
Two different facets of architectural smells criticality: an
empirical study
Ilaria Pigazzini1, Davide Foppiani1 and Francesca Arcelli Fontana1

1University of Milano - Bicocca, Milan, Italy

Abstract
Architectural smells (AS) represent symptoms of problems at architectural level that have an impact on architectural debt. It
is important to identify among them the most critical ones, so that developers can prioritize them for their removal. In order
to evaluate the criticality of AS, in this paper we consider two facets: the PageRank metric, to assess the centrality of a smell
in a project, and Severity, a metric to estimate the cost-solving of smells. We have proposed these two metrics in a previous
work and here we perform an empirical analysis of the evolution and correlation of these metrics in the version history
of 10 projects (at least 22 versions each, 264 projects in total). The analysis of the evolution is useful in order to identify
which architectural smells types tend to become more critical. The analysis of the correlation is useful to study whether the
criticality of a smell has an influence on how much it costs to remove it, and vice-versa.

Keywords
Architectural Smells, Architectural Debt, Architectural Smells criticality, Architectural Smells evolution, Empirical study

1. Introduction
Architectural debt can be monitored through differ-

ent issues, such as through the presence of architectural
smells in a project. Architectural smells (AS) are de-
sign decision that negatively impact internal software
qualities and are symptoms of architectural debt [1], [2].
Software systems affected by AS are difficult to main-
tain and evolve, hence it is important to study them and
identify solutions to support developers in their removal,
in particular the removal of the most critical ones (AS
prioritization).

In such terms, criticality of an AS models the degree
of removal urgency associated to the AS, i.e., the smell
should be removed as soon as possible because it affects a
part of the project which is important for the developers
(e.g., frequently changed or highly referenced) or has a
strong impact on the maintainability of the project.

However, it is not trivial to model and evaluate the
importance and urgency of the removal of an AS. In the
literature, the identification of the best metrics to be used
for the evaluation of criticality is considered a complex
task [3], mainly because it is tightly connected to how
smells are perceived by developers [4] and such percep-
tion is subjected to many variables, such as the developer
experience, code ownership [5], whether the smell is lo-

MSR4SA’21: 1st International Workshop on Mining Software
Repositories for Software Architecture, September 15–17, 2021,
Virtual
email: i.pigazzini@campus.unimib.it (I. Pigazzini);
d.foppiani@campus.unimib.it (D. Foppiani);
arcelli@disco.unimib.it (F. A. Fontana)
orcid: 0000-0003-2629-6762 (I. Pigazzini); 0000-0002-1195-530X
(F. A. Fontana)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

cated in a central part of the project and other facets.
Moreover, while criticality gives us information about
the removal urgency, there is another aspect connected
to the removal of smells which can be considered and
quantified. AS have a cost-solving (cost of fixing, cost of
refactoring), which is the effort needed to remove a smell
from the system [6]. This variable depends less from the
perception of the developers but more from the specific
characteristics of the interested AS.

To resume, during AS management, developers can
take into consideration two distinct aspects concerning
smells: their criticality, i.e., how much is important to
remove them as soon as possible (urgency), and their
cost-solving, i.e., how much it cost to remove them.

Both criticality and cost-solving are particularly rele-
vant for developers when making decisions about AS
management: for instance, to choose which smell to
refactor first [1][5]. A developer may prefer to refac-
tor first the smells which require less time to be solved
(low cost solving) to quickly enhance the quality level
of the project, instead of fixing the most critical ones.
On the other hand, the developer may decide to remove
the most difficult/critical ones, but to make this decision,
different factors must be considered: it can be too ex-
pensive and risky; too many changes could compromise
other parts. Perhaps, the most difficult AS was created
by design choice and no better solution is available, as in
the case of cycles created by callbacks for event listeners
in GUI components [1][7]. Finally, the most critical AS
could appear in a not-central part of the project, such
as a deprecated, unessential package, and could be not
interesting for the developers.

In this paper, we consider two metrics, PageRank and
Severity, and we propose to use them to model the criti-
cality (PageRank) and the cost-solving (Severity) of three

mailto:i.pigazzini@campus.unimib.it
mailto:d.foppiani@campus.unimib.it
mailto:arcelli@disco.unimib.it
https://orcid.org/0000-0003-2629-6762
https://orcid.org/0000-0002-1195-530X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

AS based on dependency issues, namely: Cyclic Depen-
dency, Unstable Dependency, and Hub-Like Dependency
(see Section 3.2). PageRank, inspired by the well-known
metric from Brin and Page [8] is a measure that estimates
whether an AS is located in an important part of the
project [9], where the importance is evaluated according
to how many parts of a project depend on the ones in-
volved in the AS (as a sort of centrality measure of the
AS). We want to use PageRank as a proxy of AS criticality,
i.e., the higher the PageRank, the higher the criticality of
the AS. Severity, defined by us, is a measure associated
to each specific type of AS and is computed through the
metrics used to detect each smell. Our idea is that the AS
characteristics, such as the number of system dependen-
cies it affects, are useful to estimate how much effort is
required to refactor the smell (cost-solving), e.g., a smell
which involves many dependencies will require a deep
analysis and a lot of time to be solved.

We have considered these two metrics in a previous
study [10], where PageRank and Severity have been eval-
uated on only 6 single-version projects. We have now
extended the study by conducting an empirical evaluation
on a total of 264 versions of 10 projects with the aim to
empirically study criticality and cost-solving during the
evolution of the projects, and investigate whether there
is a correlation between the trends of the two metrics, to
answer the following Research Questions (RQ):

RQ1: How PageRank and Severity of the smells evolve
in the version history of a project?

RQ2: Can we find some correlation between PageRank
and Severity by considering each type of smell?

The answer to RQ1 aims to analyze if the values of the
two metrics tend to increase or decrease in the version
history of the projects. Moreover, we are interested in
understanding which AS type(s) tend to become more
critical and/or difficult to remove in the version history
of a project, where the criticality is evaluated through
the PageRank and the cost solving is estimated with the
Severity metric. In this way a developer can decide to
focus the attention on these types of smells first.

The answer to RQ2 allows to evaluate the correlation
between the criticality and the cost solving of a smell. If
for example the values tend to go together, highly corre-
lated, for a specific type of AS, it means that as long as the
smell is critical, it is also hard to remove and vice-versa:
in this case, the two metrics would produce the same
ranking of smells, i.e., the prioritization of the smells
would be equal by considering one of the two metrics
interchangeably. In case of positive correlation, it could
be also in any case interesting to analyze possible out-
liers with different values of the metrics (high/low) and
better capture the relevance of the metrics (see examples
in Section 4.2). We could find that the two metrics have
a strong positive correlation for a specific type of smell,
and not for other smells. This scenario can outline the

relevance of the metrics for each type of smell. Other-
wise, no correlation, we could infer that there is no link
between the urgency of removing a smell and the cost of
removing a smell, as computed by the proposed metrics.
In this case a developer can decide to not remove an AS
with low PageRank and high cost solving, and to remove
first an AS with high PageRank and low cost solving,
since this AS could become more critical since it appears
in a central part of the project.

We aim with our study to provide developers insights
on the evaluation of criticality and cost solving of AS
through the PageRank and Severity metrics. Severity
metric is focused on evaluating the cost solving in terms
of the number of project dependencies affected by the
smells, while PageRank is more focused on the impor-
tance (criticality) of the affected components (classes/-
packages). Hence, both metrics could be useful to de-
termine the prioritization of AS, i.e., help the developer
in choosing which smell to refactor first depending on
the developer’s needs, i.e., the need to address the most
critical ones first or the most expensive ones.

We have considered the two metrics in the computa-
tion of an Architectural Debt Index [11] based on the
number of the AS found in a project and their critical-
ity measured in terms of both PageRank and Severity
metrics. The results of this study can be useful also to
evaluate whether the two metrics truly capture different
aspects of a smell or not. In the latter case, one of the
two metrics could be left out.

The paper is organized through the following sections:
in Section 2 we introduce some related work, in Section 3
we describe the study design, in Section 4 we provide the
results we obtained to answer the RQs. Section 5 presents
the discussion of the results and Section 6 outline some
threats to the validity of the work. Finally in Section 7 we
conclude our work by outlining some threats to validity
and future developments.

2. Related Work
We first briefly describe some empirical studies on

architectural smells.
Le et al. [12] investigated the nature and impact of

architectural smells through a large empirical study, by
exploiting the projects’ issue trackers to analyze the im-
pact of smells on software development; Arcelli et al. [13]
studied the relationship between code smells and archi-
tectural smells and found that architectural smells are
independent from code smells; Sharma et al. [14] con-
ducted an empirical study to investigate the relationship
between design and architectural smells in C# projects.
Finally Herold [15] performed a preliminary empirical
study to investigate the relationship between architec-
tural smells and architectural degradation, the latter mea-

sured through the number of architectural violations.
With respect to these previous papers, we performed

an empirical study focused on the evaluation of different
facets of architectural smells criticality, not previously
studied in the literature according to our knowledge.

We now outline some related works done in the liter-
ature on the evaluation of criticality and prioritization
of code or architectural smells. What distinguishes the
following works is the kind of information used to es-
timate the priority of a smell. For instance, concerning
code smells, Vidal et al. [16] presented an approach to
identify the most critical smells based on a combination
of three criteria, namely: past component modifications,
important modifiability scenarios for the system and rel-
evance of the kind of smell. Also Rani et al. [17] pro-
posed a methodology for code smell prioritization. First,
it detects smelly classes using structural information of
source code, then mines change history, as done by Vidal
et al., to prioritize the smells. Always according to code
smells studies, Sae Lim et al. [18] exploited the developers’
context (a list of issues extracted from an issue tracking
system) to define priority. Instead, Arcelli et al.[19] pro-
posed a severity index of the smells based on how the
metric thresholds used for the smells detection are ex-
ceeded. Similarly, Guggulothu et al. [20] proposed a pri-
oritisation approach for four code smells (Long Method,
Feature Envy, God Class and Data Class), depending on
their impact on design quality, where the impact is mea-
sured depending on the overcome of a set of metrics such
as coupling, size, complexity and cohesion. Moreover
recently, Pecorelli [5] proposed a machine learning ap-
proach to prioritise the application of refactoring on code
smells. They generated a rank of code smells according to
the perceived criticality that developers assign to them.

According to architectural smells, there are fewer stud-
ies about prioritization. Martini et al. [1], performed a
study on the analysis of the most critical AS through
the feedback of the developers of two industrial projects.
The smells having top refactoring priority in the opinion
of practitioners are the ones with the highest negative
impact on the maintainability and evolvability of the
project. On the same line, Oliveira et al. [21] investi-
gated criteria that developers use in practice to prioritize
design-relevant smelly elements with the aim to develop
a set of prioritization heuristics. From their results, two
out of nine heuristics reached an average precision higher
than 75%. Finally, Vidal et al. [3] presented and evaluated
a set of five criteria for ranking groups of code smells as
indicators of architectural problems in evolving systems.

According to our knowledge no extensive work has
been previously done on the analysis of the evolution
and correlation between criticality and cost-solving, eval-
uated in terms of PageRank of AS and Severity metrics.
In a previous study [10] we only manually analyzed the
two metrics by considering only 6 projects. Here we ex-

tend the previous work on a large number of projects
(10 projects, 22 versions each, for a total of 264 versions),
and we analyze the correlation existing between the two
metrics through Spearman and Kendall correlation tests.
Moreover, we study the evolution of the metrics in the
project history. Finally, in this paper we propose to ex-
ploit PageRank as a proxy for criticality, and Severity as
a metric to estimate cost-solving.

3. Case Study Design
We describe below the analyzed projects, the data we

collected on AS, their Severity and PageRank and the
data preparation and analysis.

3.1. Analyzed projects
We analyzed several versions of 10 projects, for a total

of 264 versions (see Table 1). Most of the chosen projects
were picked from the Qualitas Corpus [22]. We selected
these projects since they have already been the subject of
several studies, they are publicly available and enable the
replication of this study. These data were also combined
with data from the MavenRepository1, also publicly avail-
able. We considered several releases for each project. To
easily compare the different projects, we chose roughly
the same amount of versions and preferred different re-
leases, major or minor, over patches when possible. In
general, in this paper we use the term version to refer
both minors and majors. The chosen systems also vary
in size and number of smells (see Table 1). In the column
group last version we report the projects’ size (in terms
of classes/packages) and number of AS of the last version
of the project in the development history.

3.2. Data collection
Architectural smells we performed this study by con-
sidering the AS detected with the Arcan tool2 [23] de-
scribed below, but other AS can be considered in the
future [24]. We limited the analysis on the following
three smells since they are the only ones for which we
developed a Severity metric, contextually to the defini-
tion of our Architectural Debt Index (ADI) [11].

• Unstable Dependency (UD) describes a component
(package) dependent on other components that
are less stable than itself; This may cause a ripple
effect of changes in the system. Instability of a
component is measured with the metric proposed
by Martin [25] as the ratio of outgoing depen-
dencies to the total number of dependencies of

1https://mvnrepository.com/
2Download: https://drive.google.com/file/d/

1WNx7FHRykbyOIxz92cDQpSL2rl_gEJ4P/view?usp=sharing

https://mvnrepository.com/
https://drive.google.com/file/d/1WNx7FHRykbyOIxz92cDQpSL2rl_gEJ4P/view?usp=sharing
https://drive.google.com/file/d/1WNx7FHRykbyOIxz92cDQpSL2rl_gEJ4P/view?usp=sharing

Table 1
Summary of the dataset

Project #V #Cl. #Pkg #AS #CD-Cl #CD-Pkg #HL-Cl #HL-Pkg #UD #AS

last version all versions

Ant 24 1157 62 413 8131 2064 15 92 243 10545
Azureus 24 8148 480 7722 97172 29801 41 70 3478 130562
FreeCol 24 1310 35 1395 30488 1652 86 54 356 32636
Hibernate 24 2980 170 1172 12910 9026 18 129 1267 23350
JMeter 26 681 55 307 3930 2681 79 54 574 7318
JGraph 24 188 20 118 2602 79 79 1 51 2812
Jstock 24 865 19 665 13585 619 64 8 247 14523
Jung 22 705 40 133 894 658 31 27 270 1880
Lucene 31 1425 22 408 6241 407 9 59 187 6903
Weka 44 2423 80 1090 25241 5200 102 41 1042 31626
Acronyms. V: version, CL: classes, Pkg: packages, AS: Architectural Smells, CD: Cyclic Dependency,
HL: Hub-Like Dependency, UD: Unstable Dependency

the component. Consequences: The components
with an high instability are more prone to change
with respect to the more stable ones, this means
that the component which depends on less stable
components is forced to change along with them.

• Hub-Like Dependency (HL) arises when a compo-
nent (class or package) has outgoing and incom-
ing dependencies with a large number of other
components [26]; The affected component rep-
resents a unique point of failure for the system
and also a dependency bottleneck. Consequences:
The component in the middle of the hub is a
unique point of failure and a dependency bot-
tleneck. Moreover the logic inside a Hub-Like
Dependency is hard to understand, and the smell
causes change ripple effect.

• Cyclic Dependency (CD) refers to a component
(class or package) that is involved in a chain of re-
lations that break the desirable acyclic nature of a
component’s dependency structure. Components
involved in a CD cannot be reused in isolation
and a change on one component propagates to
the other ones. Consequences: The components
involved in a dependency cycle can be hardly
released, maintained or reused in isolation. More-
over, a change on one affected component will
propagate towards all the other ones involved in
the cycle.

We considered these three AS because they are some
of the most studied smells [27][13][11][15] and they are
also perceived as important and detrimental for the qual-
ity of the software systems by practitioners[1][24]. In
particular, these smells are based on dependency issues.
Dependencies are of great importance in software archi-
tecture: components that are highly coupled and with a
high number of dependencies are considered more criti-

cal, since they have higher maintenance costs. In particu-
lar, Cyclic Dependency is one of the most common smell
and is considered the most critical smell by developers
[1].

We used our Arcan tool for the AS detection, since it is
publicly available, allows to easily detect the considered
AS and has been previously validated [28]. We computed
3 the PageRank and Severity metrics related to the three
types of smells and we reported the “granularity level”
of the considered smells, either class or package. Our
distinction between AS at class and package level can be
mapped to another nomenclature adopted in the litera-
ture [14] which calls “design smells” our class AS and
“architectural smells” our package AS.

We now report the definition of the two metrics under
analysis.

Severity is a metric that we defined for each type of
AS to estimate the AS cost solving. In particular, it evalu-
ates different features of the smells which have an impact
on the effort needed for its removal. For example, for the
estimation of Hub Like Dependency cost-solving, we con-
sider the number of dependencies affected by the smell,
because this metric gives us information about how many
parts of code a developer investigate/change/remove to
refactor the HL.

Severity is computed differently for each type of AS:
for UD it is evaluated through the number of bad de-
pendencies which cause the Unstable Dependency smell,
where for bad dependency we mean a reference from
the affected package to the less stable packages i.e. if
package B has high instability and package A has low
instability, the dependency A → B is a bad dependency;
for HL the Severity corresponds to the total number of
dependencies which cause the HL smell (dependencies
from a class/package directed to the hub and vice-versa);

3https://figshare.com/articles/dataset/_/13636472

https://figshare.com/articles/dataset/_/13636472

for CD it is computed through the number of compo-
nents involved in the cycle multiplied with the minimum
number of times a cycle repeats itself. A dependency be-
tween two components can occur multiple times because
we count the number of references from a class/package
to the others. For instance, if there is a cycle between
package A and B, caused by 5 classes belonging to A
calling B, and B’s classes calling A 3 times, the Severity
value is equal to 3. This means that the cycle is repeated
at least 3 times.

PageRank of an AS evaluate the criticality (urgency)
associated to an AS. The PageRank value of a smell in-
stance is computed as the mean value of the PageRank of
the components (class or package) affected by the smell.
The intuition is that components with high PageRank are
important inside the project, where the importance [9]
corresponds to how many parts of the project depend
on the component. PageRank of a component is com-
puted through the PageRank formula implemented by
Brin and Page [8], executed on the dependency graph of
the project:

𝑃𝑅(𝑣) =
1− 𝑑

𝑁
+ 𝑑

(︃
𝑛∑︁

𝑘=1

𝑃𝑅(𝑝𝑘)

𝐶(𝑝𝑘)

)︃
(1)

where, the vertex 𝑣 is a node of the dependency graph
associated to a project; 𝑃𝑅(𝑣) is the value of PageRank
of the vertex 𝑣; 𝑁 is the total number of AS in the project;
𝑃𝑘 is a vertex with at least a link directed to 𝑣; 𝑛 is the
number of the 𝑝𝑘 vertexes; 𝐶(𝑝𝑘) is the number of links
of vertex 𝑝𝑘; 𝑑 (damping factor) is a custom factor fixed
at 0.85, a default value defined by Brin and Page.

The range of the metric spans from 0 to infinite and
higher values correspond to higher criticality. To as-
sociate a unique value of PageRank to a single smell
instance, we compute the mean value of the PageRank
scores of all the components involved in the smell. In this
way, smells of any type can be ordered by this metric,
from the most critical to the less critical.

Both Severity and PageRank are based on the project
dependencies, however they are computed in differ-
ent ways and aim to evaluate two distinct aspects: im-
portance/criticality (for PageRank) and dependencies
structure/cost-solving (for Severity). Hence, we per-
formed a correlation analysis to investigate the possible
relationship between the two metrics.

3.3. Data preparation and analysis
We ran Arcan and we pre-processed the output data in

order to produce the dataset for our analysis. Other than
Arcan, we exploited the Knime platform4 and R program-
ming language5 for the processing and statistical analysis

4https://www.knime.com/knime-analytics-platform
5https://www.r-project.org/

of the data. The resulting dataset is a collection of 262155
smells categorized by project, version, type, granularity
level, Severity and PageRank. Table 1 shows the sum-
mary of our dataset, where we report the project size and
the number of smell instances, divided by type: for each
project (considering all versions in history) we show the
number of detected CD at class and package level (CD-Cl
and CD-Pkg), of detected HL at class and package level
(HL-C and HL-P), of detected UD (UD) and the sum of all
project’s AS (AS). A smell instance corresponds to one
occurrence of the smell in the project, thus the reported
numbers are the counts of all the occurrences.

We studied two different aspects: 1) Severity and
PageRank evolution, in order to answer RQ1; 2) Severity
and PageRank correlation to answer RQ2.

Concerning evolution, we analyzed the evolution of the
two metrics for each type of smell in order to study their
different behaviours. We summarised the data for each
version by averaging the values of both metrics with
respect to the total number of smells detected in the
version. We conducted trend analysis to understand how
the average values of PageRank and the different types
of Severity evolve overtime. We exploited the Mann-
Kendall test, which is a non-parametric test able to assess
if there is a monotonic upward or downward trend of the
variable of interest over time. The null hypothesis for
this test is that there is no monotonic trend in the series.
The alternate hypothesis is that a trend exists. This trend
can be positive, negative, or non-null. We also analyzed
the two metrics’ evolution respect to the evolution of
the size, where size corresponds to the number of classes
and packages of the projects under analysis, to check
whether the two things are correlated. We ran Spearman
and Kendall correlation tests to investigate this aspect.

Concerning the correlation analysis of PageRank and
Severity, we first tested the normality of our data. Given
the large size of our dataset, we used Q-Q plots [29] to
evaluate if the measures do not follow a normal distri-
bution. A Q-Q plot is a graphical method for comparing
two probability distributions by plotting their quantiles
against each other. These plots are often used when the
dataset is large enough to introduce bias in the Shapiro-
Wilk test [30], which is a commonly used normality test.
The Q-Q plots of all the projects showed a non-normal be-
haviour. Then, we tested the correlation between Severity
and PageRank for each version of the projects. We com-
puted the correlation on the metrics data of all smell type
together and also separately for each smell type. We also
computed the correlation separately for each granularity
level, to contextualize the results at package or class level.
Given the non-normal distribution of our data, we chose
the Spearman’s [31] and Kendall’s [32] coefficients to
calculate the correlation.

https://www.knime.com/knime-analytics-platform
https://www.r-project.org/

4. Results
We report the results both for PageRank and Severity

evolution and their correlation. At the end of each section,
we also report the answer to the relative RQs. All the
results and plots can be found in the replication package6.

4.1. Evolution results
In order to answer RQ1, we checked the trend of PageR-

ank and Severity values throughout the versions of the
projects. For every project and for both PageRank and
Severity, we run the Mann-Kendall test. Table 2 and
3 show the outcome of the test, namely reporting the
Trend (increasing + or decreasing -), the P-value and
the Reference AS (the type of smell which the PageRank
refers to) for PageRank, while Granularity (class or pack-
age) for Severity. The tables report only results where
𝑝− 𝑣𝑎𝑙𝑢𝑒 < 0.05, i.e., there is a trend. We outline from
Table 2 and 3 the following remarks:

• PageRank and Severity show a trend during time
in few projects. We found PageRank trend in four
over ten projects, while Severity showed a trend
in five projects. The tables only show the projects
with a positive or negative trend.

• Concerning the Severity of CDs, we observed
both positive and negative trend at class level, in
4 projects, and a negative trend at package level,
in one project.

• Concerning the Severity of HLs, we had examples
at both class and package level of positive trends.

• The Severity metric of Unstable Dependency
smell does not show a trend in any project, and we
could notice only one project (Hibernate) where
the PageRank of UD smells had a trend.

We extended our analysis to see if the project size (mea-
sured by number of classes and packages) is correlated
with the values of PageRank and Severity. We tested it
for each project over its development evolution. We then
analyzed the distribution of the correlation on the data of
all projects. The first thing we noticed is that the number
of classes and packages increases overtime. However,
this does not happen for Severity and PageRank values:
we do not find a significant correlation between size and
the metrics except for the correlation between PageRank
computed on AS on packages and the number of pack-
ages in the system. The correlation values, computed for
all the projects, have range in [0.34, 0.89], with median
equals to 0.74. We hypothesise that the correlation is
high for PageRank because of how it is computed: the
more the number of packages, the more the dependencies
and higher the PageRank values are. For this reason, one

6https://figshare.com/articles/dataset/_/13636472

Table 2
Mann-Kendall results - PageRank

Project Trend P-value Reference AS

Ant + 0.009867 CD-package
Azureus + 2.77E-05 CD-class
Azureus + 0 CD-package
Azureus + 3.81E-06 HL-class
Azureus + 0 HL-package
Azureus + 0 UD-package
Hibernate + 0.030929 CD-class
Hibernate + 0 CD-package
Hibernate + 0.000677 HL-class
Hibernate + 0 HL-package
Hibernate + 2.38E-07 UD-package
Jgraph + 0.001375 HL-class

Table 3
Mann-Kendall results - Severity

Project Trend P-value Granularity

Severity - CD
Azureus + 0.024848 class
Hibernate + 0.000291 class
Jstock - 0.025486 package
Jung - 0.039728 class
Lucene - 3.25E-06 class

Severity - HL
Jstock + 0.002832 package
Lucene + 0.000422 class
Weka + 0.002132 class
Weka + 0.005923 package

may say that this should be true also for PageRank com-
puted on classes correlated with the number of classes:
instead, their correlation values range in [−0.87, 0.9]
with median equals to 0.45. This result may be due to
the high variance in the number of classes among the
projects (variance which is smaller for what concerns
packages).

RQ1 Answer How PageRank and Severity of the
smells evolve in the version history of a project? : in
general we found that the average values of PageR-
ank and Severity do not have a trend (neither pos-
itive or negative) over time. Concerning the com-
parison with projects’ size evolution, we found out
that PageRank computed on packages show a posi-
tive correlation with the evolution of the number of
packages: this is reasonable, since the increase/de-
crease in the number of packages has an impact also
on the creation/deletion of package dependencies,
thus on PageRank.

https://figshare.com/articles/dataset/_/13636472

Table 4
Severity and PageRank correlation (last version only)

Project Version Spearman P-value Kendall P-value

Ant 1.10.7 0.582 < 0.001 0.46 < 0.001
Azureus 4.8.1.2 0.871 < 0.001 0.704 < 0.001
FreeCol 0.10.7 0.809 < 0.001 0.64 < 0.001
Hibernate 4.2.2 0.719 < 0.001 0.573 < 0.001
JMeter 5.2.1 0.575 < 0.001 0.455 < 0.001
JGraph 5.13.0.0 0.664 < 0.001 0.581 < 0.001
Jstock 1.0.6w 0.621 < 0.001 0.494 < 0.001
Jung 1.7.6 0.643 < 0.001 0.506 < 0.001
Lucene 4.3.0 0.411 < 0.001 0.33 < 0.001
Weka 3.7.9 0.53 < 0.001 0.428 < 0.001

4.2. Correlation results
In order to answer RQ2, we report in Table 4 the re-

sults of the correlation between Severity and PageRank,
evaluated on all AS, not considering their type. As can
be seen, the majority of the projects presented a strong
positive correlation (𝜌 > 0.6).

Following, we discuss the correlation results, but by
considering the different types of AS. The coefficient
values are bounded between:

• (CDs) 0.427 and 0.942 with Spearman’s and be-
tween 0.214 and 0.812 with Kendall’s;

• (UDs) 0.253 and 1 with Spearman’s and between
0 and 1 with Kendall’s;

• (HLs) -1 and 1 for both coefficients.

Due to their low occurrences, the metrics of HL and UD
usually present a strong correlation. However, there are
cases in some projects versions where the scarce number
of detected smells makes this calculation misleading: in
some cases correlations are very high, in other ones are
very low (fluctuate).

On the other hand, CD is the most common smell in
the dataset and this has an effect on the correlation values:
they largely vary in the dataset, making CD the smell type
with some of the highest correlation values and at the
same time the smell with some of the lowest correlation
values. However, a clear result is that for all projects
the correlation at package level between PageRank and
Severity of CD is strong, with the exception of JGraph
(see the following paragraph).

Observations on weak and negative correlations
From Table 4 we can observe that some projects, such
as JMeter, Lucene, Weka and Ant show a weak corre-
lation between the two metrics. We aim to investigate
these behaviours and we start by analyzing two projects:
JMeter, having a weak correlation, and JGraph, showing
non-positive correlation values for CDs at package level.
We focus on the last version of both projects because it

is associated to the most updated codebase, hence we
assume it is the most exemplary for them.

By analyzing the correlation coefficients of JMeter’s
AS, we noticed that when they are calculated separately
for each AS type, they present higher values than the ones
reported in Table 4. Using Spearman’s as an example:
0.575 is the 𝜌 value by not considering the AS type and
0.638, 0.9, 0.881 are the values for CDs, HLs and UDs
respectively. The values seem to imply that actually,
while the correlation in general is weak for this project,
when we look at the specific smell types, the two metrics
tend to be positively correlated. However, the number
of HLs and UDs in JMeter is very small compared to
the number of CDs. Since correlations computed on few
observations are not significant, we can conclude that
only the correlation value computed on CDs is relevant
for JMeter, and it explains why the overall correlation
value is weak for this project.

If we closely analyze JGraph evolution, initially it
shows a negative correlation for CDs at package level,
which progressively increases (0.2 in version 5.10.0.1)
and becomes strongly positive (0.73) in version 5.12.1.0.
We further investigated what caused these changes in
the correlation values. In the first versions with nega-
tive correlation we observed 3 CDs at package level, two
of them with similar Severity and PageRank values and
one with a strongly higher PageRank value, probably the
cause of the negative correlation. After version 5.10.0.1
we noticed the presence of a 4th one. Its Severity was in
line with the others and also its PagerRank: this likely
balanced the PageRank values and subsequently caused
the increase of the positive correlation.

Hence we can conclude that the variations in the cor-
relations values from negative to positive were due to
the introduction of a new smell instance, whose metrics
values strongly impacted the correlation values due to, as
for JMeter, the general small amount of smell instances.
However, this specific case does not represent a common
behaviour in our dataset.

RQ2AnswerCan we find some correlation between
PageRank and Severity by considering each type of
smell?, we found out that the smell type showing
the highest PageRank and Severity correlation is
CD at package level. However, also the other types,
HL and UD, showed strong correlations, but given
the lower amount of HL and UD instances, we con-
sider the result regarding CDs more meaningful.
We also investigated specific cases of projects with
weak correlation and negative correlation but we
did not find further insights.

5. Discussion
We found a strong correlation between PageRank and

Severity. This means that, concerning the analysed data
and the considered smells, the criticality and the cost-
solving of smells go hand in hand: in the case of this
study, if a smell affects an important (unimportant) part
of the system, then it will also have a high (low) cost
solving. We can outline two different interpretations of
the results. The positive correlation could be due to the
nature of the two metrics, both bounded to the depen-
dencies of the system. In this case, the conclusion would
be that PageRank and Severity capture the same charac-
teristic of the smells, and one of the two is redundant. As
consequence, in the ADI computation [11], only one of
the two metrics should be used to evaluate AS criticality.

However, given how the metrics are defined, they dif-
fer one from the other. Severity takes into account the
dependencies which are directly affected by the smell,
while PageRank considers also dependencies outside the
smell which converge towards the components affected
by the smell. Take for instance the Severity of CD, which
is based on the dependencies forming the cycle and their
weight. If the components involved in the cycle have a
high PageRank, it means that they are involved in many
dependencies with many other parts of the system, which
is unliked from the fact that those components are part
of the cycle. With such premise, the two metrics would
capture different aspects of the smells, and their positive
correlation could mean that critical parts of the system
attract AS which are more expensive to solve.

Moreover, one could ask where is the difference in us-
ing PageRank when we could use simple coupling metrics
such as FanIn and FanOut [25]. However, when evaluat-
ing the coupling of a component, such metrics take into
account only the incoming or outgoing dependencies of
the component itself. On the contrary, the PageRank
value of a component takes into account the PageRank of
all the components belonging to the dependency graph.
In particular, the PageRank of a component is defined
recursively and depends on the number of dependen-
cies and the PageRank metric of all the components that

reference it (incoming dependencies). In this way, a com-
ponent having many incoming dependencies but refer-
enced by components with few incoming dependencies,
is less important with respect to another component with
many incoming dependencies and referenced by other
components with many incoming dependencies. That
is why PageRank is said to evaluate the importance of a
component with respect to the entire graph.

From our analysis it results that the positive correla-
tion is particularly evident in the case of CD. The reasons
behind the CD Severity high correlation can be multi-
ple: a part of code with high PageRank is interested by
more changes [33] with respect to other parts of code,
and thus more open to the introduction of (structurally
complex) CDs. This is interesting because in the litera-
ture we find studies which confirm the correlation in the
other direction [12], i.e., the presence of AS makes the
components more prone to change: if our hypothesis can
be further corroborated, the conclusion would be that
the relationship between PageRank and CD Severity is
like a dog chasing its tail, one triggers the other. Another
reason could be that components with high PageRank
are involved in a high number of dependencies, thus still
making easier for a developer to wrongly introduce new
entangled dependencies and create cycles very difficult
to remove.

To conclude, there is a positive correlation between AS
Severity and PageRank, however at the moment we can-
not draw a definitive conclusion about how to interpret
this finding. We plan to conduct a validation of our re-
sults with developers from industry, who could evaluate
the ability of the two metrics to capture criticality and
cost-solving, and also manually check the specific cases
where smells have high PageRank and high Severity.

6. Threats to validity
Our study presents some threats to validity which we

address by following the structure suggested by Yin [34].
Concerning the construct validity, the two metrics,
PageRank and Severity, may not measure what we claim
they do, i.e., the criticality of the AS. However, this is a
preliminary study and the next step is to validate the cur-
rent definition of the metrics with developers, by letting
them check whether the prioritization produced by the
metrics is significant or not. Other threats regarding the
internal validity could be related to the choice of the
statistical methods used for the correlation analysis and
their implementation in the used tools, but we exploited
very well known and used tools (R language). Moreover,
we did not validate the two metrics by investigating the
perception of developers of PageRank and Severity. How-
ever, PageRank was adopted in other studies as software
ranking metric [35][33][36], and we plan for the future

to validate Severity in industrial setting. Threats to ex-
ternal validity could be caused by the fact that we only
analyzed projects written in Java and publicly available.
However, we partially mitigate such issues by analyzing
10 projects with more than 22 versions each. Moreover,
the high number of CDs could have reduced the effect of
the other types of detected AS in the results. We could
have mitigated this aspect by sampling the CD instances
and thus balancing the dataset. However, this would addi-
tionally reduce the size of the dataset, mining the validity
of the CD results too. In the future, we aim to extend
the study with additional data for the smells and further
remediate to this threat. Finally, concerning threats to
the reliability of the study, Arcan could be subjected to
a systematic bias in the detection, partially mitigated by
the provided replication package and the fact that the
tool has been validated on open source and industrial
projects [23] [28] [1] [24]. Moreover, some threats could
occur due to errors in the data extraction and prepara-
tion phases, resulting in errors in the construction of the
dataset. However, we carefully checked every stage of
the data preparation and relied on the support of Knime7.

7. Conclusion
We performed an empirical analysis on 22 versions of

10 projects of two software metrics, Severity and PageR-
ank, in order to evaluate the cost-solving and criticality of
AS. We also performed this evaluation with the perspec-
tive to better understand if in the ADI computation both
the two metrics have to be used or not, if they provide
hints on the criticality evaluation of the AS that have to
be both taken in consideration. To conclude, from the
analysis of the evolution and correlation of PageRank
and Severity we found out that the two metrics tend to
be correlated, except for some extreme cases. It could be
useful for developers to analyze the specific cases where
AS have high PageRank and low Severity (and vice-versa),
since they could indicate smell instances which require a
tailored prioritization rationale: developers may be inter-
ested in identifying cases where the smell is easy to solve
(low Severity) but in an important part of the system
(high PageRank), and choose to refactor this case first;
on the contrary, s/he could decide not to refactor a smell
difficult to solve (high Severity) and in an unimportant
(low PageRank) part of the system. We can assert that
such smells are a signal that both PageRank and Severity
could be useful to define different refactoring priorities,
from different points of view. In particular, PageRank can
be used to identify parts of code which need a continuous
inspection, while Severity can be used to evaluate the
cost-solving for the AS removal.

7https://www.knime.com/knime-analytics-platform

The smell type presenting the strongest correlation
is CD, suggesting that highly critical components (with
high PageRank) attract CDs hard to solve (with high
Severity). Thus, developers should pay a lot of attention
to CD smell, also because CD is the most common AS and
in particular those at package level tend to become more
critical in terms of PageRank in the history of the project
development. However, we do not exclude the possibility
that the two metrics have strong correlation because they
capture the same aspects of smells. In that case, we could
exploit this information to refine the computation of our
ADI and leave out one of the two.

In any case, we need to conduct a validation of both
metrics and on the correlation results, with expert de-
velopers or by comparing the ranking provided by the
metrics with information coming from issue trackers [12].
The intuition behind is that a component affected by a
critical smell (with high PageRank and high Severity)
should be also interested by many issues. In addition to
the validation, in future developments we aim to extend
this work by analyzing more projects, also coming from
industry, and verify if the same results can be confirmed.

In this paper, we addressed the criticality evaluation
of three AS, but the study can be extended also to other
kinds of AS, e.g., Scattered Functionality and Feature
Concentration, two smells which violates the separation
of concerns principle. Given that such smells are not
based on dependency issues, we shall define additional
criticality metrics for them.

References
[1] A. Martini, F. Arcelli Fontana, A. Biaggi, R. Roveda,

Identifying and prioritizing architectural debt
through architectural smells: a case study in a large
software company, in: Proc. of the European Conf.
on Software Architecture (ECSA), Springer, 2018.

[2] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gor-
ton, Measure it? manage it? ignore it? software
practitioners and technical debt, in: Proc. of the
2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, 2015.

[3] S. Vidal, W. Oizumi, A. Garcia, A. Díaz Pace, C. Mar-
cos, Ranking architecturally critical agglomerations
of code smells, Science of Computer Programming
182 (2019) 64–85.

[4] D. Taibi, A. Janes, V. Lenarduzzi, How develop-
ers perceive smells in source code: A replicated
study, Information and Software Technology 92
(2017) 223–235.

[5] F. Pecorelli, F. Palomba, F. Khomh, A. De Lucia,
Developer-driven code smell prioritization, in: Pro-
ceedings of the 17th International Conference on
Mining Software Repositories, MSR ’20, ACM, 2020.

https://www.knime.com/knime-analytics-platform

[6] L. Rizzi, F. A. Fontana, R. Roveda, Support for ar-
chitectural smell refactoring, in: Proceedings of
the 2nd International Workshop on Refactoring,
IWoR@ASE, 2018, pp. 7–10.

[7] I. Pigazzini, F. A. Fontana, B. Walter, A study on cor-
relations between architectural smells and design
patterns, J. Syst. Softw. (2021).

[8] S. Brin, L. Page, The anatomy of a large-scale hy-
pertextual web search engine, in: Seventh Interna-
tional World-Wide Web Conference, 1998.

[9] I. Şora, A pagerank based recommender system
for identifying key classes in software systems, in:
10th Jubilee International Symposium on Applied
Computational Intelligence and Informatics, 2015.

[10] F. A. Fontana, I. Pigazzini, C. Raibulet, S. Basciano,
R. Roveda, Pagerank and criticality of architectural
smells, in: Proceedings of the 13th European Con-
ference on Software Architecture, ECSA 2019, 2019.

[11] F. A. Fontana, P. Avgeriou, I. Pigazzini, R. Roveda,
A study on architectural smells prediction, in: 2019
45th Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), IEEE, 2019.

[12] D. M. Le, D. Link, A. Shahbazian, N. Medvidovic,
An empirical study of architectural decay in open-
source software, in: 2018 IEEE International Con-
ference on Software Architecture (ICSA), 2018.

[13] F. A. Fontana, V. Lenarduzzi, R. Roveda, D. Taibi,
Are architectural smells independent from code
smells? an empirical study, Journal of Systems
and Software 154 (2019) 139 – 156.

[14] T. Sharma, P. Singh, D. Spinellis, An empirical in-
vestigation on the relationship between design and
architecture smells, Empirical Software Engineer-
ing (2020).

[15] S. Herold, An initial study on the association be-
tween architectural smells and degradation, in:
Software Architecture, Springer International Pub-
lishing, Cham, 2020, pp. 193–201.

[16] J. A. D. P. Santiago A. Vidal, Claudia Marcos, An
approach to prioritize code smells for refactoring,
Autom. Softw. Eng. 23 (2016) 501–532.

[17] A. Rani, J. K. Chhabra, Prioritization of smelly
classes: A two phase approach (reducing refactor-
ing efforts), in: 2017 3rd International Confer-
ence on Computational Intelligence Communica-
tion Technology (CICT), 2017.

[18] N. Sae-Lim, S. Hayashi, M. Saeki, Context-based
approach to prioritize code smells for refactoring,
Journal of Software: Evolution and Process (2017).

[19] F. A. Fontana, M. Zanoni, Code smell severity classi-
fication using machine learning techniques, Knowl.
Based Syst. 128 (2017).

[20] T. Guggulothu, S. A. Moiz, An approach to suggest
code smell order for refactoring, in: International
Conference on Emerging Technologies in Computer

Engineering, Springer, 2019, pp. 250–260.
[21] A. Oliveira, L. Sousa, W. Oizumi, A. Garcia, On the

prioritization of design-relevant smelly elements:
A mixed-method, multi-project study, in: Proceed-
ings of the XIII Brazilian Symposium on Software
Components, Architectures, and Reuse, SBCARS
’19, Association for Computing Machinery, 2019.

[22] R. Terra, L. F. Miranda, M. T. Valente, R. S. Bigonha,
Qualitas.class Corpus: A compiled version of the
Qualitas Corpus, Software Engineering Notes 38
(2013).

[23] F. A. Fontana, I. Pigazzini, R. Roveda, M. Zanoni, Au-
tomatic detection of instability architectural smells,
in: 2016 IEEE International Conference on Software
Maintenance and Evolution,ICSME 2016, 2016.

[24] F. A. Fontana, F. Locatelli, I. Pigazzini, P. Mereghetti,
An architectural smell evaluation in an industrial
context, ICSEA 2020 (2020) 78.

[25] R. C. Martin, Object oriented design quality metrics:
An analysis of dependencies, ROAD 2 (1995).

[26] G. Suryanarayana, G. Samarthyam, T. Sharma,
Refactoring for Software Design Smells, 1 ed., Mor-
gan Kaufmann, 2015.

[27] D. Sas, P. Avgeriou, F. A. Fontana, Investigating
instability architectural smells evolution: An ex-
ploratory case study, in: Int. Conference on Soft-
ware Maintenance and Evolution, ICSME, 2019.

[28] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. A.
Tamburri, M. Zanoni, E. D. Nitto, Arcan: A tool for
architectural smells detection, in: Int’l Conf. Soft-
ware Architecture (ICSA 2017) Workshops, 2017.

[29] M. B. Wilk, R. Gnanadesikan, Probability plotting
methods for the analysis of data, Biometrika 55
(1968) 1–17.

[30] S. S. Shapiro, M. B. Wilk, An analysis of variance
test for normality (complete samples), Biometrika
52 (1965) 591–611.

[31] C. Spearman, The proof and measurement of asso-
ciation between two things, The American Journal
of Psychology 15 (1904) 72–101.

[32] M. Kendall, J. Gibbons, Rank Correlation Methods,
Charles Griffin Book, E. Arnold, 1990.

[33] R. Wang, R. Huang, B. Qu, Network-based analysis
of software change propagation, The Scientific
World Journal 2014 (2014).

[34] R. Yin, Case Study Research: Design and Methods,
Applied Social Research Methods, SAGE Publica-
tions, 2009.

[35] F. Perin, L. Renggli, J. Ressia, Ranking software
artifacts, in: 4th Workshop on FAMIX and Moose
in Reengineering (FAMOOSr 2010), volume 120,
Citeseer, 2010.

[36] W.-f. PAN, B. LI, Y.-t. MA, B. JIANG, Identifying the
key packages using weighted pagerank algorithm,
ACTA ELECTONICA SINICA 42 (2014) 2174.

	1 Introduction
	2 Related Work
	3 Case Study Design
	3.1 Analyzed projects
	3.2 Data collection
	3.3 Data preparation and analysis

	4 Results
	4.1 Evolution results
	4.2 Correlation results

	5 Discussion
	6 Threats to validity
	7 Conclusion

