
Using Domain-Specific Modeling to
Generate User Interfaces for Wizards

Enis Afgan, Jeff Gray, Purushotham Bangalore
University of Alabama at Birmingham

Department of Computer and Information Sciences
1300 University Boulevard

Campbell Hall #131
++ 1 (205) 934-2213

{afgane, gray, puri}@cis.uab.edu

ABSTRACT

The rising adoption and incorporation of computers into everyday

life requires human-computer interaction methods to be efficient

and easy to understand. Simultaneously, complexities of

underlying computer systems are increasing, inherently requiring

deeper understanding and a detailed level of human-computer

interaction methods. Software wizards are one important example

from the category of tools that simplify this interaction. Through a

simple, domain-specific, and targeted set of guided questions,

wizards allow complex tasks to be completed quickly and simply.

Tasks accomplished by wizards range from simple information

collection to complex system configuration. Because wizards are

task-specific, their lifespan is short and thus must be easily and

quickly adapted such that the cost associated with wizard

maintenance is minimized. This paper outlines such wizard

requirements and provides a metamodeling approach to wizard

generation. A domain-specific modeling language is presented,

which has been shown to be helpful in the generation of domain-

specific wizards that are capable of adapting to changing

requirements.

Categories and Subject Descriptors

D.2.13 {Software Engineering}: Reusable Software – Domain

engineering, reusable libraries, reuse models

General Terms

Design, Reliability, Experimentation, Languages.

Keywords

Metamodeling, wizards, automated wizard generation, user

interfaces

1. INTRODUCTION
Many advances in technology emerge from mechanisms that hide

underlying accidental complexities by introducing additional

layers of abstraction. The renewed interest in domain-specific

languages is an example of how higher levels of abstraction can

assist end-users in describing concerns from the problem space of

a particular domain, as opposed to adopting notations of a specific

solution space (e.g., use of a general-purpose programming

language or middleware). Software wizards [1] are an additional

technique that assist in simplifying computer usage and

configuration. By guiding configuration and customization

through a set of targeted questions, a wizard can assist in

resolving many activities that previously involved lower level

knowledge of the inner workings of a specific application. For

example, software installation and computer diagnostic tools use

wizards to obtain information from a user that is needed to

perform configuration and analysis tasks. As the trend toward

raising levels of abstraction continues, wizards offer a viable

alternative to assist end-users in describing more complicated

tasks that refer to their domain expertise. With supporting tools,

intuitive interfaces and guided suggestions provided by wizards

can accomplish many tasks that minimize the required expertise of

specific technical spaces. A challenge emerges, however, with

respect to how the actual wizards are designed and created. This

paper describes a domain-specific modeling language (DSML)

that assists in generating wizards.

Because wizards are domain and problem specific, they are often

transient and temporary in nature. New versions and various

compositions of wizards need to be created, each having a

possibly short life span. As such, allocating significant effort to

wizard creation is poor use of one’s time and should be

minimized. We realized that a significant improvement in wizard

composition could be offered by providing a modeling approach

that could be used by a domain expert to design targeted wizards.

A domain user can use the generated wizard to create necessary

artifacts based on the parameters supported through the wizard

questions. By investigating this technique, two categories of users

and generators emerged: (1) the domain expert who uses a DSML

for specifying a wizard in his/her own domain; this user uses the

DSML to concentrate on collecting desired information, (2) the

domain user who uses the wizard that was designed by the expert;

this user provides specific and targeted information.

The idea of wizard composition and guided information collection

contributes to the trend of improved abstraction mechanisms for

specifying application information. By applying model-driven

engineering (MDE) [2] to wizard composition and generation,

improvements to wizard development are introduced by

eliminating complexity of hand-coding all the complex links

between pages. Furthermore, different model compilers can be

associated with the wizard DSML to generate wizards in many

different formats (e.g., HTML, Java), each of which can store the

obtained data in different formats (e.g., text, XML, VoiceXML).

We have devised and developed a DSML that enables generation

of user interfaces associated with wizards. A domain selected as

an example and used throughout this paper comes from the area of

grid computing [3]. The Application Specification Language

(ASL) [4] is an XML-based language allowing an application

developer to describe functionality, installation, and invocation

properties of their application that persist throughout the grid

environment. We selected ASL as an example because

composition of an ASL specification can be a time-consuming

and error-prone task for the application developer (i.e., wizard

user). The use of a wizard to create an ASL document consists of

constructing representations of the necessary language elements

describing an application. An application developer may answer

the wizard’s questions with parameters that describe the

corresponding application feature. We have found that a wizard

helps to remove many of the errors in formatting an ASL

document to ensure that the document was created correctly (i.e.,

the application developer would be alleviated of a lot of typing

and checking the correctness of XML tags).

The roles of each user and the tools that they use are highlighted

in Figure 1. The DSML generates the corresponding wizard

(including page formatting and composition), which is then used

by the application developer to provide descriptive information

about the application through a targeted set of questions. After

completing the wizard, an XML document is created

corresponding to the data that was collected (i.e., correctly

formatted, ASL schema conforming document).

Grid expert

Instance model

ASL

Application
developer

Application specific
wizard XML

document

Figure 1. Two levels of abstraction accomplished by using a

DSML to generate a higher level wizard.

2. WIZARD CLASSIFICATION
Using MDE to compose wizards requires the design of a

metamodel capable of representing necessary entities within the

wizard domain. Thus, determining the purpose of a metamodel

depends on the type of wizards that will ultimately be created. In

order to distinguish general types of metamodels to be created, we

separate wizards into two broad categories: plain and guided.

Plain wizards correspond to simple page sequencing with

appropriate fields incorporated into each page. The categorizing

components of this type of metamodel are needed to enable and

handle connectivity between different pages, sequencing of the

pages, data passing and storage across the pages, as well as page

design (including proper page formatting). There is a single path

of execution built into this type of wizard at the time of model

creation. After the model is created, the generator is in charge of

converting the model into underlying code (e.g., Java, HTML).

Even though this type of wizard may seem somewhat trivial, the

task that must be handled by the wizard generator at this stage is

two-fold: a) create the user interface under given constraints; and

b) simultaneously and automatically implement the method of

capturing user data where it is output in the format (e.g., text,

XML, VoiceXML) specified by the user. Depending on the

underlying technology used, the correct method of data passing

must be applied (e.g., if a wizard is created in HTML use CGI or

servlets). This step of wizard generation must be implemented in

the generator at a very generic level because the end-user denotes

their intention by connecting two individual pages, but does not

provide any additional parameters. The result of the modeling task

is the specification of a software configuration wizard where the

user specifies the necessary information to link appropriate

libraries and the location of needed services.

Guided wizards extend the concept of page sequencing and are

more closely related to expert systems [5]. Rather than having a

predefined path set at the time of creation, guided wizards must

have generic code incorporated into them so that user choices

determine the next page of the wizard to be displayed.

Incorporating these ideas into a metamodel requires much more

care to be taken and imposes much higher requirements on the

code generators. There are two major considerations at the

metamodel level when dealing with a guided wizard. The first

consideration is the requirement to create connections not only

between entire pages of the wizard, but also to offer the user a set

of predefined options. A user of the wizard modeling language

must be able to make connections between those individual

options and between subsequent wizard pages. The second

consideration deals with page scoping. Because different paths in

the course of wizard execution may take the wizard user to a page

with equivalent information, there may be redundant pages

floating around the instance model resulting in repetitive work

done by the designer, eventually leading to more difficult page

management and updating. Depending on the metamodel and

corresponding data, this condition may be unavoidable, but by

proper scoping and introduction of the hierarchical structuring of

the collected output such issues can be reduced.

When using a generator for a wizard model and transforming it

into the wizard implementation (e.g., HTML or source code),

there is the additional requirement to manage control flow

elements for individual user choices. This logic must be

customized to the particular wizard and be completely transparent

to the end-user. Beyond making the necessary connections at the

page level, the generator must be capable of composing necessary

code, including page scoping which introduces new challenges for

the generator developer. Figure 2 provides a graphical

representation of these considerations, where the workflow of a

guided wizard can be seen. The user initially provides some data,

which leads to a subsequent page that may branch off into several

possible pages. Selection of the subsequent page is determined on

user input at run-time. Each page may branch into multiple

subsequent pages, some of which can be equivalent in context,

even though the paths may differ. At each step of the wizard,

control flow (CF) code logic must be provided by the wizard

generator along with the code for data storage that incrementally

constructs the resulting document (e.g., Data).

Figure 2. Wizard flow showing multiplicity of generated

wizard pages and requirement to handle control flow (CF) at

each junction as the Data document is being generated.

3. A PROTOTYPE METAMODEL
To investigate the benefits of model-driven generation of wizards,

we developed a metamodel capable of representing wizard

components found in ASL. A model compiler was also developed

to generate the corresponding HTML code to represent the

wizard. As a supporting tool, we used the Generic Modeling

Environment (GME) [6], which is a metamodeling tool that can

be used to build DSMLs. Our metamodel describes a modeling

language that allows grid experts to specify the following

elements of a wizard: compose pages with corresponding elements

found in ASL, connect those pages into a meaningful flow, and

generate matching HTML code that can be incorporated into a

grid web portal interface.

The modeling language mirrors the structure of ASL. Because

ASL is a hierarchically structured language, which is

compartmentalized so that separate sections of a document are

logically related, the metamodel conforms to the desired scoping

rules of individual pages. By providing hierarchical components

within the metamodel based on segregation of individual sections

of ASL, the metamodel supports logical and meaningful structure

of wizard generation to the grid expert. These sectionally-

structured components provide page scoping, which allow the

user to logically separate individual pages into subsections. This

assists in keeping the number of pages to a manageable level.

Because pages at separate sections of a wizard are generally

dissimilar, metamodel segregation also minimizes the requirement

for redundant page composition. At the current stage of

development, the metamodel is capable of representing individual

page components, compose those into a meaningful format and

make them part of a larger section. Additionally, connections

between entire pages corresponding to ASL sections can be

established.

Figure 4 shows the metamodel with numbered elements, which

are referenced in the rest of this section. In the metamodel, there

are three major sections: section model, connection elements and

individual page components. The section model (number 6) is the

starting element of the entire metamodel setting the connectivity

rules and encompassing all the other components available in the

metamodel. The connectivity elements (numbers 1-5) establish

different types of connections (i.e., whether components belong to

a single page or establish connections between pages), and the

remaining elements (numbers 7-15) correspond to wizard page

components. All of the elements except number 8 directly

correspond to page components such as text box or a drop down

menu. In the case of composite elements (e.g., drop down menu,

radio button group), lower level elements are provided to allow

user creation of individual user options. Number 8 is a ‘help

element’ allowing each element to be associated with context-

sensitive help (as supplied by the metamodel user).

Figure 3. Sample page of generated wizard to collect

application information as defined in ASL.

A model compiler was developed for this metamodel to generate

the wizard in HTML and accommodate for proper page

formatting, sequencing and transitioning. The development of the

model compiler to support all available features of the

corresponding metamodel presented a significant challenge. The

current implementation of the model compiler is limited in

functionality to support generation of HTML pages realizing the

desired page formatting. Page arrangement and page connectivity

is still unavailable. The major challenge arose from the need to

automatically establish connectivity protocols based on different

types of connected objects within a model. A sample page of the

generated wizard in HTML is provided in Figure 3. This figure

shows the initial page of the wizard, corresponding to the general

information collection page of ASL. The figure also shows the

metamodel supplied outline of the interactive help functionality.

4. CONCLUSIONS AND FUTURE WORK
This paper is a report of work in progress that started with a

specific goal of producing wizards to assist in grid document and

application configuration. During the course of our investigation,

we realized that our modeling language was broader in scope and

applicable to multiple domains. This paper provides a motivation

of the requirements and challenges for specifying the composition

CC

CC

CC

CC
CC

CC

CC

Data Data Data Data

Figure 4. Metamodel for wizard generation. This particular instance is for creating ASL documents.

of generic wizards through the use of DSMLs. A contribution of

this work is the two levels of indirection that have to be handled

through the metamodeling environment. This means that the

compiler must seamlessly produce not only the code for the

wizard composition, but it also must incorporate code into the

wizard that will store the data provided to the wizard at run-time

in the appropriate format. The data storage component is not

explicitly defined in the instance model and thus must exist in the

generator. Provisioning of such functionality requires broad

generality in the generator that must be capable of automatically

invoking (i.e., as implied by current environment and/or user

input) appropriate code. Development of such generalized code

requires much interdependence between various code modules as

well as complex code generation two levels deep (i.e., code

generated by the model compiler is the wizard code). This

generated code must subsequently be capable of responding to

wizard requirements and guide the wizard actions as well as

generate the final output.

A DSML was designed to support the approach. In the

development process, issues arose with the implementation of the

compiler code dealing with the support for the two levels of

indirection. Because both of the mentioned levels must

simultaneously be supported in the compiler code accommodating

for any possible combination of elements found in the metamodel,

the compiler encountered several challenges. This was due to the

fact that at each step of the wizard and at each level of indirection

very specific code needed to be created automatically. Portions of

generator code were often found to be equivalent and dependent

on dispersed snippets of code inviting generator code components

to be indirectly connected. Use of standard object-oriented

programming techniques resulted in inconsistent functionality that

was hard to manage and maintain. More specifically, this was

referring to compiler code that was used to generated page

connections and organize page layout. Because each component

was slightly different depending on the context, compiler code

needed to be adjusted accordingly rather than simply being able to

reuse it transparently. A need to modularize code into more

manageable components, each capturing the desired functionality,

became apparent. Thus, we are considering the use of techniques

such as the Aspect-Oriented Programming [7] to solve such

issues. Eventually, with the improvements in generation of our

metamodel compiler, new fields for tool applicability can be

realized, such as automated job submission interface generation

for grid applications, as well as simultaneous output of multiple

formats of wizard-collected data requiring minimal user

intervention.

5. REFERENCES
[1] D. Batory, G. Chen, E. Robertson, and T. Wang, "Web-

Advertised Generators and Design Wizards," International

Conference on Software Reuse (ICSR), Victoria, Canada,

1998.

[2] D. Schmidt, "Model-Driven Engineering," IEEE Computer,

vol. 39, pp. 25-32, 2006.

[3] The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann Publishers, 1998.

[4] E. Afgan and P. Bangalore, "Application Specification

Language (ASL) – A Language for Describing Applications

in Grid Computing," 4th International Conference on Grid

Services Engineering and Management (GSEM), Leipzig,

Germany, 2007.

[5] J. Durkin, Expert Systems: Design and Development,

Macmillan, 1998.

[6] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits,

and S. Neema, "Developing Applications using Model-

Driven Design Environments," IEEE Computer, vol. 39,

pp. 33-40, 2006.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,

J.-M. Loingtier, and J. Irwin, "Aspect-Oriented

Programming," European Conference on Object-Oriented

Programming (ECOOP), Jyväskylä, Finland, 1997.

1

2

3 4

5

6 7

8

9

10 11 12 13

14

15

16

