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Abstract
Fast and reliable prediction of river flow velocities is im-
portant in many applications, including flood risk manage-
ment. The shallow water equations (SWEs) are commonly
used for this purpose. However, traditional numerical solvers
of the SWEs are computationally expensive and require high-
resolution riverbed profile measurement (bathymetry). In this
work, we propose a two-stage process in which, first, using
the principal component geostatistical approach (PCGA) we
estimate the probability density function of the bathymetry
from flow velocity measurements, and then use machine
learning (ML) algorithms to obtain a fast solver for the
SWEs. The fast solver uses realizations from the posterior
bathymetry distribution and takes as input the prescribed
range of BCs. The first stage allows us to predict flow veloc-
ities without direct measurement of the bathymetry. Further-
more, we augment the bathymetry posterior distribution to a
more general class of distributions before providing them as
inputs to ML algorithm in the second stage. This allows the
solver to incorporate future direct bathymetry measurements
into the flow velocity prediction for improved accuracy, even
if the bathymetry changes over time compared to its original
indirect estimation. We propose and benchmark three differ-
ent solvers, referred to as PCA-DNN (principal component
analysis-deep neural network), SE (supervised encoder), and
SVE (supervised variational encoder), and validate them on
the Savannah river, Augusta, GA. Our results show that the
fast solvers are capable of predicting flow velocities for dif-
ferent bathymetry and BCs with good accuracy, at a computa-
tional cost that is significantly lower than the cost of solving
the full boundary value problem with traditional methods.

Introduction
Estimation of riverine flow velocities is important in many
practical applications such as the study of river morphody-
namics, safe and efficient maritime transportation, and flood
risk management (Zolezzi and Seminarao 2001; Lanzoni
et al. 2006; Casas et al. 2006; Westaway, Lane, and Hicks
2000; Lane, Richards, and Chandler 1994). In order to accu-
rately estimate flow velocities under user specified boundary

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

conditions (BCs), such as the discharge and the free-surface
elevation, as well as the bathymetry, we require an accurate
predictor of the flow velocities given the bathymetry and the
BCs. The shallow water equations (SWEs) are typically used
to solve this problem (Landon et al. 2014). However, current
numerical solvers of the SWEs are computationally expen-
sive. This is a major shortcoming of these methods, since
BCs in rivers can vary widely and thus having a “fast online
predictor” of the flow velocities is very important, in particu-
lar, in situations when a range of conditions need to be eval-
uated quickly to address questions related to navigability or
to asses the risk of flooding. Furthermore, these solvers typi-
cally require a fairly high resolution image of the bathymetry
as simulation input. However, direct high-resolution bathy-
metric surveys (Casas et al. 2006) are time consuming and
costly for long river reaches.

In this work, we propose a two-stage process in which,
first, the river bathymetry at a site of interest is esti-
mated using the principal component geostatistical approach
(PCGA) (Lee and Kitanidis 2014; Kitanidis and Lee 2014)
from velocity measurements (thus addressing the issue of
not having access to direct bathymetry measurement), and
then the distribution of estimated bathymetry is augmented
to a more general distribution and combined with differ-
ent BCs to obtain a fast solver of the SWEs (thus address-
ing the high computational cost of numerical solvers). Fig-
ure 1 shows the steps in the proposed approach schemati-
cally. Note that our solver is capable of taking either directly
measured bathymetry or its estimated distribution as inputs.
Thus, the purpose of the posterior augmentation stage is to
allow our solver to include a more general class of bathyme-
tries into their prediction capability, for instance, when new
direct bathymetry measurements become available and they
have changed over time compared to their original indirect
estimation due to sediment deposition or erosion.

Methods
In this work, we use three different deep learning meth-
ods as fast SWE solvers. These methods, shortly, are re-
ferred to as PCA-DNN (principal components analysis-deep
neural network), SE (supervised encoder), and SVE (super-



Figure 1: The schematic of the development of the forward
solver. First, we estimate the posterior distribution of the
bathymetry via PCGA, then augment this distribution to a
more general distribution and use AdH to generate veloci-
ties. Finally, the DNNs are trained with these data, which
will be used as fast forward solvers.

vised variational encoder). The schematic of these meth-
ods are shown in fig. 2. The PCA-DNN method consists
of first, a low-rank approximation of data via PCA-based
linear projection, and then applying DNN to the reduced-
dimension data (Ghorbanidehno et al. 2020). SE is sim-
ilar to an autoencoder (AE) (Kramer 1991), except, it is
used for supervised learning. In SE architectures, a high-
dimensional input (bathymetry) is fed as the input to the
network, where its dimension is reduced via a convolutional
neural network (CNN), then it is combined with the BCs
(with two elements: discharge and the free-surface eleva-
tion), passes through a fully connected network, and finally
is augmented to the high dimensional output (the velocity)
via another CNN. SVE is also similar to a variational au-
toencoder (VAE) (Kingma and Welling 2019), but it is used
in supervised learning. The SVE has a similar structure as
SE, except the middle layer which defines a random vari-
able based on a multivariate normal distribution.

Data preparation
The first step in the data preparation process is applying
PCGA to flow velocity observations taken from the river in
order to obtain an estimation of the bathymetry in the area
of interest. In the following, we refer to this as the PCGA
posterior distribution. Here, we have applied PCGA to the
roughly one mile reach of the Savannah river, Augusta, GA.
The flow velocity measurements in this section are generated
synthetically via a numerical solver, referred to as Adaptive
Hydraulics (AdH) SWEs module (Savant et al. 2010), by
first calculating the flow velocities corresponding to the ref-
erence bathymetry of the Savannah river and then applying
Gaussian noise with a standard deviation equal to 10% of the
largest simulated flow velocity, in order to ensure the syn-
thetically generated flow velocities include the noise com-
monly observed in the field observations. Once the noisy
synthetic velocity measurements are generated, we can use
PCGA (Lee and Kitanidis 2014) to obtain an estimation of
the bathymetry. This estimation is in the form of a distribu-

Figure 2: Schematic of the PCA-DNN, SE, and SVE.

tion (the posterior distribution).
While the PCGA posterior distribution provides a reason-

able estimate of the uncertainty associated with the currently
available dataset, we also consider an additional augmenta-
tion of the training data in order to broaden the range of
bathymetries for which the proposed forward solvers are
valid. For instance, when new direct bathymetry measure-
ment becomes available and it has changed over time. To
perform the augmentation, the synthetic data that are fed to
the DNN architectures are generated by adding a Gaussian
kernel of the following form to the PCGA estimation:

cov(x, y) = β2 exp

(
−∆x2

l2x
− ∆y2

l2y

)
(1)

Here, β = 1.2 m, lx = 115 m, and ly = 29 m (x is the along-
river direction while y is the across-river direction). We then
add a scaling factor to generated bathymetries that shrinks
the variations near the shore, in order to capture the fact that
the variations of the generated bathymetries near the shore
are generally smaller than in the middle of the river. We also
generate BC samples, extracted from the United States Ge-
ological Survey (USGS) gauge data of Savannah river, and
provide them, along with the bathymetries sampled from the
augmented distribution, to AdH, in order to obtain the flow
velocities. The bathymetry/BC/flow velocity datasets are fed
to the DNNs to obtain forward solvers.

Performance in the presence of full
bathymetry measurement

Table 1 summarizes the root mean square errors (RMSEs)
in estimating flow velocity magnitudes using different meth-
ods, when full bathymetry measurements are provided as in-
puts. A total of 4,000 river profiles (dataset size) have been
used as the training set, 500 profiles for the validation set,



and 450 profiles for the test set. In order to have a fair com-
parison between different methods, we used the same la-
tent space dimension of 50 in all methods (Forghani et al.
2021). The errors in table 1 for SVE and SE are significantly
lower than PCA-DNN, indicating that the non-linear dimen-
sion reduction contained in SVE and SE is more accurate
than a linear, PCA-based approach. Table 2 summarizes the
hyperparameters used in different solvers. The table shows
the different parameter values used in our networks during
the hyperparameter tuning along with the final chosen value,
which had the best performance (shown in bold in the table).

Error (RMSE [m/s]) Fast forward solver

PCA-DNN SE SVE

Train set 0.0515 0.0269 0.0286
Validation set 0.0570 0.0374 0.0398
Test set 0.0546 0.0381 0.0398

Table 1: Comparison between the error of different solvers
when predicting the magnitude of the flow velocity.

Figure 3 compares the performance of different methods
when predicting the flow velocity magnitude of one of the
members of the test dataset with BC values of free-surface
elevation zf = 29.9 m and discharge Q = 146.1 m3/s. We
observe that SE and SVE perform better than PCA-DNN,
consistent with the result of table 1. This could be due to
the linear dimension reduction technique being used in this
approach, which fails to capture non-linear features present
in the data with 50 principal components (PCs).

Figure 3: Examples of the error in the prediction of the ve-
locity magnitudes for different solvers for zf = 29.9 m and
Q = 146.1 m3/s. SE and SVE outperform PCA-DNN.

Performance in the presence of uncertain
bathymetry

The results presented in the previous section provide in-
formative evaluation metrics of different algorithms as for-
ward solvers, that is, flow velocity predictors provided with
bathymetry and BCs assuming the reference (true) bathyme-
tries are known completely. In practice, however, there are
many situations in which we do not have access to direct
measurement of bathymetries, and all of our information
must come from the solution of an inverse problem with an

associated level of uncertainty. Figure 4 shows the reference
mean and standard deviation of flow velocities in the east-
ing direction obtained from AdH as well as the predicted
mean and standard deviations obtained from the SE, respec-
tively. The BCs for the simulations are zf = 33.9 m and
Q = 651.2 m3/s. The results are based on first, generating
100 bathymetries directly from the PCGA posterior distri-
bution, and then providing these profiles as inputs to either
the AdH or any of the DNNs (with the given BCs); finally,
the mean and standard deviation of their predicted velocities
are calculated and plotted in fig. 4.

Figure 4: Predicted mean and standard deviation of veloc-
ities for different solvers at zf = 33.9 m and Q = 651.2
m3/s. The “reference” corresponds to the AdH prediction
when bathymetries are generated from the PCGA posterior
distribution.

We observe that the solver has been successful in finding
the mean and the uncertainty. The great accuracy in fig. 4 im-
plies that even when indirect observations are available, we
can use the same solvers, which are trained on the estimated
bathymetry distribution from PCGA with augmentation, to
predict the distribution of flow velocities as the BCs change.

Conclusion
In this work, we have presented a framework for fast predic-
tion of the riverine flow velocities with user specified BCs
and bathymetries. The training of all the presented methods
can be performed on common personal computers without
access to GPU and high-performance computing resources.
More importantly, once the networks are trained, the pre-
dictions can be done in a few seconds, making online flow
velocity estimations possible. Our results show that the com-
putational efficiency is about three orders of magnitude
faster than standard SWE solvers such as AdH.

The combination of PCGA and our fast solvers provides
a valuable tool that can be used even when the riverine
bathymetry profiles are not a-priori available. That is, we
do not need to measure riverbed profiles when training the
network and designing the fast, reduced-order solver (of-
fline stage). More importantly, even for the online prediction
stage, we can predict distribution of flow velocities from the
posterior distribution of the PCGA, without access to up-
dated bathymetry observations.

While all of the presented solvers are capable of provid-
ing reasonable prediction of the flow velocities, the better



DNN hyperparameter Fast forward solver

PCA-DNN SE SVE

Type of layers Fully connected Convolutional Convolutional
Batch normalization {yes, no} {yes, no} {yes, no}
Number of hidden layers {1,2,3,4,5,6} {4,6} {4,6}
Data normalization {yes, no} {yes, no} {yes, no}
Act. func. (hidden layer) {tanh, ReLU} {tanh, ReLU} {tanh, ReLU}
Act. func. (output layer) {linear, Sigmoid} {linear, Sigmoid} {linear, Sigmoid}
Batch size {8,32,256,full} {8,32,256,full} {8,32,256,full}
Learning rate {0.01,0.001,10−4} {0.01,0.001,10−4} {0.01,0.001,10−4}
Reg. coeff. (easting) {0,0.00001,0.0001,

0.001,0.01,0.1,1}
{0,0.00001,0.0001,
0.001,0.01,0.1,1}

{0,0.00001,0.0001,
0.001,0.01,0.1,1}

Reg. coeff. (northing) {0,0.00001,0.0001,
0.001,0.01,0.1,1}

{0,0.00001,0.0001,
0.001,0.01,0.1,1}

{0,0.00001,0.0001,
0.001,0.01,0.1,1}

Table 2: The hyperparameters used in different solvers. The parameters in bold are the final values used in networks with the
best performances. Act. func. is the activation function and reg. coeff. is the regularization coefficient.

performance of SE and SVE methods implies that there are
non-linear features present in the data that linear or partially-
linear models such as PCA-DNN may not be able to capture
accurately within the available computational limitations.
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