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Abstract

Graph-Informed Neural Networks (GINNs) present a strat-
egy for incorporating domain knowledge into scientific ma-
chine learning for complex physical systems. The construc-
tion utilizes probabilistic graphical models (PGMs) to incor-
porate expert knowledge, available data, constraints, etc. with
physics-based models such as systems of ordinary and partial
differential equations (ODEs and PDEs). Computationally in-
tensive nodes in this hybrid model are replaced by the hid-
den nodes of a neural network (i.e., learned features). Once
trained, the resulting GINN surrogate can cheaply generate
physically-relevant predictions at scale thereby enabling ro-
bust sensitivity analysis and uncertainty quantification (UQ).
As proof of concept, we build a GINN for a multiscale model
of electrical double-layer capacitor dynamics embedded into
a Bayesian network (BN) PDE hybrid model.

In recent years, several approaches have been proposed
to inform deep neural networks (DNNs) of physical laws
and constraints to ensure they produce physically sound
predictions. Two main classes of DNNs for building sur-
rogate representations of physics-based models described
by PDEs have emerged: physics-informed NNs (PINNs)
(Raissi, Perdikaris, and Karniadakis 2019) and “data-free”
physics-constrained NNs (Zhu et al. 2019). Our approach
uses the well-known concept of PGMs to embed domain
knowledge, including correlations between control variables
(CVs), into standard DNNs by only modifying their input
layer structure and enabling the use of a standard penalty
in the loss function, e.g., `1 (lasso regression) or `2 (ridge
regression) regularization. This non-intrusive approach per-
mits the use of off-the-shelf software like TensorFlow or
PyTorch with minimal effort from the user, while remain-
ing compatible with PINNs and other customized NN archi-
tectures which can be used to replace individual computa-
tional bottlenecks in the physics-based representation.

GINNs are particularly suited to enhance the compu-
tational workflow for complex systems featuring intrinsic
computational bottlenecks and intricate physical relations
among input CVs. Hence, to showcase the potential of this
approach, we apply a GINN to simulation-based decision-
making in electrical double-layer (EDL) supercapacitors,
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where it is deployed to build highly accurate kernel den-
sity estimators (KDEs) for the probability density functions
(PDFs) of relevant output quantities of interest (QoIs).
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Figure 1: A domain-aware PGM encoding structured priors
on CVs serves as input to both the BN PDE (lower route)
and trained GINN (upper route) for a homogenized model
of ion diffusion in supercapacitors (Taverniers et al. 2020).

Constructing and training a GINN
Simulation-based decision-making for design tasks involv-
ing complex multiscale/multiphysics systems requires pre-
dicting the impact of tunable CVs on the system’s QoIs. Typ-
ically, this is modeled by recasting the problem in a prob-
abilistic framework where CVs and QoIs are represented
as random quantities that can be sampled from their cor-
responding probability distributions. For most real-world
applications, these are continuous, non-Gaussian variables
that need to be characterized by their full PDF rather than
through a finite set of moments.

Figure 1 visualizes the construction of a GINN surrogate



for a multiscale model of EDL supercapacitor dynamics.
A BN, a type of directed acyclic PGM, systematically in-
corporates domain knowledge into the physics-based model
through structured priors on CVs, resulting in a hybrid BN
PDE model for macroscopic diffusion QoIs. The GINN re-
tains the structured priors as inputs but replaces the hybrid
model’s computationally intensive nodes, related to upscal-
ing via homogenization, with learned features to speed up
the generation of QoIs while maintaining physical relevance.

The GINN workflow, summarized in Fig. 2, consists of:
1. Data generation: Generate Nsam input-output (io) sam-

ples, divided into Ntrain training and Ntest test samples.
2. Training: Train the GINN with Ntrain training samples.
3. Testing: Test the trained GINN’s ability to handle unseen

data using the Ntest test samples.
4. Repeat steps 1 through 3 (modifying Ntrain) until both the

training and test error tolerance are satisfied.

5. Prediction: Draw N pred
sam inputs from the structured pri-

ors on the CVs and predict corresponding QoIs with the
trained GINN surrogate.
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Figure 2: Overview of the global algorithm for GINN-based
training, testing, and predicting (Hall et al. 2021).

GINN-based decision-making
A GINN’s ability to cheaply generate io sample pairs can
be leveraged to construct KDEs for the marginal and joint
PDFs of QoIs with appropriate confidence intervals. Such
nonparametric estimators form the building blocks for UQ
tasks such as sensitivity analysis.

In Fig. 3, we plot KDEs for QoIs based on 8× 103 sam-
ples simulated using the BN PDE (the minimum amount
of io data needed to train the GINN) and on 107 samples
predicted with the GINN. We find that the GINN-predicted
KDEs do not include spurious features observed with the
smaller, expensive-to-compute data set generated with the
physics-based model, and achieve much tighter confidence

intervals for an equivalent computational cost (since learn-
ing the GINN’s parameters and predicting new data with the
GINN carries a negligible computational expense).
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Figure 3: Estimated marginal densities for the QoIs in the
supercapacitor testbed based on 8× 103 samples computed
with the hybrid BN PDE (solid/blue) or 107 samples com-
puted with the GINN (dashed/red) (Hall et al. 2021).

Conclusions
Our full analysis, in (Hall et al. 2021; Taverniers et al. 2020),
suggests that GINNs, which take structured PGMs as inputs,
produce physically relevant QoIs that can be used to gener-
ate KDEs for robust and reliable sensitivity analysis and fur-
ther UQ. Trained on a small set of high-fidelity input-output
data from a domain-aware hybrid model, GINNs can quickly
generate large amounts of output predictions, yielding an ap-
proach that is orders of magnitude faster than counterparts
that rely on physics-based models alone.
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