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Abstract
The Internet-of-Things (IoT) has become a very promising and fruitful area of research. The rapid development of IoT is
revolutionizing our daily utilization of technology in every way. The IoT paradigm is that the devices making up an IoT
system have resource constraints such as storage, computing and energy consumption. That paradigm makes possible a
flexible and pervasive communication between devices that are bound to low resources. These constraints may create a
state where there is anomaly occurrence on the component level that may impact the whole system. Some innovative
techniques have been proposed to quantify the reliability of these devices for the aforementioned constraints. However,
there is a gap between the quantification of the component reliability and the predictive and preemptive maintenance of
these components. In this study, we propose an approach combining reliability quantification and reinforcement learning to
build a mechanism that can achieve a predictive maintenance for the components of an IoT system such as devices and links.
In the approach, a component-level mechanism is built to synthesize the reliability data, and to determine the probability of
anomaly occurrence for each component. The approach is being applied to a self-adaptive IoT system for smart environment
monitoring named DeltaIoT.
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1. Introduction
Recently, the Internet of Things (IoT) has been one of
the fastest growing fields in the computing domain. Its
paradigm has been applied to many critical applications
such as early warning systems for earthquake or tsunami,
smart home security, traffic management, healthcare, and
education systems, etc. Despite a rapid development and
improvement in the IoT research area, many challenges
remain. The challenges faced in IoT are related mainly
to the following properties: scalability, availability, reli-
ability, interoperability, security, mobility, performance,
etc.

The IoT infrastructure is made up of low resource
devices, meaning that they have low storage and low
computing power compared to other devices within the
computing domain. This is the result of the desire to ac-
commodate the energy consumption as most of the com-
ponent rely on battery to power them up[1][2]. Nowa-
days, the IoT paradigm is applied to many mission-critical
systems, such as factory management, personal body sen-
sors in healthcare, surveillance systems in nuclear power
plants. These areas of application require a failure free
system; otherwise there will be disastrous consequences.
We must be able to trust these systems in all conditions
as they impact the way we make numerous decisions

CASA: 4th Context-aware, Autonomous and Smart Architectures
International Workshop, ECSA’21 15-17 September 2021
" a-bonerdiallo@ist.osaka-u.ac.jp (A. B. Diallo);
nakagawa@ist.osaka-u.ac.jp (H. Nakagawa);
t-tutiya@ist.osaka-u.ac.jp (T. Tsuchiya)
� 0000-0001-5280-4113 (H. Nakagawa)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

based on the data they collect and provide. The relia-
bility of the IoT systems depends on the reliability of
the components that make up the system. As the IoT
devices are constrained by nature, there must be some
mechanism in place to ensure their reliability at all time,
in order to have accurate decision models based on the
data provided by the lower layer of the IoT architecture.

IoT reliability is a critical domain of research that has
seen a lot of important contributions over the years. Mul-
tiple ways of quantifying the reliability of IoT compo-
nents have been proposed. However, there is a gap be-
tween that quantified reliability and its application in pre-
dictive maintenance. In other words, how can we predict
an accurate maintenance date for IoT components, based
on the reliability measurement? To achieve that, we must
build first mechanisms that can synthesize the reliabil-
ity information from anomalies to determine whether
the system has become less reliable from that anomaly
occurrence. The ability to reason about the quantified
reliability of the IoT system is a valuable step towards
achieving predictive maintenance. The idea here is to
build a dynamic decision-making process that can collect
reliability data in a periodic manner and try to estimate
a future failure time.

Fundamentally, we can define reliability as the study
of failures. The reliability of a system or a computing
device is its quality over a certain period of time. To
quantify the reliability of a system or computing device,
we use standard metrics all related to time like Mean
Time To Failure, Mean Time Between Failures, and Mean
Time To Repair, etc. Quantifying reliability is essential
to assessing the continued success in the operation of an
information system or a computing device.
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2. Background
Computing systems require a high degree of performance
and availability, but above all, they must be reliable. The
appropriate way of assessing the reliability of a com-
puting system depends on the type and mission of the
system. In their study, Xie et al. [3] addressed several
key metrics for reliability quantification. Some of these
key metrics are Mean Time To Failure (MTTF), Mean
Time Between Failures (MTBF), failure rate. The MTTF
metric quantifies the expected operating time of a sys-
tem before the occurrence of a failure. The MTBF metric
as the name indicates, quantifies the operating time be-
tween one failure occurrence to another. The failure rate
function helps to quantify the failure of a system within
a specified window of time. The maintainability metric
quantifies the probability that a system can go back to op-
erating normally after the occurrence of an anomaly or a
failure. The availability metric quantifies the probability
of the system being expected normally operating.

The methods and techniques to analyze the reliability
of computing systems depend on the domains that make
up the system. There are mainly four domains or level:
system, hardware, software, and network. The assess-
ment of the reliability at a system level is the result of
the combined assessment of the hardware, software, and
network levels. In the hardware domain, the reliability
assessment is related to the decay of the quality over time
of the physical components of the computing system. In
the software domain, according to the study in [4], there
is no concern over a physical decay of the quality over
time. As for the network reliability, it may be subjected
to a decrease of performance over time due to internal
and external factors on the hardware and software that
make up the network.

In the case of IoT systems, their reliability can be as-
sessed by quantifying the reliability of the different lay-
ers of their architecture. In [5], the IoT functionalities
are grouped into the sensing and actuation, the commu-
nication, and the end-user application and services. A
basic architecture of an IoT system can be divided into
three layers: a device layer, a network layer, and an ap-
plication layer. The device layer is responsible for the
sensing and actuation. At the device level, the reliabil-
ity is constrained by the battery life, the low capacity
of both the memory and the CPU which prevent them
using complex encryption to protect the transmitted data
[6]. The device reliability is further constrained by false
reading events that are common for sensors, when they
collect and transmit data erroneously after an undetected
failure[7].

The network layer is responsible for the communica-
tion between the devices of the system. The application
layer is responsible for the services and the interactions
with the end-user applications. In most cases, its reliabil-

ity depends on the reliability of the device layer and the
network layer. For example the device layer collects and
transmits anomalous data, which are sent through the
network to the application layer. Beyond being able to
reason about the fitness of our IoT devices, we must also
be able to attest to the reliability of the network infras-
tructure that forms the backbone of IoT communication.
There are two approaches of network reliability studies
which are discussed in this section; studies for enhanc-
ing QoS in networks, and studies aimed at quantifying
reliability metrics for networks. Some research has also
been conducted to evaluate IoT reliability at a system
level. These approaches are at a high level and do not
capture the individual detail for reliability, such as which
devices are responsible for failures, or which parts of the
network are responsible for traffic problems.

3. Focus: Anomaly Prediction
In our study, we consider the types of anomalies accord-
ing to where and how frequent they occur. Anomalies
can occur on each layer of the architecture with different
degree of frequency. The device layer and network layer
of the architecture are where anomalies occur the most,
whereas the application layer is less prone to anomalies.
As for the occurrence frequency, we consider two main
forms of occurrence in the IoT components: cyclic anoma-
lies and random anomalies. The former type of anomalies
are linked to the nature of the component itself. Each
component has a starting time and an ending time. The
probability of anomaly occurrence is very small when
the reliability is quantified closed to the starting time. On
the other hand, the probability is great when quantified
towards the ending time. The latter type of anomalies,
called random anomalies, stem from random external as
well as internal factors, like noise, interference, etc.

Our approach combines reliability quantification and
machine learning to solve the problem of predictive main-
tenance from the aforementioned anomalies. Reliability
quantification is achieved using the metrics introduced
in [3]. Even though the concept of component anomalies
is mentioned throughout this paper, detecting anomalies
is not the main focus of this study. In their review of
IoT reliability and anomaly detection techniques, Moore
et al. [8] noted that no study had explored the poten-
tial of synthesizing quantified reliability data. The study
pointed out that the decrease of reliability of a smart
home system has different consequence than a decrease
of reliability of a power plant surveillance system. The
decrease in reliability of the IoT system increases the
probability of anomaly occurrence within the system. As
stated in the background, each layer of the IoT archi-
tecture has its own way of assessing reliability. In this
study, we cover mainly anomaly occurrence at the device



Figure 1: DeltaIoT network structure

layer and the network layer of the architecture. The main
goal of our study is to enable the IoT system to achieve
predictive maintenance, i.e., predict a probable failure
time of one or more components and preemptively apply
correction to the components, based on their quantified
reliability. Based on this goal, we include in the study
components where corrections can be applied after a
failure or an anomaly. Therefore, some components of
the device layer such as the battery, the memory and the
CPU, are out of the scope of this paper. The reason is that
they cannot be automatically maintained after a failure
or an anomaly occurrence. These components, once the
reliability has decreased or a failure has occurred, would
require a system where a Human-in-the-loop is placed
in for maintenance.

There are components of an IoT system that can be
calibrated after the decrease of reliability or occurrence
of an anomaly. Such components can be sensors at the
device layer or links at the network layer. Therefore, our
approach is applied to the sensor devices and the net-
work links in order to achieve predictive maintenance.
There are some consequences for undiagnosed anoma-
lous data to be ignored within the different layers of the
IoT architecture. Therefore, to decrease the vulnerability
of the IoT-centered systems, there is a need to design
lightweight solutions that are capable of handling the
anomaly detection tasks without impacting the resource
constrained systems.

4. Motivating Example: DeltaIoT
In this section, we describe the motivating example of
our research which is a self-adaptive IoT system named

DeltaIoT [9]. Self-adaptive systems are able to modify
their behavior at runtime, in a response to a change in
their operating environment, to achieve their goals. In
this research, the study is not only about engineering
reactive self-adaptivity, rather it is also about designing
robust IoT system that are subjected to environmental
changes. A typical IoT network system is composed of
devices with different types of sensors and actuators, usu-
ally linked together wirelessly through the internet[2].
The concept of Internet-of-Things enables devices to op-
erate with the constraints of energy consumption, low
computing power and low storage power. The networks
connecting the devices are also prone to congestion es-
pecially when there is a burst in demand, e. g., during
an emergency situation for a system deployed to mon-
itor large geographical areas to detect potential disas-
ters as early as possible[10]. All these constraints make
the engineering of dependable and reliable IoT systems
more challenging. The next paragraph introduces an IoT
system which is used in the case study of applying our
approach.

The DeltaIoT system is a platform for smart environ-
ment monitoring. The system, introduced in [9], is a
self-adaptive system, enabling it to react to environmen-
tal changes. The DeltaIoT system “enables researchers to
evaluate and compare new methods, techniques and tools
for self-adaptation in Internet of Things”. The DeltaIoT
system has been built into two versions and they are
deployed at the campus of KU Leuven University. The
two versions differ in the number of devices present in
each network and the geographical deployment of each
version of the system. DeltaIoT system is described in
Figure 1. DeltaIoT has a multihop communication system
in cycles of 570 seconds. The system experiences exter-



nal and internal stimulations that causes it to change its
behavior to achieve its goals. There are two main causes
for adaptation. The first cause for adaptation is an inter-
ference in the network causing the links to experience
delay or packet loss. The second cause for adaptation is
the fluctuating load of messages. This results in some
or all links to be clogged creating delay and packet loss.
There are three quality requirements the system must
fulfil. The first quality requirement is about the average
packet loss over 12 hours, which should not exceed 10% of
the overall messages sent through the links. The second
quality requirement concerns the average latency over
12 hours which should not exceed 5% of the cycle time.
The third quality requirement concerns the average en-
ergy consumption over 12 hours. It has to be minimized
during that period.

One of the main mission of the Internet of Things
systems is to collect and communicate data about the en-
vironment or the people around which they are deployed.
DeltaIoT, like many other IoT systems, alternates sensing
and actuation during its operation. In many cases, the
actuation is performed based on the results of the sens-
ing. Therefore, anomalies during data sensing and during
data communication may have a negative effect on the
system performance or operation. Collecting anomalous
data typically happens on the device level by the sensors.
It can be caused by different reasons like noise or defect
due to environmental factors. When this happens, the
sensors can be calibrated again to perform with a great ac-
curacy. Anomalies occurring on the links of the DeltaIoT
system are related to the decrease in the QoS. The packet
loss and the latency are some of the manifestations of
these anomalies occurring in those links.

We have presented a mechanism for an efficient con-
figuration space reduction [11]. The mechanism focused
on the analysis after an anomaly has happened at a com-
ponent level. In this paper, the main focus of the study
is to forecast an anomaly before it happens. It is impor-
tant to reduce the time between anomaly occurrence and
detection. It is equally important to minimize the time
from anomaly detection to correction. Moreover, precise
anomaly understanding aids in constructing more precise
probabilistic model of the system, which helps to find
more reliable configuration of the system using proba-
bilistic model checking [12]. Many anomaly detection
techniques have been proposed for computing devices in
general, each with its advantages and drawbacks. How-
ever, techniques for anomaly forecasting are few. In the
Internet of Things domain, to the best of our knowledge,
our study is the only one that makes use of reliability
quantification and machine learning approach to predict
anomaly occurrence. As explained in the approach, if
the time of anomaly occurrence could be predicted, then
corrective measures can be applied in order to prevent
the anomaly from happening.

Figure 2: Overview of the component-level mechanism

5. Approach
In this section we describe in details our approach and its
practical implementation. The goal of the approach is to
determine a high probability failure time or an anomaly
occurrence time in order to apply corrective measures.
We build two mechanisms. The first mechanism is on
the component level, that is the level of devices and links.
It captures the behavior of each individual component.
The reliability of each component is computed by this
mechanism. The second mechanism is on the level of
the MAPE feedback loop. The MAPE stands for Monitor,
Analyzer, Planner and Executor. The feedback loop is
used in autonomic computing to achieve self-adaptation
in software systems[13]. The system-level mechanism
is connected to the monitor component of the feedback
loop.

The backbone of the component-level mechanism is an
anomaly agent that is instantiated by each component of
the IoT system. The quantified reliability is determined
using mainly two metrics: mean time between anomalies,
anomaly rate. The function of the anomaly agent is to
predict an anomaly time, depending on the quantified
reliability of the component. The anomaly agent has to
predict an accurate anomaly time. It behaves according
to the principles of reinforcement learning. It is rewarded
for the accurate prediction of the anomaly time. Figure
2 illustrates the component-level mechanism of the ap-
proach. According to [14], “reinforcement learning is an
area of machine learning concerned with how intelligent
agents ought to take actions in an environment in order
to maximize the notion of cumulative reward”. The main
motivation of using reinforcement learning is to record
the different states of the system and their transitions
[15][16]. The system has an optimal state in which the
probability of each component’s reliability is high. The
next state is an in-between state where the component’s
reliability is just average. Lastly, the system has a critical
state in which an anomaly has already occurred or is



very likely to occur. Capturing these different states and
reasoning about them can be helpful in discovering an
optimal time for predictive maintenance. To implement
the anomaly agent, we use an approach that relies on
Time Difference Learning [17]. The agent is implemented
according to a Q-Learning algorithm [18]. The approach
is well suited for situations with great degree of random
variables and uncertainty. In the next subsections, we
explain the two mechanisms in detail.

5.1. Component-level mechanism
The network of most IoT systems is composed of several
heterogeneous devices. These heterogeneous devices
possess sometimes different characteristics that can hin-
der their interoperability. Therefore, when designing a
mechanism for anomaly prediction, each individual com-
ponent of the network must have a self-centered module
that captures its unique characteristics. The component-
level mechanism is illustrated in figure 2. The mechanism
has two main parts. The first part is a reliability quan-
tification algorithm, where the reliability of the module
is quantified based on the previously mentioned metrics.
The IoT system operates in an environment where the
quality of its components deprecates over time. Some
components can be calibrated back to normal like the sen-
sors and the network links. However, the physical aspect
of the system in most of the cases cannot be calibrated.
Therefore, that aspect is out of the scope of this study.
We track the component based on the three metrics: the
mean time between anomalies (MTBA), the anomaly rate
(AR) and the probability of anomaly (PA). First we deter-
mine the anomaly rate AR by determining the number of
anomalies per cycle of time. It is calculated by dividing
the number of anomalies over the cycle of time.

𝐴𝑅 =
𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠

𝐶𝑦𝑐𝑙𝑒𝑇 𝑖𝑚𝑒
(1)

The MTBA is the time the system or the component is
operating normally before an anomaly occurrence. The
MTBA is determined by the following formula

𝑀𝑇𝐵𝐴 =
1

𝐴𝑅
(2)

The probabilbity of anomaly occurrence PA, is deter-
mined using the MTBA is the following formula

𝑃𝐴 = 𝑒((
−1

𝑀𝑇𝐵𝐴
)*𝑡𝑖𝑚𝑒) (3)

The second part of the component-level mechanism
is a Q-Learning agent, where the agent learns the char-
acteristics of the component, based on the quantified
reliability and the overall environment of the component.
The agent must learn to predict an anomaly time. There-
fore, the actions to be taken by the agent are prediction

actions related to an anomaly time. We formalize our
problem as a Markov Decision Process or MDP. The com-
ponent, which is the environment interacting with the
agent, is modeled as a Markov Process. The Q-learning
algorithm used to create the agent, is chosen because it
is model-free, off-policy, and value-based algorithm.

The MDP describing the environment for the learning
process, contains a tuple of four elements. The first ele-
ment is a set of finite states S. the second element is a set
of finite actions A. the number of states is function of the
number of actions. The actions to be performed by the
agent are, for each run, adding an integer value to the
current time and to check whether the time corresponds
to the anomaly time. The third element of the tuple is the
reward R to be received after transitioning from state S
to state S’ as a result of performing an action. The fourth
element of the tuple is the probability P related to the
performed action.

The Q in Q-learning is a measure of the quality of a
state-action combination. When an action is taken by a
learning agent, the reward of that action along with the
learning rate, the discount factor and the initial condition
or previous value of Q, are used to determine the new
value of Q for that state.

𝑄𝑡(𝑠, 𝑎) = 𝑄𝑡−1(𝑠, 𝑎) + 𝛼[𝑟+

𝛾 *𝑚𝑎𝑥𝛼𝑄(𝑠′, 𝑎′)−𝑄𝑡−1(𝑠, 𝑎)] (4)

5.2. System-level mechanism
The mechanism is implemented on the monitor level of
the MAPE feedback loop. The monitor part of the MAPE
feedback loop observes the system and the operating en-
vironment with which the system is interacting, to check
whether there are changes. We leverage this function
of the monitor, and append the system-level mechanism
on it. The mechanism performs two main tasks. The
first task of the mechanism is to check the results from
the component during each cycle performed by the IoT
system. The second task is to aggregate the results of the
from the components over all the cycles performed by
the system.

5.3. Learning Process
In the component-level mechanism, our method first de-
termines an accurate quantification of the metrics, that
can give a snapshot of the quality of the component at
each period of the system operating cycle. This is most
required during the time of data sensing and data for-
warding. The components of the IoT system, i.e., sensors
and links, operate differently in the environment. We
have described earlier the kind of anomalies that the com-
ponents are subjected to. The sensors can have random



anomalies like noise but also cyclic anomalies. The links
of the network have external interferences or message
clogging leading to anomalies. However, most of these
anomalies are related to the decrease of accuracy of the
device and decrease of power settings of the link. The
approach determines the number of anomalies that are
occurring during each cycle. Therefore, for each cycle we
can observe a different anomaly rate. That observation
helps to determine and update the mean time between
anomalies during all the cycles. We determine the actions
performed by the agent as adding time in seconds to the
current time. The reason is that the current time is the
time when the agent decides to make a prediction about
an anomaly time. The agent decides to make a prediction
after getting the anomaly probability for that period. The
amount of time in seconds to add to the current time is
function of the anomaly probability of that period. If the
anomaly probability is high, the amount is small, and
on the other hand, if it is low, either no time is added,
or a big amount. After each prediction, the Q value of
that state-action combination is updated according to the
reward obtained.

6. Conclusion
In this research, we are investigating the possibility of
preemptive forecasting of anomalies that occur at the
device and network layers of an IoT architecture, by im-
plementing an anomaly agent based on the Time Dif-
ference Learning method. In the next step, we plan to
implement another anomaly agent based on the Monte
Carlo method and evaluate the performance of these two
agents.
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