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Abstract
A mapping between a system’s implementation and its software architecture is mandatory in many architecture consistency
checking techniques. Creating such a mapping manually is a non-trivial task for most complex software systems. Machine
learning-based text classification may be an highly effective tool for automating this task. How to make use of this tool most
effectively has not been thoroughly investigated yet.

This article presents a comparative analysis of three classifiers applied to map the implementations of five open-source
systems to their architectures. The performance of the classifiers is evaluated for different extraction and preprocessing
settings as well as different training set sizes.

The results suggest that Logical Regression and Support Vector Machines both outperform Naive Bayes unless informa-
tion about coarse-grained implementation structures cannot be exploited. Moreover, initial manual mappings of more than
15% of all source code files, or 10 files per module, do not seem to lead to a significantly better classification.
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1. Motivation
Software architecture degradation is the phenomenon
of the implementation of a software system diverging
from the intended software architecture [1]. The poten-
tial consequences of this divergence include a decay of
maintainability as well as the decreased ability of the sys-
tem to meet other desired quality properties. Expensive
system re-engineering or discontinuations of software
products can be the consequences [2, 3, 4, 5].

One approach to combat software architecture degra-
dation is software architecture consistency checking [6].
The core idea of these techniques is to implement fre-
quent checks for inconsistencies between the intended
software architecture and the current implementation of
a system to detect degradation early. The individual tech-
niques differ in the variety of consistency constraints, or
types of divergence that they can detect. They range from
dependency-focused and source code analysis-based tech-
niques [7] to logical query-based techniques for checking
architecturally induced constraints far beyond dependen-
cies [8, 9, 10, 11].

Most approaches have in common that some kind of
mapping between architectural units, e.g. modules, and
implementation units, such as source code files, is re-
quired. Reflexion modelling, for example, exploits this
mapping to detect source code dependencies that are not
covered by dependencies in an architectural model and
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which are hence discouraged [7].
In some cases, architectural documentation describ-

ing the relationship between architecture and implemen-
tation can help create this mapping. More often than
not though, architectural documentation is missing or
outdated such that the architecture and the mapping
towards code need to be recovered from a system’s im-
plementation [12]. Performed manually, this constitutes
a challenging and labour-intensive task even for system
experts. As expressed by professional software archi-
tects and designers in a study by Ali et al., creating the
mapping is one of the major obstacles to adopting ar-
chitectural consistency techniques in industrial practice
[13].

Researchers have thus put some attention into devel-
oping techniques that support software engineers in this
task by creating mappings partially automatically or by
recommending mappings [14, 15, 16, 17, 18, 19]. Most re-
cently, text classification based on machine learning has
been applied to automatically categorize units of source
code according to the architectural concern or module
they implement and should be mapped to [17, 20].

These approaches show promising results. The ques-
tion arises though whether the full potential of machine
learning for text classification in this context has already
been tapped. Several text classification algorithms that
perform well in different contexts have not yet been in-
vestigated. The question of how to optimally extract and
preprocess source code for classification has not yet been
exhaustively explored either.

The goal of this article is to shed some light on the per-
formance, i.e. the predictive capability, and other proper-
ties of several machine learning-based text classifiers for
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InstantiatedIndex.java

BytesRef.java

Figure 1: Exemplary cutout of a reflexion modelling and
source code dependency contributing to undesired architec-
tural dependency.

the described task. We present a comparative analysis of
three classifiers that were applied to map the code of five
different systems to their specified architectures.

The contribution of the paper is a set of findings that
may guide further research and use of these classifiers for
the task of interest. These guidelines, on the one hand,
give advice for the selection of an appropriate classifier
based on assumptions regarding the alignment between
architecture and modular implementation elements like
packages. On the other hand, they provide rules of thumb
for the recommended size of an initial, manual mapping
required to train the classifiers.

The remaining article is organized as follows. The fol-
lowing section describes relevant technical background
as well as related work. Section 3 explains the experi-
mental setup of the comparative analysis. In Sec. 4, we
summarize the results, which are discussed in Sec. 5. The
article is concluded in Sec. 6.

2. Background

2.1. Architecture Consistency Checking
Techniques for checking the consistency between the
software architecture of a system and its implementation
come in various forms. Several authors provide exhaus-
tive overviews of available approaches and tools [6, 9].
The approaches differ in the way how architectures are
represented and the formalism on which the actual check-
ing mechanism relies and, hence, the type of architectural
constraints that can be expressed and checked.

Many techniques have in common that they require
an association between elements of the architecture
and elements of the implementation for many typical
consistency constraints. The most fundamental con-
sistency constraints are related to dependencies. The
intended architecture of a software system often de-

fines allowed / prohibited, or expected / discouraged
dependencies between architectural modules. In order
to check whether the dependencies present in source
code conform with those, i.e. to compare code with
architectural dependencies, the architectural modules
to which sources and targets of code dependencies are
mapped, need to be known. Fig. 1 shows a cut-out
of a so-called reflexion model of one of the systems
(Lucene) used in the experiments presented in this paper.
It depicts two architecture modules as boxes. Dashed
lines (as opposed to solid lines) indicate that depen-
dencies between these modules are architecturally dis-
couraged in either direction; they are, however, present
in source code: for example, there is a call, located in
file InstantiatedIndex.java that is being mapped
to store, to a method called utf8ToString(), located
in file BytesRef.java, which is being mapped to util.
Through simple code analysis and tracing the mapping,
this can be identified as architecturally discouraged de-
pendency between the modules store and util.

Consequently, creating and maintaining such a map-
ping is crucial for applying architectural consistency
checking effectively. As pointed out by Ali et al., the
effort needed for manual mapping constitutes a serious
concern in industrial practice [13]. Several approaches ex-
ist to support software engineers in this time-consuming
task. The most relevant ones will be discussed in Sec. 2.3.

2.2. Text Classification with Machine
Learning

Text classification is one of the fundamental activities in
Natural Language Processing [21]. The goal of text clas-
sification is to assign a text written in natural language
to one or more predefined categories. Applications of
this activity include, for example, sentiment analysis or
spam detection.

The central idea of applying machine learning to the
task of text classification is to train a classification model
based upon text samples for which the assigned cate-
gories are already known. Fig. 2 depicts the typical steps
in training a text classification model and using it to
predict its label/category, i.e. to classify new text. For
learning, a set of text documents for which their labels,
i.e. categories, are known, is required. These documents
are often preprocessed, e.g., to remove stop words or to
stem words. A feature extractor transforms the prepro-
cessed documents into a numerical vector. Finally, the
classification model is trained according to the machine
learning algorithm that is applied. It can then be used to
predict the label of a new text that was preprocessed and
brought into its numerical representation.

The overall, general procedure can be transferred to
the specific context of mapping code to architecture quite
easily. The documents to be classified are the aforemen-
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Figure 2: Schematic process of training and using a text classification model through machine learning.

tioned source code entities, like source code files. Ar-
chitectural modules are represented by labels—for yet
unlabelled source code entities, a classification model
should propose the correct module. For training, we re-
quire a sufficiently large set of source code entities for
which their labels—the modules they are mapped to—is
known.

2.3. Related Work
The studies by Christl et al. were among the first to in-
vestigate techniques for automating the mapping step
needed in architecture consistency checking [14, 15].
They developed a technique, called HuGMe, for interac-
tive, human-guided mapping and compared two different
attraction functions, CountAttract and MQAttract, mea-
suring how well a code entity will map to an architectural
module based on structural properties.

Bittencourt et al. presented a technique based on infor-
mation retrieval, thus addressing the mapping problem
from an textual analysis angle instead [16]. They devel-
oped an attraction function based on Latent Semantic
Indexing and evaluated it separately as well as a hybrid
approach with both CountAttract and MQAttract. The
best results were achieved by integrating their novel at-
traction function and CountAttract.

Both approaches require a set of manually mapped
source code entities as a foothold for the applied tech-
niques. Sinkala and Herold instead exploit textual de-
scriptions of the modules of intended architectures to pro-
vide their information retrieval-based technique called
InMap with initial information for recommending map-
pings [18, 19].

Olsson et al. developed and analysed a technique based
on machine learning [17]. Taking an initial, manually
created mapping of a portion of the source code, a Naive
Bayes classifier is trained and then used to predict the

mapping for the remaining source code entities. The in-
formation used for classification is extracted from the
compiled source code and consists of package names,
file/class names, and attribute and variable identifiers.
Compound words, like indicated through camel-casing,
are split and the resulting texts are stemmed. The re-
sulting documents are complemented by terms reflect-
ing dependencies. This way structural information can
be considered in the classifier without the need to in-
tegrate a separate dependency analysis approach. The
authors show that this approach outperforms HuGMe
significantly; if module descriptions are available, though,
InMap performs slightly better [19].

The focus of the work by Link et al. is slightly dif-
ferent yet related [20]. In their approach called RELAX,
code entities are not mapped to architectural modules
but concerns which are potentially reusable across sys-
tems. Any document of a system considered being part
of an architectural concern can be fed into the training
process of a Naive Bayes classifier to categorize new doc-
uments according to their textual content. The approach
is compared with two other clustering approaches for
architecture recovery as this is the main scenario that the
authors target. For five out of eight case study systems,
RELAX is shown to perform best in comparison. The
study does neither include details of the preprocessing of
documents nor a replication package such that technical
details of how information is extracted from source code
remain unclear.

3. Experimental Design

3.1. Research Questions
The overarching motivating question for this study is
how well do different machine-learning based classifica-
tion models perform in mapping code entities to architec-



Table 1
Descriptive statistics of the subject systems.

lines of lines of #modules #files/
System #files code comments module (sd)

Ant 713 86,685 76,987 15 47.5 (65.1)
JabRef 845 88,562 17,187 6 140.7 (161.2)
Lucene 508 60,345 33,342 7 83.0 (64.7)
ProM 867 69,492 22,763 15 123.3 (55.4)
TeamMates 812 102,072 12,514 6 135.3 (119.2)

tural modules. As Sec. 2.3 shows, the focus of related ap-
proaches so far has been a single classification algorithm
and less a comparison of classifiers or an investigation of
their performance properties when applied in the context
of interest.

The envisaged scenario for the usage of machine learn-
ing technique in this context is that a classifier is first
trained with an initial set of manually created mappings
based on the textual content of source code files. After
that, the trained classification model is used to predict
the mappings for the remaining source code files.

We therefore break the main motivating question
down into two research questions:

• RQ1: How does the selection of source code el-
ements during preprocessing affect the perfor-
mance of these classifiers?

• RQ2: How is the performance of different classi-
fiers affected by the size of the training set size,
i.e. the number of code entities that need to be
mapped manually initially?

For each of the questions, we define a separate experi-
ment based on the same set of systems and classifiers.

3.2. Subject Systems and Classifiers
For training and evaluating text classifiers for the task at
hand, a set of systems is required for each of which a) the
source code is accessible and b) the mapping between an
intended architecture and the source code is known. We
explored two data sources for identifying systems that
fulfil these prerequisites: the SAEroCon repository1 and
the repository of the s4rdm3x tool [22]. Five open source
software systems from these two repositories as listed in
Table 1 were selected for this study. They are all written
in Java.

Three commonly used machine learning-based clas-
sifiers were selected for the study. Naive Bayes for text
classification was selected as the most relevant related
work is built on it (see Sec. 2.3) and because of its good
performance with even little training data [23]. Sup-
port Vector Machines (SVM) were selected for the same

1https://github.com/sebastianherold/SAEroConRepo/wiki

reason and their good accuracy outperforming Naive
Bayes in comparative studies [24]. Logistic Regression as
the final classifier has been shown to perform at similar
performance levels as SVM and was hence selected for
comparison, too [25].

3.3. Experiment 1: Comparing Extraction
and Preprocessing Variants

The goal of the first experiment is to address RQ1. In a
first step, we developed a list of elements in (Java) source
code that we believed to potentially carry architecturally
relevant information w.r.t. the required mapping. We
judged the following elements to be potentially relevant:

• Package declarations: Indicate containment rela-
tionships that might match course-grained archi-
tectural structures.

• Import declarations: Elements of the same archi-
tectural module often share the same dependen-
cies.

• Class declarations: Types defined in the same
module might share the same (part of the) domain
vocabulary as expressed in their names.

• Public methods: Same rationale as for class dec-
larations.

• Comments: May refer to architectural aspects
and decisions, parts of the domain vocabulary,
etc., beyond what is being expressed in code

We furthermore identified seven different preprocess-
ing steps that could be activated or deactivated for each
of the above elements in a source code file:

1. Splitting of compound words: split, e.g. camel-
case notation, getCustomerId becomes get
Customer Id.

2. Stemming: reduce inflected word to their stem,
e.g. notification or notify become notif.

3. Transform to lower case
4. Removing single characters
5. Removing stop words, such as the, and or of
6. Removing Java keywords, such as class or

public
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7. Tokenization of words: chopping the stream of
characters that the document consists of into ac-
tual tokens based on separators such as spaces,
colons, etc.

A complete investigation of all combinations of prepro-
cessing steps in a fixed order would lead to 27 options
per extracted source code element. For extracting all of
the above elements alone, this would lead to 235 com-
bination which we considered infeasible. Instead, we
experimented with several settings in an exploratory
pre-study from which we concluded to activate the pre-
processing steps 3 to 7 per default for all code elements
as deactivating them lead to decreased performance in
the explored alternatives.

In the same pre-study two different feature representa-
tion techniques were compared, bag-of-words and tf-idf
[26, 27]. We noted that bag-of-words outperformed tf-idf
on average and hence chose the former for the experi-
ments.

For each combination of subject systems, classifier, and
combination of code extraction and active preprocessing
steps, we trained and validated ten models following a
Monte-Carlo cross-validation scheme [28]. The training
set ratio was kept constant at 0.2 and stratified sampling
was applied. The latter ensures that the proportion of the
classes (i.e., modules) in the overall dataset is kept in both
training and testing sets during cross-validation. This
ensures that both sets are representative for the overall
dataset.

The performance of the models were evaluated in
terms of accuracy, i.e. the relative frequency of correct
classifications, and averaged over all subject systems.

3.4. Experiment 2: Measuring the Effect
of Training Set Sizes

The goal of the second experiment is to address RQ2.
Based on the results of the first experiment, one of the
best performing combinations of extraction and prepro-
cessing settings was selected for each classification al-
gorithm. The code files for each system were extracted
and preprocessed accordingly and represented as bags-
of-words.

We then trained models for each of the three classifi-
cation algorithms at different training set sizes expressed
as fractions of the overall datasets, i.e. relative number of
available mappings between source code files and archi-
tectural modules. Per combination of system, training set
size of interest, and classifier, we trained and evaluated
according to a Monte Carlo cross-validation with 100
splits and stratified sampling.

In order to evaluate the resulting models, we computed
several precision and recall averages per system, train-
ing set size, and classifier. The average precision/recall

is defined as the precision/recall per class (module) di-
vided by the number of classes. The weighted average
precision/recall takes the proportions of classes into ac-
count and weights the individual precision/recall scores
accordingly. The weighted average recall is equal to the
accuracy of a classification model2.

Practically speaking, this experiment corresponds
roughly to a situation in which a software archi-
tect/designer can estimate the number of code entities
that should be mapped to each of the architectural mod-
ules. The experiment could offer advice regarding the
relative number of entities she should map per module in
order to get a sufficiently accurate automated mapping
for the rest of the system.

This scenario, however, is not always realistic as mod-
ule sizes may be unknown or estimations may be wrong.
For that reason, we repeated the experiment described
above with different absolute training set sizes, expressed
as absolute number of files per modules that should enter
the training set. Obviously, this way of sampling is not
stratified; the number of splits and metrics for evaluation
remain the same as for comparing based upon relative
training set sizes.

3.5. Replication Package
The replication package, including the scripts for prepro-
cessing the data, training and evaluating the classifiers is
available at https://github.com/sebastianherold/ml-for-
architecture-mapping.

4. Results
As described in Sec. 3.3, we explored the accuracy of
all classification algorithms for different data extraction
and preprocessing settings in the first experiment. Fig. 3
summarises the findings per combination of extracted
source code elements. All three classification algorithms
scored best when the data extracted from the code files
was limited to package declarations and class declara-
tions. Logistic regression and SVM achieved accuracies
of 0.93 each, outperforming Naive Bayes by 0.07. SVM’s
and Logistic regression’s accuracy drop significantly to
0.68 and 0.73 at maximum, respectively, when package
declarations are not included in the data. Naive Bayes
drops to 0.75 at extracting everything else but package
declarations, performing more accurately than SVM and
Logistic Regression in this scenario.

2The recall of each individual class 𝑐𝑖 is weighted by |𝑐𝑖|
𝑛

with 𝑛 being the total number of data points. Since |𝑐𝑖| =
𝑇𝑃𝑐𝑖

+ 𝐹𝑁𝑐𝑖
, each term for the weighted average recall turns

into 𝑇𝑃𝑐𝑖
/𝑛 which summed up over all classes is equivalent to

the definition of accuracy.
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Figure 3: Accuracy for extraction of different parts of source code. Values are averages over all investigated combinations of
preprocessing steps for the extracted parts.

Figure 4: Standard deviation of accuracy averages for each combination of extracted source code parts as depicted in Fig. 3.

The role of comments also changed with the inclu-
sion of package declarations. With package declara-
tions included, adding comments, while keeping inclu-
sion/exclusion of the other code elements unchanged,
seem to rather decrease the accuracy of the classifiers.
Without package declarations, including comments lead
to accuracy improvements of up to 0.07.

It should be noted that the mapping onto modules
aligned quite well with the package structure in all five
systems, which might explain the impact of including the
package declaration. We excluded the results for only ex-
tracting package declarations as we believe that the very
good scores (beyond 0.98) of those models were overfit-
ting and heavily biased towards the selected systems.

Fig. 4 illustrates the standard deviation for each ex-
traction setting and classifier. The standard deviation is
below 0.02 in 80% of the cases, exceeding 0.05 slightly
in only one case. These results show that the variable
preprocessing settings, stemming of words and splitting
of compound words, affect accuracy only slightly.

The results related to classification performance over
training set size as relative fraction of the overall number
of source code files are visualised in Fig. 5. They confirm
that SVM and Logistic Regression perform better than
Naive Bayes in accuracy, precision and recall in almost all
settings3. The improvement in accuracy decreased for all
systems and classifiers beyond a relative training size of

3These experiments were performed extracting package decla-
rations and class declarations.

0.15, in particular for JabRef, ProM, and Teammates. The
curves show similar behaviour for the weighted average
precision. Unweighted averages keep a steeper slope in
comparison even beyond training set sizes of 0.15 which
shows that the performance for smaller modules benefits
from increasing the training set size.

In Fig. 6, the results of evaluating classification perfor-
mance for different numbers of files per module in the
training set are shown. Most curves across all metrics
show a sharp increase in performance that slows down at
10 files per module. This is less pronounced, sometimes
hardly visible, for Naive Bayes as compared to SVM and
Logistic Regression. The results for the weighted aver-
ages seem more similar to their unweighted counterparts
in this experiment. SVM and Logistic Regression outper-
form Naive Bayes in almost all settings and systems in
this experiment, too.

5. Discussion

5.1. Findings regarding RQ1
In the following we discuss and summarize the finding
related to the question how different ways of data ex-
traction and preprocessing affect the performance of the
tested classifiers.

The experiment results show that package declarations
constitute a significant piece of information for the tested
classifiers. A decrease of 0.3 in accuracy for settings



Figure 5: Performance metrics of classifiers over relative training set size.

in which the only difference is to not consider package
declarations is common across the results.

This seems quite natural as the mappings for the sys-
tem used for training are largely aggregating source code
elements along several subtrees of the package hierarchy
instead of individual classes from unrelated packages.
Only in the mapping of JabRef exist cases of packages
whose contained classes/interfaces, i.e. and correspond-
ing files, are mapped to different modules, and which
these different mappings do not align with the subpack-
age/subdirectory structure. It does hence not surprise
that settings including package declarations and only
few other pieces of information score best. In our experi-
ments, class declarations seem to complement package
declarations best. Since Naive Bayes does not perform as
well as the other classification algorithms, we formulate
our first finding as

Finding 1. In settings, in which the architectural mod-
ule structure can be assumed to align well with macro-
structures declared in the system’s implementation, these
declarations and type information should be extracted.
SVM and Logistic Regression provide more accurate results
than Naive Bayes.

Note that a straight-forward alignment does not neces-
sarily imply that a mapping can easily be constructed
manually without the need for automation in the first
place. In large-scale systems, structures of hundreds of
packages are not uncommon. If architectural modules

are well-aligned but mapped to more than one package
in such systems, identifying the relevant packages for a
module can still be tedious.

An interesting question in the light of the first finding
is whether the approaches by Olsson et al. and Link et al.
could benefit from using a different classifier than Naive
Bayes [17, 20]. While the alignment with source code
structures is largely unclear for Link et al., Olsson et al.
applied their approach to the same, well-aligned systems
used in this study. This finding also suggests that their
approach could be further tuned to only use package and
type information as compared to including also variable
identifiers. In use cases, in which the slightly slower
training of SVM and Logistic Regression is an issue, Naive
Bayes might be the better alternative.

It is common that the mappings are not that well-
aligned and straight-forward [29]. Furthermore, some
programming languages do not declare any containment
relationships equivalent to packages declarations. The
tested systems do not represent this scenario properly.
We therefore looked at the performance of the classifiers
without considering package declarations as approxima-
tion of their behaviour if we did not have that informa-
tion or considered it useless. In this setting, Naive Bayes
exploiting import declarations, class declarations, and
comments, showed the best accuracy (on a par with ad-
ditionally including declarations of public methods).

Finding 2. If alignment with any macro-structures de-



Figure 6: Performance metrics of classifiers over absolute training set size.

clared or derived from source cannot or should not be as-
sumed, Naive Bayes trained based on declarations of types,
imports, and comments should be used.

The standard deviation within groups of identical extrac-
tions regarding different preprocessing settings is very
low. This indicates that the impact of stemming and
splitting of compound words does not have a significant
impact on the resulting accuracy of any of the tested
classification algorithms.

Finding 3. The selection of parts to be extracted for clas-
sifier training and mapping prediction appears to be more
important than the selection of the preprocessing steps con-
sidered optional in this study.

Further investigation may be necessary to investigate the
potentially larger impact of other preprocessing steps in
the individual scenarios described above.

5.2. Findings regarding RQ2
In this subsection, we summarize the finding related to
the question of how the training set size, corresponding
to the number of initially, manually mapped files, affects
classifier performance.

The results suggest that in many cases the additional
gain in accuracy, precision, and recall slackens at around

15% of the overall dataset (equal to the total number of
source code files) and above. Enhancing the initial map-
ping beyond this point may therefore turn out infeasible.
Even in the relatively small sample systems of this study
like JabRef, increasing this mapping by 5% of the overall
number of code files means to map more than 40 addi-
tional files. This may possibly not pay off, in particular for
larger systems, if the gain in classification performance
is minimal. We therefore state:

Finding 4. If the number of files supposed to be mapped
to each module can be estimated, mapping around 15% of
that number in the initial mapping may be a good rule-of-
thumb for training an efficient classifier.

The results of experimenting with absolute training
set size complement these result for scenarios in which
it is not possible or desirable to estimate the number of
files mapped to each module. For the tested systems, the
gain in accuracy, precision, and recall flattens out at 10
files per module in the initial mapping which leads us to
our final finding:

Finding 5. An initial mapping of at least 10 files per
module may lead to a satisfactorily performing classifier.

Again these findings can only properly compared to Ols-
son et al. as Link et al. do no report details about training



set sizes [17, 20]. The results reported by Olsson et al.,
suggest that an initial mapping of ca. 20% lead to satisfy-
ing performance. Those results, however, are measured
as average over even imbalanced initial mappings that do
not take proportions of modules into account. We there-
fore think that our findings recommending a slightly
smaller relative size of the, however, stratified mapping
is in line with those results.

5.3. Validity
Several factors limit the external validity of this study.
Firstly, although the subject systems are anything but
trivial, they certainly do not represent large-scale soft-
ware systems. Further research in particular to confirm
or refine the findings regarding training set sizes is re-
quired. Moreover, the results may not accurately reflect
the behaviour of classifiers if package or equivalent dec-
larations are considered but the architecture does not
align with them. A further threat to external validity is
the scoping to systems written in Java. This is due to the
limited availability of systems for which the architecture
as well as the source code is available. The systems iden-
tified appeared all to be Java-based. Moreover, we did not
tune the hyperparameters but only touched upon this
non-exhaustively in the before-mentioned exploratory
pre-study. This might be considered a limitation as well
as a threat to external validity as the results might differ
for classification models with different hyperparameters.

The experiments aim at identifying causal re-
lationships between independent variables (extrac-
tion/preprocessing settings and training set sizes, respec-
tively) and dependent variables (performance measures).
We are pretty confident that the internal validity is high
as all other identified parameters were kept constant
throughout the experiments. A potential threat are of
course bugs in the scripts and software used to extract
and preprocess data as well as for training and evaluating
the classifiers. We consider this risk to be low though as
established software libraries were used for this purpose
and any self-written code (largely produced by the first
and second author) was carefully reviewed by the third
and fourth author.

We consider the selected method for cross-validation
as main threat to construct validity. Inappropriate
train/test splits may lead to biased classification models
that might not reflect a classifier’s performance prop-
erly. We believe though that the chosen repetitions for
the cross-validation in the experiments was sufficient to
mitigate this risk.

6. Conclusion
The results of the presented study indicate that there is
no silver bullet classifier. The choice of an optimal clas-
sifier and elements to be extracted from source code is
influenced by system characteristics like the alignment of
macro-structural elements with the assumed architecture.
To identify more of such distinguishing characteristics or
scenarios seems to be an interesting objective of future
research. It will be particularly relevant to investigate
whether the recommendations regarding the size of ini-
tial mappings hold in practice and if they apply for larger
systems, too.

Last but not least more classifiers wait to be tested for
their ability to automate code-to-architecture mapping.
For these as well as for those tested in this study, dif-
ferent preprocessing techniques should be investigated
more deeply and the improvement that hyperparameter
tuning might achieve should be explored. Such a more
exhaustive comparative study might also need to take the
performance and the resource demands of the training
process into account.
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