ̃0 + ε/2). The co-boundary operation
L(τ̃0) → T (τ̃1) = δ[L](τ̃1), closes the cycle and produces
a commutative diagram (Fig. 5 (c)) leading to:

EH-08(θ;f1,f2) = f1(θ)− δ∗[f2(δ[θ])] = 0, (1)

where f1,f2 are selected from restricted function spaces
F1,F2 to avoid overfitting (e.g., parameterized by a lin-
ear combination of domain-aware basis functions) and their
parameters must be determined from data to minimize the
residual error EH-08 over the entire period of data collec-
tion. A loss function can, for example, be defined as a mean-
squared-error (MSE) to penalize violations uniformly over
the time series period:

LossH-08 = min
f1∈F1

min
f2∈F2

∥∥EH-08(θ;f1,f2)
∥∥
τ̃1 , (2)



where ‖ · ‖τ̃1 is an L2−norm computed as a temporal in-
tegral, i.e., sum of squared errors E2

H-08(θ;f1,f2) over time
intervals τ̃1 where (1) is evaluated. In this example, it turns
out that the best fit is achieved with f1(θ) = c1 sin θ and
f2(ω) = c2ω where c2/c1 = −g/r. The latent variables
L(τ̃0) and L(τ̃0) turn out to be the familiar notions of an-
gular momentum and torque, respectively, although the soft-
ware need not know anything about them to generate and test
what-if scenarios about their existence and correlations with
angular position and velocity. Hence, interpretability of the
discovered relationships by a human scientist does not re-
quire predisposing the AI associate to such interpretations,
enabling unexpected discoveries.

In general, every state in the search DAG can be classified
as complete or incomplete hypotheses. The former are I-net
structures with “dangling” branches that carry no new non-
trivial information in addition to their parent states. Every
time such a branch is turned into one or more closed cy-
cles by adding enough new variables and/or relations, a new
constraint is hypothesized that can be evaluated against data.
When adding new dangling branches to the I-net structure,
the search algorithm prioritizes actions that produce I-net
structures similar to existing Tonti diagrams by assigning a
penalty factor to every violation of the common structure
(e.g., diagonal phenomenological links connecting non-dual
cells). The loss for complete hypotheses can be computed as
the sum of penalties for the I-net structure and the sum of
residual errors for each of the independent constraints, im-
plied by converging paths, multiplied by use-specified rel-
ative weight of the penalties and errors. We use an A* al-
gorithm to search the space of hypotheses. Since we can-
not compute the error for incomplete hypotheses, we can
only prune them when the increase in their penalty is large
enough that it would fail even if it had no error at all.

Generating Symbolic Expressions
One of the practical features of our implementation in
Python is its ability to automatically convert I-net in-
stances to symbolic DE expressions in SymPy, when the
co-boundary operators are interpreted in a differential set-
ting for infinitesimal cells (ε → 0+); for example, equation
(1) can be rewritten as a nonlinear ODE:

EH-08(θ;f1,f2) = f1(θ)−
∂

∂t

[
f2

(
θ̇(t)

)]
. (3)

As a result, the generated hypotheses can be evaluated using
any number of existing ML or symbolic regression frame-
works that standardize on ODE/PDE inputs. For example,
using non-orthogonal basis functions {1, x, x2, sinx, cosx}
to span both function spaces F1,F2, we can substitute for
both symbolic functions:

f1(θ) := c1
0 + c1

1θ + c1
2θ

2 + c1
3 sin θ + c1

3 cos θ, (4)

f2(θ̇) := c2
0 + c2

1 θ̇ + c2
2 θ̇

2 + c2
3 sin θ̇ + c2

3 cos θ̇, (5)

into (3) to obtain a symbolic second-order (non)linear ODE
in SymPy. Next, the software performs algebraic simpli-
fication to identify equivalence classes of hypotheses that,
despite coming from different I-net structures, lead to the

same ODE upon differential interpretation of the I-nets. For
ODEs which, after simplification, are linear combinations of
nonlinear (differential/algebraic) terms that are computable
from data, we can apply symbolic regression to estimate
the coefficients from data; for example, we tried LASSO-
regularized least-squares regression in PDE-FIND (Rudy
et al. 2017) where each term involving a derivative is eval-
uated using finite difference or polynomial approximation,
whose results are shown in Fig. 6.

There are at least two issues with this approach:
First, more sophisticated regression or nonlinear program-

ming methods are needed if the DE has terms that have
nested nonlinear functions, i.e., cannot be represented as a
linear combination of nonlinear terms because of unknown
coefficients embedded within each term. We solve this prob-
lem by directly mapping I-net structures to computation
graphs in PyTorch, skipping differential interpretation to
symbolic DEs altogether.

Second, numerical approximation of symbolic PDEs is
a tricky business, as the discrete forms (in 3D space) may
not obey the conservation principles postulated by the I-net
structure after such approximations. It is difficult to sepa-
rate discretization errors from modeling errors and noise in
data. One of the key advantages of I-nets is the rich geo-
metric information in their type system that is fundamental
to physics-compatible and mimetic discretization schemes
(Koren et al. 2014; Palha et al. 2014; Lipnikov, Manzini,
and Shashkov 2014) that ensure conservation laws are sat-
isfied exactly as a discrete level, regardless of spatial mesh
or time-step resolutions. Such information is lost upon con-
version to symbolic DEs. Retaining this information is even
more important when dealing with noisy data, because dis-
crete differentiation of noisy data (e.g., via finite difference
or polynomial fitting) can substantially amplify the noise.

The good news is that we can directly interpret the same
I-net instance in integral form to generate equations over
larger regions in space and/or time, to make the computa-
tions more resilient to noise. For example, in the heat equa-
tion, the discrete divergence of heat flux over a single 3−cell
is replaced by a flux integral over a collection of 3−cells,
and is equated against the volumetric intgeral of internal en-
ergy within the collection. The cancellation of internal sur-
face fluxes (discrete form of Gauss’ divergence theorem)
is built into the interpretation based on cellular homology.
The integrals can be computed using higher-order integra-
tion schemes, e.g., using polynomial interpolation with un-
derfitting to filter the noise.

Further details on directly and automatically mapping the
abstract (symbolic) I-net structures to discrete (cellular) and
numerical (tensor-based) I-net instance (e.g., computation
graphs in PyTorch), learning scale-aware phenomenologi-
cal relations, and physics-compatible discretization and de-
noising will be presented in a full paper.

Real-World Scientific Discovery
Figures 7 and 8 illustrate the application of our AI approach
to an elastodynamics challenge problem provided by AFRL
in the course of the DARPA AI Research Associate (AIRA)



Figure 7: The search DAG and a number of viable hypotheses to explain ultrasound wavefield in metal parts.

Figure 8: The AI associate discovers the (integral form) of the wave equation as well as the proper length/time scale at which
the heterogeneous material properties (in this case, speed of sound) must be defined.

program that supported the development of CyPhy. The in-
put is noisy data obtained by ultrasound imaging, measured
in (2+1)D spacetime over the surface of several material
samples with heterogeneous properties.

Figure 7 illustrates the search DAG along with a num-
ber of I-net structures for viable hypotheses, each postulat-
ing the relevance of a conservation law and existence of a
few phenomenological relations. Figure 8 shows the rank-
ing of these hypotheses based on their residual errors when
tested against data. Each hypothesis can be interpreted in
differential, integral, or integro-differential forms. The re-
sults demonstrate that integral forms applied to wide spatial
and temporal neighborhoods (of ∼ 25 grid elements along
each axis) with high-order polynomial underfitting (up to
cubic in each coordinate), resulting in a length/time scale-
aware definition of (nonlocal) phenomenological relations
as well as physics-compatible (i.e., mimetic) discretization
and de-noising, are preferable to strictly local numerical
schemes such as finite difference discretization.

Conclusion
Statistical learning methods, despite their accuracy and ef-
ficiency in narrow regimes for which they are carefully en-
gineered, are not sufficient to independently acquire deep
understandings of the scientific problems they are applied
to. Human scientists continue to handle most of knowledge-
centric aspects of the scientific process based on domain-
specific insight, experience, and expertise.

Our novel approach to early-stage scientific hypothesis
generation and testing demonstrates a path forward towards
context-aware, generalizable, and interpretable AI for scien-
tific discovery. Our AI associate (CyPhy) distinguishes be-
tween non-negotiable mathematical truism, implied by the
relationship between measurement and presupposed space-
time topology, and phenomenological realities that are at the
mercy of empirical learning. Data-driven regression is tar-
geted at the latter to enable distilling governing equations
from sparse and noisy data, while providing deep insights
into the mathematical foundations.
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