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Abstract
Model reduction for fluid flow simulation continues to be of
great interest across a number of scientific and engineering
fields. Here, we explore the use of Neural Ordinary Differ-
ential Equations, a recently introduced family of continuous-
depth, differentiable networks (Chen et al. 2018), as a way to
propagate latent-space dynamics in reduced order models. We
compare their behavior with two classical non-intrusive meth-
ods based on proper orthogonal decomposition and radial ba-
sis function interpolation as well as dynamic mode decompo-
sition. The test problems we consider include incompressible
flow around a cylinder as well as real-world applications of
shallow water hydrodynamics in riverine and estuarine sys-
tems. Our findings indicate that Neural ODEs provide an el-
egant framework for stable and accurate evolution of latent-
space dynamics with a promising potential of extrapolatory
predictions. However, in order to facilitate their widespread
adoption for large-scale systems, significant effort needs to
directed at accelerating their training times. This will enable a
more comprehensive exploration of the hyperparameter space
for building generalizable Neural ODE approximations over
a wide range of system dynamics.

Introduction
Despite the trend of hardware improvements and significant
gains in the algorithmic efficiency of standard discretiza-
tion procedures, high-fidelity numerical simulation of engi-
neering systems governed by nonlinear partial differential
equations still pose a prohibitive computational challenge
(Quarteroni, Manzoni, and Negri 2016) for several decision-
making applications involving control (Proctor, Brunton,
and Kutz 2016), optimal design and multi-fidelity optimiza-
tion (Peherstorfer, Willcox, and Gunzburger 2016), and/or
uncertainty quantification (Sapsis and Majda 2013). Re-
duced order models (ROMs) offer a valuable alternative way
to simulate such dynamical systems with considerably re-
duced computational cost (Benner, Gugercin, and Willcox
2015).

Reduced basis (RB) methods (Quarteroni, Manzoni, and
Negri 2016) constitute a family of widely popular ROM
techniques that are usually implemented with an offline-
online decomposition paradigm. The offline stage involves
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the construction of a solution-dependent, linear basis space
spanned by a set of RB “modes”, which are extracted from
a collection of high-fidelity solutions, also called snapshots.
The RB “modes” can be thought of as a set of global ba-
sis functions spanning a linear subspace that can be used to
approximate the dynamics of the high-fidelity model. The
most well known method to extract the reduced basis is
called proper orthogonal decomposition (POD) (Sirovich
1987; Berkooz, Holmes, and Lumley 1993), which is partic-
ularly effective when the coherent structures of the flow can
be hierarchically ranked in terms of their energy content.

In the online stage of traditional RB methods, a linear
combination of the reduced order RB modes is used to ap-
proximate the high-fidelity solution for a new configura-
tion of flow parameters. The procedure adopted to com-
pute the expansion coefficients leads to the classification
of these methods into two broad categories: intrusive and
non-intrusive. In an intrusive RB method, the expansion co-
efficients are determined by the solution of a reduced or-
der system of equations, which is typically obtained via a
Galerkin or Petrov-Galerkin projection of the high-fidelity
(full-order) system onto the RB space (Lozovskiy, Farthing,
and Kees 2017). Typically this projection and solution in-
volves modification of high-fidelity simulators and hence the
label intrusive. For linear systems, Galerkin projection is the
most popular choice. However, in the presence of nonlin-
earities, an affine expansion of the nonlinear (or non-affine)
differential operator must be recovered in order to make the
evaluation of the projection-based reduced model indepen-
dent of the number of DOFs of the high-fidelity solution.

Several different techniques, collectively referred to as
hyper-reduction methods (Amsallem et al. 2015), have been
proposed to address this problem. These include the em-
pirical interpolation method (EIM), its discrete counterpart
DEIM (Chaturantabut and Sorensen 2010), “gappy POD”
(Willcox 2006), as well as the residual DEIM method (Xiao
et al. 2014). Beyond the need for hyper-reduction to re-
cover efficiency, in complex nonlinear problems it is also
common that some of the intrinsic structures present in the
high-fidelity model may be lost during order reduction us-
ing Galerkin projection-based approaches. This is because
the Galerkin projection approach inherently assumes that
the residual generated by the truncated representation of the
high-fidelity model is orthogonal to the reduced basis space



which leads to the loss of higher order nonlinear interac-
tion terms in the reduced representation. This can result in
qualitatively wrong solutions or instability issues (Amsallem
and Farhat 2012). As a remedy, Petrov-Galerkin projec-
tion based approaches have been proposed (Carlberg, Bou-
Mosleh, and Farhat 2011; Carlberg et al. 2013; Fang et al.
2013).

An alternative family of methods to address the issues of
instability and loss of efficiency in the intrusive ROM frame-
works is represented by non-intrusive reduced order models
(NIROMs), and forms the subject of this study. The primary
advantage of this class of methods is that complex modifica-
tions to the source code describing the physical model can
be avoided, thus making it easier to develop reduced models
when the legacy or proprietary source codes are not avail-
able. In these methods, instead of a Galerkin-type projec-
tion, the expansion coefficients for the reduced solution are
obtained via interpolation on the space of a reduced basis
extracted from snapshot data. However, since the reduced
dynamics generally belong to nonlinear, matrix manifolds,
a variety of interpolation techniques have been proposed
that are capable of enforcing the constraints characterizing
those manifolds. Regression-based non-intrusive methods
have been proposed that, among others, use artificial neu-
ral networks (ANNs), in particular multi-layer perceptrons
(Hesthaven and Ubbiali 2018), Gaussian process regression
(GPR) (Guo and Hesthaven 2019), and radial basis function
(RBF) (Audouze, De Vuyst, and Nair 2013) to perform the
interpolation.

Here, we will explore an alternative approach to propagat-
ing latent-space dynamics based on Neural ODEs, which are
a family of continuous-depth, differentiable networks that
can be seen as an extension of ResNets in the limit of a zero
discretization step size (Dupont, Doucet, and Teh 2019). De-
tails of our approach follow below. In addition, we consider
two NIROM techniques - a) based on linear dimension re-
duction via POD and latent space evolution via Radial Ba-
sis Functions (RBF), and b) Dynamic Mode Decomposition
(DMD) that will serve as the benchmarks in our numerical
experiments to provide comparisons with the Neural ODE
approach. We then proceed with several numerical experi-
ments based on incompressible flow around a cylinder and
shallow water hydrodynamics in order to evaluate the meth-
ods’ performance for fast replay applications in complex
fluid-dynamics problems.

Methodology
The standard ROM development framework usually consists
of three stages:

1. identification of a low-dimensional latent (or reduced-
order) space,

2. determining a latent-space representation of the nonlinear
dynamical system in terms of the reduced basis and mod-
eling the evolution of the system of modal coefficients,
and

3. reconstruction in the high-fidelity space for validation and
analysis.

Machine learning techniques can be introduced at any of
these stages. For example, many works have explored the
use of deep learning-based approaches like autoencoders as
a way to introduce a nonlinear alternative for dimension re-
duction (Lusch, Nathan Kutz, and Brunton 2018; Ghorban-
idehno et al. 2021). Combining these methods with data-
driven latent-space propagation (for example via fully con-
nected or recurrent neural networks) leads to a fully non-
intrusive approach (Gonzalez and Balajewicz 2018). On the
other hand, one can also combine nonlinear dimension re-
duction with intrusive projection to create a hybrid method
(Lee and Carlberg 2020; Kim et al. 2020). In this work,
we study three different data-driven strategies for accurate
learning of system dynamics within the context of linear di-
mension reduction. In the first two methods we adopt the
POD technique for identification of an optimal global ba-
sis. For the latent space evolution, we utilize a kernel-based
multivariate interpolation method called radial basis func-
tion (RBF) interpolation, and a machine learning strategy
designed for sequential learning of time-series data called
neural ordinary differential equations (NODE). In the third
strategy, the three stages of ROM development are combined
together by using a classical modal decomposition technique
called the dynamic mode decomposition (DMD), that is sup-
ported by rigorous mathematical analysis of Koopman mode
theory.

Proper orthogonal decomposition
POD is a popular technique for dimension reduction (An-
toulas and Sorensen 2001) of the solution manifold of a
dynamical system by determining a linear reduced space
spanned by an orthogonal basis with an associated energetic
hierarchy. (Taira et al. 2020) provides an excellent overview
of POD as well as a comparison with other dimension-
reduction techniques.

Consider a snapshot matrix S = [v̂1, . . . , v̂M ] ∈ RN×M

containing a collection of M high-fidelity snapshots of the
solution manifold from time t = 0 to t = T such that
v̂k ∈ RN is the kth snapshot with the temporal mean value
removed, i.e. , v̂k = vk−v̄ where v̄ =

∑M
i=1

vi

M is the time-
averaged solution. The goal of the POD procedure is to iden-
tify a linear subspace χ = span

{
ψ1, . . . , ψr

}
, (r � M)

which approximates the solution manifold optimally with
respect to the L2-norm.

The POD bases can be efficiently extracted by performing
a “thin” singular value decomposition (SVD) of the snap-

shot matrix S = Θ̃Σ̃Ψ̃
T

, where Σ̃ = diag(σ1, . . . , σR) is
a R×R diagonal matrix containing the singular values ar-
ranged in decreasing order of magnitude, σ1 ≥ σ2 . . . ≥ σR
andR < min{N,M} is the rank of S. Θ̃ and Ψ̃ are N ×R
and M × R matrices respectively, whose columns are the
orthonormal left and right singular vectors of S such that

Θ̃
T
Θ̃ = IR = Ψ̃

T
Ψ̃. The columns θn of the matrix Θ̃ are

ordered corresponding to the singular values σn and these
provide the desired POD basis. Let Θ denote the matrix of
the first m columns of Θ̃, Ψ be the matrix containing the
first m rows of Ψ̃, and Σ be a diagonal matrix containing



the first m singular values from Σ̃, then the high-fidelity so-
lution vn at time tn can be approximated as,

vn ≈ v̄ + Θzn = v̄ +

m∑
i=1

zni θi, (1)

where zn ∈ Rm is a vector of modal coefficients with re-
spect to the reduced basis. The modal coefficient matrix
Z = ΘTS constitutes our training data for the latent space
learning methods. Due to the Eckart-Young-Mirsky theo-
rem, the POD basis provides an optimal rank-m approxi-
mation Ŝ = ΘΣΨT of the snapshot matrix S with a desired
level of accuracy, τPOD.

The POD method has been successfully applied in statis-
tics (Jolliffe 1986), signal analysis and pattern recognition
(Deheuvels and Martynov 2008), ocean models (Vermeulen
and Heemink 2006), air pollution models (Fang et al. 2014),
convective Boussinesq flows (San and Borggaard 2015), and
Shallow Water Equation (SWE) models (Stefanescu, Sandu,
and Navon 2014; Lozovskiy et al. 2016).

Latent space evolution
In this section, we outline two non-intrusive methods for
modeling the evolution of time-series data in the latent space
defined by the POD basis. RBF interpolation is a classical,
data-driven, kernel-based method for computing an approx-
imate continuous response surface that aligns with the given
multivariate data. The second technique called NODE is a
neural-network based method to predict the continuous evo-
lution of a vector c over time, that is designed to preserve
memory effects within the architecture.

Radial basis function interpolation For simplicity, let
the time evolution of the modal coefficients z be represented
as a semi-discrete dynamical system,

ż = f(z, t), with z0 = ΘT
(
v0 − v̄

)
(2)

where all the information about the temporal dynamics in-
cluding the effects of any numerical stabilization of the high-
fidelity solver and all the nonlinear terms are embedded in
f(z, t). In the POD-RBF NIROM framework (Dutta et al.
2020), instead of the Galerkin projection, the components of
the time derivative function fj(j = 1, . . . ,m) are approxi-
mated using RBF interpolation.

Let Fj denote a RBF approximation of the time derivative
function fj , which is defined by a linear combination of Ni

instances of a radial basis function φ,

Fj(z) =

Ni∑
k=1

αj,k φ (‖z− ẑk‖) , j = 1, . . . ,m, (3)

where {ẑk | k = 1, . . . , Ni} denotes the set of interpolation
centers and αj,k (k = 1, . . . , Ni) is the unknown interpola-
tion coefficient corresponding to the kth center for the jth
component of the modal coefficient. These interpolation co-
efficients are computed by enforcing the interpolation func-
tion Fj to exactly match the time derivative of the modal
coefficients at Ne test points (Ne ≥ Ni). Choosing the cen-
ters and the test points identically from the set of snapshot

modal coefficients as {zl | l = 0, . . . ,M − 1} such that
Ni = Ne = M , and making some simplifying assumptions
leads to a symmetric, linear system of M equations to solve
for the unknown interpolation coefficients, αj,k

Aαj = gj , for j = 1, . . . ,m, (4)

where

[An,k] = [φ
(
‖zn − zk‖

)
], n, k = 0, . . .M − 1,

αj = [αj,0, . . . , αj,M−1]T , gj = [gj,0, . . . , gj,M−1]T .

The coefficients αj define a unique RBF interpolant which
can then be used to approximate eq. (2) and generate a non-
intrusive model for the evolution of the modal coefficients
In this work, a first-order forward Euler scheme has been
employed for the discretization of the time derivative, and a
strictly positive-definite Matérn C0 kernel, given by φ(r) =
e−cr has been adopted, where r is the Euclidean distance
and c is the RBF shape factor (Fasshauer 2007).

Adopting RBF interpolation for modeling the latent space
evolution of the modal coefficients has been shown to be
quite successful for nonlinear, time-dependent partial dif-
ferential equations (PDEs) (Xiao et al. 2015; Dutta et al.
2020), nonlinear, parametrized PDEs (Audouze, De Vuyst,
and Nair 2013; Xiao et al. 2017), and aerodynamic shape op-
timization (Iuliano and Quagliarella 2013), to name a few.

Neural ordinary differential equations Recurrent neural
network (RNN) architectures like LSTM and GRU are of-
ten employed to encode time-series data and forecast fu-
ture states, as their internal memory preserving architec-
ture allows them to incorporate state information over a se-
quence of input data. Although RNNs have seen great suc-
cess in natural language processing tasks, they have had rel-
atively limited success in high-fidelity scientific computing
applications (Ferrandis et al. 2019; Wang, Ripamonti, and
Hesthaven 2020), as it has been observed that a sequence
generated by an RNN may fail to preserve temporal reg-
ularity of the underlying signal, and thus may not repre-
sent true continuous dynamics. (Chen et al. 2018). With
deep neural networks (DNN) such as ResNet, the evolu-
tion of the features over the network depth is equivalent
to solving an ordinary differential equation (ODE) such as
dz
dt = F (z, θ) using the forward Euler method, and this con-
nection between ResNet’s architecture and numerical inte-
grators has been explored in details by (Ruthotto and Haber
2019) and others. Several other deep learning methods have
been proposed for learning ODEs and PDEs. These include
using PDE-based network (Long, Lu, and Dong 2019), train-
ing DNNs using physics-informed soft penalty constraints
(Raissi, Perdikaris, and Karniadakis 2019), and using sparse
regularizers and regression (Brunton et al. 2016; Champion
et al. 2019), to name a few.

Chen et al. (2018) proposed a ’continuous-depth’ neu-
ral network called ODE-Net that effectively replaces the
layers in ResNet-like architectures with a trainable ODE
solver. The memory efficiency and stability of this neural or-
dinary differential equation (NODE) approach was further
improved in (Gholami, Keutzer, and Biros 2019; Dupont,



Doucet, and Teh 2019) and others. (Maulik et al. 2020) ap-
plied the NODE framework to obtain latent space closure
models for ROMs of a one-dimensional advecting shock
problem and a one-dimensional Burgers’ turbulence prob-
lem that exhibits multiscale behavior in the wavenumber
space. Some other notable recent applications of NODE in-
clude the identification of ODE or PDE models from time-
dependent data (Sun, Zhang, and Schaeffer 2020), modeling
of irregularly spaced time series data (Rubanova, Chen, and
Duvenaud 2019), modeling of spatio-temporal information
in video signals (Kanaa et al. 2019). Finlay et al. (2020) used
a combination of optimal transport theory and stability reg-
ularizations to propose a neural-ODE generative model that
can be efficiently trained on large-scale datasets. Here we
further explore the application of the POD-NODE method-
ology to complex, real-world flows characterized by systems
of two-dimensional, nonlinear PDEs.

We assume that the time evolution of the modal coef-
ficients of the high-fidelity dynamical system in the latent
space can be modeled using a (first-order) ODE,
d z

dt
= F(t, z(t)), with z(0) = z0, z ∈ Rd, d ≥ 1. (5)

The goal is to obtain a NN approximation F̂ of the dynamics
function F such that d z

dt ≈ net(t, z) = F̂(t, z,ω). The full
procedure can be outlined as follows:

1. Compute the time series of modal coefficients
[z0, . . . , zM−1] for t ∈ {0, . . . ,M − 1} where zk ∈ Rm.

2. Initialize a NN approximation for the dynamics function
F̂(t, z,ω) where ω represents the initial NN parameters.

3. The NN parameters are optimized iteratively through the
following steps.

(a) Compute the approximate forward time trajectory of
the modal coefficients by solving eq. (5) using a stan-
dard ODE integrator as,

ẑM−1 = ODESolve(F̂ ,ω, z0, t0, tM−1) (6)

(b) The free parameters of the NODE model are
{ω, t0, tM−1}. Evaluate the differentiable loss function
L
(
ODESolve(F̂ ,ω, z0, t0, tM−1)− zM−1

)
.

(c) To optimise the loss, compute gradients with respect to
the free parameters. Similar to the usual backpropaga-
tion algorithm, this can be achieved by first computing
the gradient ∂L/∂ẑ(t), and then a performing a reverse
traversal through the intermediate states of the ODE
integrator. For a memory-efficient implementation, the
adjoint method (Chen et al. 2018) can be used to back-
propagate the errors by solving an adjoint system for
the augmented state vector b = [∂L∂ẑ ,

∂L
∂ω ,

∂L
∂t ]T back-

wards in time from tM−1 to t0.
(d) The gradient ∂L

∂ω (t = 0) computed in the previous step
is used to update the parameters ω by using an opti-
mization algorithm like RMSProp or Adam.

4. The trained NODE approximation of the dynamics func-
tion can be used to compute predictions for the time tra-
jectory of the modal coefficients.

In this work, we utilize the TFDiffEq (https://github.com/
titu1994/tfdiffeq) library that runs on the Tensorflow Eager
Execution platform to train the NODE models. Although a
single layer architecture guarantees upper-bounds accord-
ing to the universal approximation theorem (Barron 1993),
deeper networks with up to four layers as well as several
linear and nonlinear activation functions are also explored
due to their possibly improved expressibility for more com-
plex nonlinear dynamics (Zhang et al. 2019). RMSProp is
adopted for loss minimization with an initial learning rate
of 0.001, a staircase decay function with a range of variable
decay schedules, and a momentum coefficient of 0.9. NODE
predictions of comparable accuracy were obtained for all
the numerical experiments by using both the adjoint method
as well as by backpropagating gradients directly through
the hidden steps of the ode solver. However, for large-scale
training data the latter method may lead to memory issues,
especially while computing on GPU nodes.

Dynamic mode decomposition
As a final point of comparison, we consider Dynamic mode
decomposition (DMD). DMD is a data-driven ROM tech-
nique that represents the temporal dynamics of a com-
plex, nonlinear system (Schmid 2010; Kutz et al. 2016)
as the combination of a few linearly evolving, spatially
coherent modes that oscillate at a fixed frequency, and
which are closely related to the eigenvectors of the infinite-
dimensional Koopman operator (Koopman 1931; Mezić
2013). Consider the following snapshot matrices contain-
ing a few temporally-equispaced snapshots of a high-
dimensional dynamical system:

X =
[
v0 v1 . . .vM−1] , X′ =

[
v1 v2 . . .vM

]
where vk ∈ RN is the kth solution snapshot, N is the spa-
tial degrees of freedom of the discretized system, and M is
the total number of temporal snapshots. DMD involves the
identification of the best-fit linear operator AX that relates
the above matrices as X′ = AXX, and computing its eigen-
values and eigenvectors. Computing a least-square approx-
imation of AX using the Moore-Penrose pseudoinverse(†)
may pose computational challenges due to the size of the
discrete dynamical system. For computational efficiency, the
exact DMD algorithm (adopted here) avoids computing the
Moore-Penrose pseudoinverse(†) by projecting the operator
on to a reduced space obtained by POD, as outlined in (Alla
and Kutz 2017).

In recent years, Koopman mode theory has provided a rig-
orous theoretical background for an efficient modal decom-
position in problems describing oscillations and other non-
linear dynamics using DMD (Rowley et al. 2009). Several
variants of the DMD algorithm have been proposed (Proctor,
Brunton, and Kutz 2016; Kutz, Fu, and Brunton 2016; Alek-
seev et al. 2016; Le Clainche and Vega 2017) and have been
successfully applied as efficient ROM techniques for deter-
mining the optimal global basis modes for nonlinear, time-
dependent problems (Bistrian and Navon 2015, 2017). For
non-parametrized PDEs, DMD presents an efficient frame-
work that combines all the three stages of ROM develop-
ment to learn a linear operator in an optimal least square



sense. However, this approach cannot be directly applied to
parametrized problems (Alsayyari et al. 2021).

Numerical experiments
In this section, we first assess the performance of different
NODE architectures for a benchmark flow problem char-
acterized by the incompressible Navier Stokes equations
(NSE), and then further evaluate the relative performance
of all three NIROM models for two real-world applications
governed by the shallow water equations (SWE). The POD-
RBF and DMD NIROM training runs were performed on
a Macbook Pro 2018 with a 2.9 GHz 6-Core Intel Core i9
processor and 32 GB 2400 MHz DDR4 RAM. The NODE
models were trained in serial on Vulcanite, a high perfor-
mance computer at the U.S. Army Engineer Research and
Development Center DoD Supercomputing Resource Center
(ERDC-DSRC). Vulcanite is equipped with NVIDIA Tesla
V100 PCIe GPU accelerator nodes and has 32GBytes mem-
ory/node.

Flow around a cylinder
This problem simulates a time-periodic fluid flow through
a 2D pipe with a circular obstacle. The flow domain is a
rectangular pipe with a circular hole of radius r = 0.05,
denoted by Ω = [0, 2.2] × [−0.2, 0.21] \ Br(0.2, 0). The
flow is governed by

∂u

∂t
+∇ · (u⊗ u)− ν∆u +∇p = 0, (7)

∇ · u = 0 (8)

where u denotes the velocity, p the pressure, ⊗ is the outer
product (dyadic product) given by a ⊗ b = abT , and
ν = 0.001 is the kinematic viscosity. No slip boundary con-
ditions are specified along the lower and upper walls, and
on the boundary of the circular obstacle. A parabolic inflow
velocity profile is prescribed on the left wall,

u(0, y) =

(
4U

(0.21− y)(y − 0.2)

0.412
, 0

)
, (9)

and zero gradient outflow boundary conditions on the right
wall. High-fidelity simulation data is obtained with Open-
FOAM using an unstructured mesh with 14605 nodes at
Re = 100, such that the flow exhibits the periodic shedding
of von Karman vertices. 313 training snapshots are collected
for t = [2.5, 5.0] seconds with ∆t = 0.008 seconds, and the
NIROM predictions are obtained for t = [2.5, 6.0] seconds
with ∆t = 0.002 seconds.

A large collection of NODE architectures and hyperpa-
rameter configurations were trained for 50000 epochs and
details of the best 8 models are presented in Table 1. A
fourth-order Runge-Kutta solver was found to be the opti-
mal choice in terms of both accuracy and efficiency among
all the available solvers ranging from the fixed-step for-
ward Euler and the midpoint solvers to the adaptive-step
Dormand-Prince (dopri5) solver. The “tanh” and “elu” acti-
vation functions were found to be the most effective among
all the available linear and nonlinear activation functions.
Due to the nature of the activation functions, the networks

with “tanh” activations were found to train better when ev-
ery element of the input state vector was individually scaled
to be bounded in [−1, 1], while networks with “elu” activa-
tions trained better without scaling of input vectors. Aug-
mentation of input states as outlined in (Dupont, Doucet,
and Teh 2019) was found to have no significant impact on
the training. The RMSProp optimizer paired with either a
step decay function or an exponential decay function were
found to be equally effective. However, further numerical
experiments are necessary to study the efficiency of alterna-
tive first-order and second-order optimization methods. The
number of decay steps were varied in discrete increments
between 5000 to 25000, and decay rates ranging from 0.1 to
0.9 were studied. It was observed that a lower initial learning
rate (≈ 0.001) combined with either larger decay steps and
smaller decay rates or vice versa led to a desirable training
trajectory. Fig. 1 shows the evolution of the 1st, 3rd, and 5th

latent-space modal coefficients for the pressure and the x-
velocity solutions, obtained using the best 8 NODE models.
All the models generate accurate predictions at a finer tem-
poral resolution than the training data, and have excellent
agreement with the high-fidelity solution even while extrap-
olating outside the training data (5 ≤ t ≤ 6 seconds).

Figure 1: Comparison of NODE models in the latent space
for the cylinder example

Fig. 2 compares the time trajectory of the spatial root
mean square errors (RMSE) in the high-fidelity space for
two of the best NODE models with two DMD NIROM solu-
tions obtained using truncation levels of r = 20 and r = 8.
It is encouraging to note that even though the NODE solu-
tions are computed using a latent-space representation that
is roughly comparable to the DMD solution with a smaller
truncation level (r = 8), they are superior in accuracy to
the coarsely truncated DMD solutions. Furthermore, unlike
the POD-RBF solution that is trained with a first-order Eu-
ler time discretization, the NODE solutions did not exhibit
any significant loss in accuracy with time, even while pre-
dicting outside the training region. It is, however, important
to note that the training time for any new NODE architec-
ture was extremely high (see Table 1) when compared to
generating a POD-RBF or a DMD NIROM model, which



Id Layers Units Act. LR decay
steps, rate Scaling Augmented MSE Training

Range 1-4 32-512 linear, relu,
elu, tanh, ...

5000-25000,
0.1-0.9

NODE1 1 256 elu 10000, 0.3 No No 8.87e-4 24.45 hrs
NODE2 1 256 tanh 5000, 0.7 Yes No 9.01e-4 24.56 hrs
NODE3 1 512 elu 5000, 0.5 No No 8.86e-4 24.39 hrs
NODE4 1 256 tanh 10000, 0.25 Yes Yes 9.02e-4 22.97 hrs
NODE5 4 64 tanh 5000, 0.5 Yes No 9.19e-4 27.98 hrs
NODE6 1 256 elu 10000, 0.1 No No 8.87e-4 24.13 hrs
NODE7 2 128 elu 5000, 0.5 No No 8.86e-4 25.80 hrs
NODE8 1 512 tanh 5000, 0.5 Yes Yes 9.00e-4 24.77 hrs

Table 1: Best NODE architectures for the cylinder example. All models were trained for 50000 epochs using the fourth-order
Runge-Kutta solver and the RMSProp optimizer with an initial learning rate of 1e-3 and a momentum of 0.9.

usually required less than a minute in most cases. Such long
training times may pose a significant challenge for exhaus-
tive explorations of the design space for optimal architec-
tures and hyperparameters, and may hinder the adoption of
existing packages for automated architecture search. Thus,
a concerted effort needs to be directed towards acceleration
of NODE training times and towards constraining the design
space by a priori identification of promising architectures.
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Figure 2: Comparison of RMSE of best NODE models with
DMD for the cylinder example

Shallow water equations
The next two numerical examples involve flows governed by
the depth-averaged SWE which is written in a conservative
residual formulation as

R ≡ ∂q

∂t
+
∂px

∂x
+
∂py

∂y
+ r = 0, (10)

where the state variable q = [h, uxh, uyh]T consists of the
flow depth, h, and the discharges in the x and y directions,
given by uxh and uyh, respectively. Further details about
the flux vectors px, py and the high-fidelity model equa-
tions are available in (Dutta et al. 2020). The high-fidelity
numerical solutions of the SWE are obtained using the 2D
depth-averaged module of the Adaptive Hydraulics (AdH)
finite element suite, which is a U.S. Army Corps of Engi-
neers (USACE) high-fidelity, finite element resource for 2D
and 3D dynamics (Trahan et al. 2018).

Tidal flow in San Diego bay This numerical example in-
volves the simulation of tide-driven flow in the San Diego

Bay in California, USA. The AdH high-fidelity model con-
sists of N = 6311 nodes, uses tidal data obtained from
NOAA/NOS Co-Ops website at a tailwater elevation inflow
boundary and has no flow boundary conditions everywhere
else. Further details are available in (Dutta et al. 2020).

The training space is generated using 1801 high-fidelity
snapshots obtained between t = 41 minutes to t = 50
hours at a time interval of ∆t = 100 seconds. The pre-
dicted ROM solutions are computed for the same time in-
terval with ∆t = 50 seconds. A latent space of dimension
265 is generated by using a POD truncation tolerance of
τPOD = 5 × 10−7 for each solution component. The RBF
NIROM approximation is computed using a shape factor,
c = 0.01. The simulation time points provided as input to
the NODE model are normalized to lie in t ∈ [0, 1]. The
‘dopri5’ ODE solver is adopted for computing the hidden
states both forward and backward in time. Learning from the
conclusions of the cylinder example, a network consisting of
a single hidden layer with 256 neurons is deployed and the
RMSProp optimizer with an initial learning rate of 0.001,
a staircase decay rate of 0.5 every 5000 epochs, and a mo-
mentum of 0.9 is utilized for training the model over 20000
epochs. For the DMD NIROM, the simulation time points
are normalized to an unit time step, and a truncation level of
r = 115 is used to compute the DMD eigen-spectrum.

Figure 3 shows the NIROM solutions (top row) for ux at
t = 17.36 hours and the corresponding error plots.

Figure 4 shows the spatial RMSE over time for the
depth (left) and the x-velocity (right) NIROM solutions. The
NODE NIROM solution has comparable accuracy to the
DMD NIROM solution and unlike the RBF NIROM solu-
tion, does not exhibit any appreciable accumulation of error
over time.

Riverine flow in Red River The final numerical example
involves an application of the 2D SWE to simulate riverine
flow in a section of the Red River in Louisiana, USA. The
AdH high-fidelity model usesN = 12291 nodes, has a natu-
ral inflow velocity condition upstream, a tailwater elevation
boundary downstream, and no flow boundary along the river
bank. For further details see (Dutta et al. 2020).
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Figure 3: NIROM solutions of ux and errors at t = 17.36
hours for the San Diego example
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Figure 4: NIROM RMSEs for the San Diego example

The training space is generated by using 1081 high-
fidelity snapshots obtained between t = 16.67 minutes to
t = 9.3 hours at a time interval of ∆t = 30 seconds. The
predicted ROM solutions are computed for the same time
interval with ∆t = 10 seconds. A latent space spanned by
54 modes is generated by using a POD truncation tolerance
of τPOD = 0.01 for each solution component. The RBF
NIROM approximation is computed using a shape factor,
c = 0.05. For consistency, the NODE network architecture
is kept identical to the San Diego example and the train-
ing is also performed for 20000 epochs. Also, similar to the
previous example, the simulation time points for DMD in-
put are normalized to an unit time step. However, a smaller
truncation level of r = 30 is used to compute the DMD
eigen-spectrum.

Figure 5 shows the NIROM solutions (top row) for ux at
t = 3.61 hours and the corresponding error plots.

Figure 6 shows the spatial RMSE over time of the depth
(left) and the x-velocity (right) NIROM solutions for the Red
River example. It can be seen that the DMD NIROM solu-
tion has a relatively higher RMSE owing to the lower trun-
cation level chosen for this example, while the RBF NIROM
is far more accurate. The NODE NIROM solution seems to
match the performance of the RBF NIROM solution. This
indicates that the NODE NIROM framework is successful
with two distinct real-world flow regimes and holds promise
for more widespread applicability to model the evolution of
latent space dynamics.
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Figure 5: NIROM solutions of ux and errors at t = 3.61
hours for the Red River example
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Figure 6: NIROM RMSEs for the Red River example

Conclusion
We have studied Neural ODEs as a non-intrusive machine-
learning algorithm to model the evolution of modal coeffi-
cients of a system of nonlinear, time-dependent PDEs in the
linearly embedded latent space characterized by a truncated
POD basis. Numerical experiments were carried out with a
benchmark periodic flow problem governed by the incom-
pressible Navier Stokes equations and two real-world ap-
plications of estuarine and riverine flow dynamics governed
by the two-dimensional shallow water equations.The NODE
formulation demonstrated a stable and accurate learning tra-
jectory in modeling reduced basis dynamics, even in com-
parison to two classical ROM techniques utilizing dynamic
mode decomposition and radial basis function interpolation.
The DMD NIROM exhibited superior accuracy in most of
the examples and was found to be most promising for long-
term predictions. However, the POD-RBF NIROM tech-
nique is easily applicable to parametrized model reduction
scenarios involving parametric training manifolds of very
high dimension, whereas the DMD algorithm does not have
a natural extension to such a setting. The POD-NODE for-
mulation also produced extremely promising extrapolatory
predictions for the flow around a cylinder example. This
presents an exciting prospect for future exploration as even
for an isolated system, unperturbed by unseen external forc-
ings, truly extrapolative predictions of reduced order dynam-
ics in flow regimes that do not correspond to the training data
is a rare feature for most well-established ROM frameworks.

This study leads to several promising avenues of research.



To begin with, an exhaustive search for an optimal NODE
network architecture and optimal model hyperparameters
needs to be conducted for a wide range of flow dynamics
in order to gain insight of the learning trajectory and to de-
sign more generalizable NODE NIROM formulations with
faster training times. With the goal of long-term predictive
formulations in mind, embedding uncertainty estimates in
the NODE NIROM framework might facilitate the devel-
opment of adaptive models capable of re-assessing learning
trajectories through in-situ measurements. The construction
of a set of response functions for modeling the prediction
error using machine learning (Freno and Carlberg 2019) or
Gaussian Process Regression (GPR) (Xiao 2019) are some
recent works in this direction. Another exciting field of study
would be to combine the NODE framework with machine-
learning strategies for the generation of nonlinear manifolds
(Lee and Carlberg 2020; Kim et al. 2020) that are suitable
for an efficient reduced representation of the system dynam-
ics for advection-dominated problems and in the presence
of sharp gradients where a truncated linear subspace offers a
poor solution representation. All the relevant data and codes
for this study will be made available in a public repository
at https://github.com/erdc/node nirom upon publication.
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