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Abstract

In this paper, we describe new work which is part of a larger
study to understand how machine learning could be used to
augment existing methods for calculating and estimating the
Planetary Boundary Layer Height (PBLH). We describe how
a Long Short-Term Memory (LSTM) Network could be used
to learn PBLH changes over time for different geographi-
cal locations across the United States, used in conjunction
with the WRF-Chem model. If the machine learning method
could achieve accuracy levels similar to the model-based cal-
culations, then it is feasible for the deep learning model to
be used as an embedded method for the WRF-Chem model.
The paper shows promising results that warrant more explo-
ration. We describe results for two experiments in particular.
The first experiment used 20 geographical locations for a two-
month period of hourly WRF-Chem calculated PBLH. In this
experiment, we evaluated how well the LSTM could learn
PBLH by using limited data across a set of nearby locations.
This model achieved RMSE of .11 on predicted PBLH. The
second experiment used one year of hourly PBLH calcula-
tions from the WRF-Chem model to evaluate the LSTM pre-
diction for a selection of three locations with separate LSTM
models, achieving RMSE scores of 0.04, 0.01 and 0.05, re-
spectively. We describe these results and the future plans for
this work.

Introduction
The Planetary Boundary Layer (PBL) is known for being
the layer above the Earth’s surface for which aerosols are
present (Stull 1988). Accurate calculations of the top of the
PBL can better inform air quality forecasts. Machine learn-
ing methods that can improve PBL calculation accuracy and
improve computational calculations are of interest to the
earth science community. The work described in this pa-
per outlines how a Long Short-Term Memory (LSTM) net-
work could be used to learn how planetary boundary layer
heights are changing over time for various geographical lo-
cations. LSTM networks enable predicting accurate results
from the complex data representation within the appropri-
ate training time and resolving the constraints of RNN (Gr-
eff et al. 2017). Recently, the LSTM network-based weather
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forecasting has gained great attention in the weather pre-
diction domain. The ability to model the temporal data se-
quences along with the long-term dependency through the
memory blocks makes the LSTM model a superior choice
in weather forecasting studies (Gayathiri Kathiresan 2019).

Since WRF-Chem (Peckham 2012) model-based PBLH
calculations inherently include features such as wind, tem-
perature, and humidity, the objective of this study is to
determine if the LSTM is able to learn to predict PBLH
without explicitly using these additional features. By learn-
ing patterns of PBLH temporal changes over geographical
points across the United States, can it accurately predict
future PBLH just by learning these patterns of change? If
the network is able to learn to predict future PBLH based
on past historical PBLH, the deep learning model could be
called upon to predict PBLH for a number of time steps in
the future as an embedded method to the WRF-Chem pro-
cess. Two experiments have been conducted that use WRF-
Chem model output. The first focuses on training an LSTM
for 20 geographical locations over dates in the months of
November through December for the year 2016. This study
is part of a larger study of understanding how ceilometer-
based backscatter can be used for PBLH estimations to aug-
ment model calculations for improved PBLH calculations
(Caicedo et al. 2017; Delgado et al. 2018). The second fo-
cuses on training LSTMs for specific locations using WRF-
Chem data for the year 2018-19.

Background
WRF-Chem (Peckham 2012) is a fully coupled “online”
chemistry model, which has the air quality component con-
sistent with the meteorological component (Grell et al.
2005). In this study, the gas-phase chemistry and aerosol
module is based on the Carbon Bond Mechanism Z (CBM-
Z) (Zaveri and Peters 1999) and Model for Simulating
Aerosol Interactions and Chemistry (Zaveri et al. 2008), re-
spectively. While there are several other PBL schemes, YSU
scheme (Hong and Pan 1996; Hong and Lim 2006) is se-
lected for the runs reported in this work. An extended discus-
sion of the different model PBL parameterization schemes
and their success (or otherwise) in comparison with lidar ob-
served PBL data in this same study region is reported else-
where (López, Archilla, and Quintana 2020). Model Radia-
tion treatment utilizes the Rapid Radiative Transfer Model



for General Circulation Models (RRTMG) short-wave and
long-wave radiation schemes (Iacono et al. 2008), including
the aerosol radiation feedback.

Related Work
LSTM models have been long utilized for air quality and
weather prediction problems. In (Karevan and Suykens
2018), authors used a spatio-temporal stacked LSTM model
for temperature prediction. They showed improvement in
the performance of their prediction model using the stacked
LSTM model. Weather prediction has been studied in (Fente
and Singh 2018), using LSTM models. In this work, multi-
ple LSTM models were trained for different combinations
of weather parameters.

The problem of weather prediction has been studied in
(Hewage et al. 2019) and (Zaytar and Amrani 2016) and
stacked LSTM architectures have been utilized and been
compared to traditional forecasting models. In the former,
Hewage et. al. (Hewage et al. 2019) compared the result of
weather prediction with (WRF) NWP model and showed
accuracy of LSTM model’s result. In the latter, Zaytar et.
al. (Zaytar and Amrani 2016) showed results of forecasting
temperature, humidity and wind speed. In their paper, they
showed that LSTM based neural networks can be considered
as an alternative model to traditional models for forecasting
weather conditions.

Rainfall prediction has been a category of weather pre-
diction problems and has been the focus of multiple studies,
such as (Poornima and Pushpalatha 2019) and (Samad et al.
2020). Poornima. et. al.(Poornima and Pushpalatha 2019)
presented Intensified Long Short-Term Memory (Intensified
LSTM) based Recurrent Neural Network (RNN) to predict
rainfall. They compared their results with Holt–Winters, Ex-
treme Learning Machine (ELM), Autoregressive Integrated
Moving Average (ARIMA), Recurrent Neural Network and
Long Short-Term Memory models in order to show the im-
provement in the ability to predict rainfall. Samad et.al.
(Samad et al. 2020) utilized an LSTM based Recurrent
Neural Network (RNN) for the prediction of rainfall. They
showed accuracy and performance of the model on a stan-
dard rainfall dataset.

In this study, to learn PBLH changes over time, the prob-
lem is formulated as a time series forecasting model where
a stacked LSTM network is built and trained on data from
two different WRF-Chem models.

Approach
The overall approach is a stacked LSTM that learns to pre-
dict PBLH for given geographical locations by training the
LSTM on large data sets generated from WRF-Chem mod-
els. These models provide PBLH for various geographical
locations, different periods of time across different seasons,
however explicitly defined features such as wind, temper-
ature, and humidity are excluded. The current LSTM uses
a single uni-variate methodology. In the single uni-variate
approach we train the network using two different mod-
els to explore two different ideas. In the first method, a
stacked LSTM trained on multiple geographical locations,

using two months of WRF-Chem output (specific to the East
Coast) was used. This method used output for the period
of November 29, 2016, to December 30, 2016, in coordina-
tion with related work of applying machine learning meth-
ods to ceilometer backscatter profiles for an ad hoc cam-
paign (Sleeman et al. 2020) conducted by the University of
Maryland Baltimore County Physics Department. The sec-
ond method also used a stacked LSTM but was trained on in-
dividual geographical locations and was based on data from
a year of WRF-Chem output (for most of North America)
for the period of January 2018 to January 2019.

The stacked LSTM model used for both approaches is
shown in Figure 1 and was constructed by sequencing three
LSTM layers with 50 units each taking three arguments viz.
no. of units, return sequences and input shape. The input
shape was the shape of the input data set. The parameter for
return sequences was set to ’True’ to stack the three LSTM
layers. A dense layer was added specifying an output of one
unit after the three stacked LSTM layers. The optimizer used
was ’Adam’ and the loss function used was set to ’mean
squared error’. The next step is to compare this model with
a multi-variate LSTM methodology.

Figure 1: LSTM network

Data Set Description
For each data set, WRF-Chem model data was transformed
with each instance having N number of historical PBLH,
X1 and instance N + 1 as its respective outcome Y1. The 1
to N window then shifts by 1 and the next set of instances,
X2 constitute of 2 to N + 1 instances, with instance N + 2



as its outcome, Y2. This continues until all data is consumed
resulting in a data set X1, X2..Xk with N features each and
respective labels Y1, Y2...Yk. The N is set to 100 for the ex-
periments discussed in this paper.

After scaling and reshaping, the data was converted into
a 3D array with X train samples, 100 timestamps, and one
feature at each step to be fed into the network built above.

For the first experiment, the data set used was based on
the numeric values of PBLH generated from the WRF-Chem
model from approximately 15,000 locations across the lat-
itude, longitude bounds of [36.63,-79.24707] to [40.79,-
73.92] respectively recorded at various time stamps from
Nov 29, 2016 20:00 hours, to Jan 01, 2017 00:00 hours, as
shown in Figure 2 and Figure 3. Figure 2 shows numeric
representation of data with columns: date, time, latitude,
longitude and the respective recorded planetary boundary
height. Figure 3 shows the spread of the data in terms of
geographical location on the United States map. The WRF-
Chem model consisted of two region, an outer region with 9
KM resolution from 25N to 50N and -70W to -90W. And an
inner region consisting of 35N to 45N and -73W to -80W.
The prognostic variables of the outer region are specified by
every 3 hours obtained from a reanalysis from the NCEP re-
analysis. Every hour prognostic variables are specified for
the inner region from a reanalysis. The outer region is inte-
grated with a one minute time step and the inner is integrated
with a 20 second time step.

Figure 2: Example Data from the Model

Figure 3: Geographical Representation of Raw Data

For the second experiment, the data used was for individ-
ual sites recorded hourly from Jan, 2018 to Jan 2019, high-

lighted in this paper are sites: site1[44.2062, -63.14245],
site2[35.3382, -90.31128], and site3[35.3382,-90.31128].
The WRF-Chem model consisted of the year 2018 and re-
gion was most of North America at 2.5 degree resolution
from 0 degrees north to 80 degrees north and -60 west to -
135 west. Prognostic variables were specified every 6 hours
at all grid points and integrated every 6 hours with 3 minute
time steps.

Experimentation
There were two main experiments conducted in this study.
The first used a 2-month WRF-Chem model focused on the
East Coast. The goal of this experiment was to explore how
well the LSTM network could approximate PBLH for loca-
tions near each other. The second experiment used a 1-year
WRF-Chem model focused on most of North America. The
goal of this experiment was to explore how well a LSTM
network could predict PBLH for specific locations trained
on data spanning multiple seasons, without explicitly includ-
ing features such as temperature.

Multi-Location Experiment
This experiment consisted of 20 locations and data from the
model experiment. The 20 nearby locations formed a small
patch as shown in Figure 4.

Figure 4: Geographical Representation WRF-Chem Model
Locations

The LSTM model was trained on data for 100 epochs with
a batch size of 64 and tested on train and test data to evaluate
the overall performance of the LSTM model. The training
data had 817 examples and the test data included 441 sam-
ples. After the model has been trained it was evaluated using
the test data.

Single Location Experiment
The second experiment consisted of three sites with 8834
rows of data each. The LSTM model was trained on data for
100 epochs with a batch size of 64. The training data had
5742 samples and the test data included 3092 samples.



Results
Both experiments yielded encouraging results. RMSE was
measured for the held-out test set in each experiment. In
the 1-year experiment, a comparison with a linear regres-
sion method was performed. In addition, a sensitivity study
was also performed.

Multi-Location Results

Figure 5: Predicted PBLH for 20 locations- train(orange)
and test(green)

A RMSE of 0.11 was achieved for the test data. The re-
sults are plotted showing a comparison of predicted data vs
original data as shown in Figure 5. The blue line shows the
original data. The orange line shows the predicted PBLH for
train data and the green line shows the predicted PBLH for
test data. Upon close observation, the naked blue line can
be seen right before orange and green lines representing the
initial 100 instances used to start the prediction for train and
test data.

Single Location Results
The single location experiment was performed for three
(randomly chosen) locations (44.2062,-63.1424),(2.41753,-
119.82883), and (35.3382,-90.31128) with RMSE values
of 0.04, 0.01, and 0.05 achieved. To properly evaluate the
LSTM method for the single location experiment, the result
of the LSTM prediction for (35.3382,-90.31128) was com-
pared with the prediction using a linear regression model
for (35.3382,-90.31128). The results of the linear regression
model and the LSTM model are shown in Figure 6b and
6c. In Figure 6c, the blue trend is almost unidentifiable for
both train prediction and test prediction, as can be seen by
the green trend (predicted test) which overlaps the blue trend
(actual data). This implies the prediction is strongly matched
to the expected PBLH. The linear regression model resulted
in a RMSE of 0.05 in comparison with the LSTM result of
0.05.

To evaluate the predictions further, a correlation study was
performed on the test data from the WRF-Chem and pre-
dicted data from the LSTM. The mean of the WRF-Chem
model-generated test data was subtracted from the test data

(a)

(b)

(c)

Figure 6: (a) Hourly WRF-Chem PBLH for Single Location
(35.3382,-90.31128) (b) Linear Regression for Single Loca-
tion (35.3382,-90.31128) Hourly Predicted PBLH (c) LSTM
for Single Location (35.3382,-90.31128) Hourly Predicted
PBLH

Figure 7: Correlation Study - Mean-Subtracted Results
Comparing the WRF-Chem Model PBLH with the LSTM
Predicted PBLH for Location (35.3382,-90.31128).

and the mean of the LSTM model predicted data was sub-
tracted from the predicted data. The results were then plot-
ted in Figure 7. The results from this correlation study show
strong correlation between the true PBLH of the test data



and the predicted PBLH from the LSTM model.

Conclusions and Future Work
In this study, we present a stacked LSTM model as a pre-
diction tool for tracking planetary boundary layer heights
(PBLH) temporal changes. We trained the LSTM model for
two data sets generated from the WRF-Chem model for a se-
lection of locations. We showed the performance of inferring
the model on a test subset of data and provided a visualiza-
tion of the results. In this work we show the promise of using
LSTM networks for spatio-temporal time series PBLH fore-
casting. In our future work, we aim to design multivariate
LSTM network to perform simultaneous PBLH forecasting
for multiple locations with a single network.

Acknowledgments
This work has been funded by the following grants: NASA
grant NNH16ZDA001-AIST16-0091 and NSF CARTA
grant 17747724.

References
Caicedo, V.; Rappenglück, B.; Lefer, B.; Morris, G.; Toledo,
D.; and Delgado, R. 2017. Comparison of aerosol lidar re-
trieval methods for boundary layer height detection using
ceilometer aerosol backscatter data. Atmospheric Measure-
ment Techniques 10(4).

Delgado, R.; Caicedo, V.; Demoz, B.; Szykman, J.; Sakai,
R.; Hicks, M.; Posey, J.; Atkinson, D.; and Kironji, I.
2018. Ad-Hoc Ceilometer Evaluation Study (ACES): Li-
dar/Ceilometer Mixing Layer Heights and Network. In AGU
Fall Meeting Abstracts.

Fente, D. N.; and Singh, D. K. 2018. Weather Forecast-
ing Using Artificial Neural Network. 2018 Second Interna-
tional Conference on Inventive Communication and Compu-
tational Technologies (ICICCT) 1757–1761.

Gayathiri Kathiresan, Krishna Mohanta, K. V. A. 2019.
FORETELL: Forecasting Environmental Data Through En-
hanced LSTM and L1 Regularization. International Journal
of Recent Technology and Engineering (IJRTE) 7.

Greff, K.; Srivastava, R.; Koutnı́k, J.; Steunebrink, B.; and
Schmidhuber, J. 2017. LSTM: A Search Space Odyssey.
IEEE Transactions on Neural Networks and Learning Sys-
tems 28: 2222–2232.

Grell, G. A.; Peckham, S. E.; Schmitz, R.; McKeen, S. A.;
Frost, G.; Skamarock, W. C.; and Eder, B. 2005. Fully
coupled “online” chemistry within the WRF model. Atmo-
spheric Environment 39(37): 6957–6975.

Hewage, P. R. P. G.; Behera, A.; Trovati, M.; and Pereira,
E. 2019. Long-Short Term Memory for an Effective Short-
Term Weather Forecasting Model Using Surface Weather
Data. In AIAI.

Hong, S.-Y.; and Lim, J.-O. J. 2006. The WRF single-
moment 6-class microphysics scheme (WSM6). Asia-
Pacific Journal of Atmospheric Sciences 42(2): 129–151.

Hong, S.-Y.; and Pan, H.-L. 1996. Nonlocal boundary
layer vertical diffusion in a medium-range forecast model.
Monthly weather review 124(10): 2322–2339.
Iacono, M. J.; Delamere, J. S.; Mlawer, E. J.; Shephard,
M. W.; Clough, S. A.; and Collins, W. D. 2008. Radiative
forcing by long-lived greenhouse gases: Calculations with
the AER radiative transfer models. Journal of Geophysical
Research: Atmospheres 113(D13).
Karevan, Z.; and Suykens, J. 2018. Spatio-temporal Stacked
LSTM for Temperature Prediction in Weather Forecasting.
ArXiv abs/1811.06341.
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