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Abstract

Serverless functions, also known as Functions-as-a-Service (FaaS), provide the capabilities of running functional code
without the requirement of provisioning or managing the underlying infrastructure with the potential to significantly reduce
overall running costs. FaaS can provide a quick time to market, reduced server management overhead, and with the pay-per-
use model of FaaS, billing is based solely on the number of requests, execution time, and memory consumption. Although
FaaS is a popular area of cloud computing, there is a lack of industry standards for the migration process of monolithic
applications to FaaS architecture. Without this, when opting to migrate to this architecture style there is little or no roadmap
to guide with best practices. This may result in functions underperforming and incurring a higher cost than necessary. The
migration technique outlined in this paper explores the area of FaaS, proposing a new set of guidelines to rectify these
shortcomings. This research aims to find the ideal structure for running serverless functions optimised to reduce memory
consumption and running costs. Two experiments are executed, the first analyses the behaviour of serverless functions
throughout several refactoring iterations. The second experiment extracts serverless functions from a monolithic application.
A migration technique is then created for migrating a monolithic application to FaaS architecture based on these findings.

1. Introduction
A Monolithic Architecture is an architectural pattern in
which all functionality of a system is encapsulated into
a single application. This architecture style has some
advantages which include simple development, easy de-
ployment, and simple debugging compared to distributed
architectures [1]. However, as monolithic applications
grow, the flaws of the architecture pattern become ap-
parent. A change to any of the layers of a monolithic
application requires an entire system retest and deploy-
ment. This results in an application that is slow to adapt
to change with deployments reducing the uptime of the
application [2]. Scaling also becomes an issue as a mono-
lithic application requires the entire application to be
replicated despite usually only a subcomponent of the
system’s functionality requiring scaling [2]. As cloud
computing and containerisation grow the monolithic ar-
chitecture was not suitable for these new advancements.

The problems identified with monolithic applications
have been addressed with alternative architecture styles
such as Service Oriented Architecture and Microser-
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vices [3, 4]. Functions-as-a-Service are often seen as
the next logical phase of architecture style. Taibi et al, [4]
outline how in some cases FaaS is better suited to newer
advancements than Microservices. That said, the area
is quite immature in comparison to other architectural
patterns such as SOA and Microservices.

The main reason for the adoption of FaaS is to reduce
costs [5]. This research aims to contribute to the server-
less field and provide structured guidance on how to
decompose a monolithic application into a FaaS architec-
ture. This research also aims to provide insight into the
behaviour of serverless functions during a refactoring
process to reduce memory consumption and costs. In
doing so, the aim is to bridge the gap between this archi-
tecture and its predecessors SOA and Microservices and
ensure that functions reduce running costs and consume
less memory.

2. Related Work
Castro et al. [6] identify Serverless computing and
Functions-as-a-Service to be the natural progression ar-
chitecture style surpassing the latest trend of Microser-
vices. Eismann et al. [5] report that users tend to adopt a
serverless architecture to reduce their hosting costs.

The granularity of the architecture style that permits
users to scale at the function level along with the pay-per-
use pricing model of serverless functions are some of the
reasons for the architecture style’s continued popularity
growth. Considering this and the continued growth of
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the architecture style, more companies are foreseen to
migrate their existing applications to a serverless archi-
tecture. However, FaaS architecture lacks the migration
techniques that come with other architectural styles such
as Microservices and currently there are no established
migration techniques which consider the migration of a
monolithic application to a FaaS architecture style.

CostAnalysis of FaaS – The main focus of this migra-
tion technique is to reduce hosting cost of the serverless
functions. Varghese and Buyya [7] compared traditional
hosting on virtual machines to serverless hosting. With
traditional hosting, the owner pays for the entire time the
virtual machine is running, even when the application
lies idle. With serverless, the owner is no longer required
to pay for computing resources that are not in use (e.g.,
when a function lies idle).

Eivy [8] warns of the hidden cost implications that
need to be fully understood to use FaaS to its full poten-
tial and reap the benefits of the service, since the cost
benefits heavily depend on the execution behaviour and
the volumes of the application workload. Highlighting
that contrary to popular belief FaaS is not always cheaper
than provisioning alternative infrastructure. If a server-
less function has a very high transaction per second rate
it may be cheaper to explore alternatives such as virtual
machines, container hosting, etc. However, considera-
tions also need to be in place regarding the operation
costs of managing the infrastructure provisioned. The
migration technique outlined in this paper ensures that
the application is optimised to avoid the hidden costs
outlined by Eivy [8].

Cost and performance optimisation is a well-
researched area of FaaS. Mahajan et al., [9] propose en-
hancements into serverless cost optimisation by splitting
the workload between virtual machine rental and server-
less functions using a hybrid system of virtual machines
and serverless functions.

Existing Industry Standards & Best Practices for
FaaS – Hong et al. [10] propose six design patterns (Pe-
riodic Invocation Pattern, Event-Driven Pattern, Data
Transformation Pattern, Data Streaming Pattern, State
Machine Pattern, and Bundled Pattern) to model a server-
less architecture in the cloud based on security services.
Rabbah et al. [11] propose a patented technique for deal-
ing with composing serverless functions to build new
applications. Their patent describes the use of a proces-
sor which determines the primary function of a query
sent by the user and identifies if that function is to be
broken into subsidiary functions. This use of function
chaining gives a FaaS environment the capabilities to
host entire backend applications. Bernstein et al. [12]
propose a virtual actor model as an ideal platform to
build a stream processing system. Using the virtual ac-
tor model as opposed to the traditional actor model on
assigned servers provides the capabilities of distributing

the workload across multiple servers in the cloud.
Bardsley et al. [13] analyse the performance of FaaS

functions to create a set of strategies that play to the
strengths of the FaaS service. The researchers analysed a
single serverless function which was called 1,000 times at
a rate of two requests per second for the duration of the
test run. However, the focus of the work carried out by
Bardsley et al. [13] was on optimising the performance of
a serverless environment. Implementing a circuit breaker
pattern is one of the strategies proposed.

Nupponen & Taibi [14] identify several good and bad
practices when developing a FaaS architecture. The bad
practices include overuse of asynchronous calls increas-
ing complexity, functions calling other functions leading
to complex debugging and additional costs, and the adop-
tion of too many technologies such as libraries, frame-
works, languages resulting in maintenance issues.

Drawbacks of FaaS – A known drawback to server-
less functions is the issue of cold starts [15]. When a
function is deployed to the underlying infrastructure of
the cloud service provider, it runs on a container. If a func-
tion has not been triggered in some time, these containers
can go idle and the function will release any resources.
When a serverless function is executed after being idle,
a gateway component checks if a container capable of
serving the request exists. If no container is available,
the gateway allocates a new one and directs the request
to the respective machine. This process causes a delay
in the request execution time. This delay is commonly
known as cold start time [16].

Each cloud service provider restricts the functions to
a limited execution time. AWS Lambda offers one of
the highest execution times of 15 minutes [17]. This
limitation of serverless functions running in the cloud
means that any long-running function or algorithm such
as machine learning or big data process are not suitable
for serverless functions. The execution time also affects
the overall cost of running functions. Therefore, it is in
the user’s best interest to have the functions running for
as short time as possible. FaaS pricing model is discussed
further in Section 4.

3. Research Contribution
Research Questions – This research focuses on three
research questions:

• How does refactoring several different serverless
functions for better performance1 affect the run-
ning costs of the functions?
This was addressed by preparing several refac-
toring iterations based on common best practices

1Performance optimisation was based on recommended prac-
tices identified in this research.



and analysing the behaviour of the functions be-
fore and after refactoring.

• What are some of the best practices that server-
less functions should adhere to that reduce the
running cost of the functions?
After analysing the functions after each refactor-
ing iteration, the memory usage and execution du-
ration metrics identified whether the refactoring
had a positive or negative impact when running
in a FaaS environment. Based on this analysis,
several best practices were discovered to reduce
memory consumption, execution duration and
thus cost when hosting serverless functions in a
FaaS architecture.

• How can a monolithic application be decomposed
into serverless functions which are optimised to
reduce running costs in a FaaS architecture?
Based on the previous findings, the best practices
for reducing cost were used in a migration process
from Monolithic to FaaS architecture. Implement-
ing the best practices during the migration phase
optimised the application for reduced cost while
running in a FaaS architecture.

Contribution to Field – This research examines sev-
eral research breakthroughs in the area of FaaS. These
include research into cost optimisation, industry pat-
terns, and migration techniques of alternative architec-
ture styles. We contribute to the existing literature by
considering the decomposition from monolithic to a FaaS
architecture. Application granularity was also identi-
fied as a trend with architecture styles progressing from
monolithic to SOA to Microservices and the future of
FaaS. The migration technique outlined in this paper pro-
poses a technique for decomposing a monolithic appli-
cation into serverless functions while reducing memory
consumption and execution duration. Therefore, reduc-
ing the overall hosting costs consumed by the serverless
functions. Considering the gap in the field of study when
it comes to migration techniques and best practices, this
research bridges the existing software architectural gap
for FaaS.

4. Cost Breakdown Analysis
We analysed the cost implications of hosting serveries
functions by four major cloud providers (CSP). All four of
the major cloud service providers of FaaS provide a pay
per execute model [17, 18, 19, 20]. More specifically we
analysed the pricing models of AWS Lambda, Azure Func-
tions, Google Functions and IBM Functions. A simple use
case was applied to each pricing model: A function with
128MB of memory, invoked 8 million times per month and
running for 300ms each time.

In a real-world scenario, calculating costs would not be
as straightforward as the running time may vary, hence,

a real-world scenario is presented in the experiments
stage of this paper.

For the sake of brevity, the details of calculations can
be seen on Github 2 and the results of the use-case cost
analysis are displayed in Table 1. For all the four CSP
providers the common factors affecting the running costs
were found to be memory consumption and execution du-
ration. This element of the pay-per-use model is the basis
for the migration technique proposed in this research.
By improving the performance and reducing memory
consumption the serverless functions will run at a re-
duced cost compared to functions running without the
implementation of the migration technique.

Table 1
Use-Case Cost Summary

Cloud Service Provider Total Cost
AWS Lambda $6.60

Azure Function $6.40
Google Function $8.75
IBM Functions $5.10

5. Experiments and Evaluation
Azure Functions was the chosen service to host the server-
less function throughout this research. Two Function
Apps were required, each had a runtime of .Net Core 3.1,
specified the consumption plan and hosted the serverless
functions. A single VM was provisioned to run the ex-
periments. The purpose of the Azure VM was to host a
docker image containing a benchmark application that
would generate traffic to the Azure Function endpoints.
An Azure SQL Database was used during the experimen-
tal phase of this research. Both experiments required a
database in which the serverless functions could interact.
A single Azure SQL Server was used to host both the
database used in the experiments.

Application Insights was used to analyse the perfor-
mance of the Azure Functions. Data was exported from
Application Insights by querying the logs for the relevant
data. The analytical data of interest during the experi-
ment was the duration of the requests and the memory
consumption of the serverless functions on the host ma-
chine.

5.1. Experimental Design
Analysis of Serverless Functions experiment –
Analysed the memory consumption of a group of server-
less functions. Every iteration, the functions were refac-

2https://github.com/adam-stafford1/Cost-
Aware-Migration-to-Functions-as-a-Service-
Architecture/blob/main/CostBreakdownAnalysis.pdf



tored in an attempt to reduce memory usage, execution
duration and ultimately reduce the running costs. Re-
quests were sent to the serverless functions hourly for
24 hours with varying payloads. After three runs, the
mean average was calculated for that iteration and the
serverless functions were analysed, in terms of memory
consumption, execution duration and cost before refac-
toring and conducting further analysis. The findings
were used to develop a set of serverless function best
practices. These practices facilitated the development of
a migration technique.

Iteration 1 - Baseline – The initial iteration of this
experiment produces a baseline to which other iterations
could be compared before refactoring.

Iteration 2 - Combining Serverless Functions –
The serverless functions DatabaseQuery and Database-
QuerySingle are combined into a single function. The
newly created function executed the appropriate func-
tionality for each of the endpoints based on the param-
eters provided. The parameters passed to the function
specified if the request was to execute the DatabaseQuery
or the DatabaseQuerySingle functionality.

Iteration 3 - Asynchronous Functions – In this itera-
tion, the serverless endpoints are refactored to run asyn-
chronously. The purpose of this is to increase the per-
formance of the serverless function by introducing the
asynchronous programming model and best practice.

Iteration 4 - Dependency Injection – During this it-
eration, the serverless functions are refactored to use
dependency injection for the creation and disposal of the
database context. The database context is registered with
the scope lifetime. Once the database context was set up
it is injected into each of the required serverless function
classes.

Iteration 5 - GET vs POST – For this iteration, two
serverless functions are refactored to accept data via a
GET request instead of POST. CalculateTotal and Dis-
tance are both refactored to accept data via a GET re-
quest.

Iteration 6 - Changing the ORM – It is discovered that
the out-of-the-box .Net ORM, Entity Framework Core
was not the most efficient ORM in terms of performance.
An alternative ORM was discovered known as Dapper.
Dapper boasted better performance in comparison to
Entity Framework Core. Basheleishvili et al. [21] identi-
fied the performance improvements of Dapper over the
standard Entity Framework. Enetity Framework Core is
replaced with Dapper as part of this iteration.

Figure 1 presents an experiment design diagram il-
lustrating the experimental process for the Analysis of
Serverless Functions experiment.

Decomposition ofMonolithic to Serverless Func-
tions experiment – Analysed a monolithic application
and created a decomposition technique to produce a

Figure 1: Experiment Design Diagram

group of serverless functions from the monolith. The
decomposed functions are analysed for cost in a FaaS
environment before the discovered best practices from
the Analysis of Serverless Functions experiment were
applied. After applying the best practices the functions
are analysed a second time to evaluate the quality of the
change and the reduction in price the implementation
had on the serverless functions.

The application used for this experiment was a sample
application developed by Microsoft, eShopLegacyMVC
and publicly available on Github3. The application was
developed as part of a series of tutorials in which Mi-
crosoft guides on best practices and modernising applica-
tions and is publicly available. This particular application
was developed as a starting point in a tutorial for mod-
ernising legacy .net framework applications to the Azure
Cloud and Windows Containers and comes with an ac-
companying PDF document4.

5.2. Analysis of FaaS Serverless
Functions Results

For this experiment, the data provided for the Total Mem-
ory usage is presented by the total number of Private
Bytes consumed on that given day for all serverless func-
tions. The Total Execution Duration is presented by the
total execution time in milliseconds for the given day.
The data exported represents the combined sum of all
running serverless functions. All cost estimations were
based on 8 million requests per month.

Iteration 1 - Baseline – This initial iteration is exe-
cuted to set a baseline for comparison with future iter-
ations. Memory consumption and execution duration
metrics of the serverless functions were exported daily.
As these metrics do not show consistent results on each
run the average of the three days was calculated and used
for comparison.

Iteration 2 - Function Combination – The purpose
of this iteration is to analyse the behaviour of the server-
less functions when the functionality of two functions
was combined into a single function. In combining the

3https://github.com/dotnet-architecture/eShopModernizing/
4https://aka.ms/liftandshiftwithcontainersebook/



Table 2
Iteration 1 Results
Date of Run Total Memory Usage Total Execution Duration
22/02/2021 544,871,743,488 2,472,551.827
18/03/2021 527,623,954,432 2,634,156.957
19/03/2021 567,170,166,784 2,564,192.976

Average 546,555,288,235 2,556,967.25333
Cost Estimation $36.80

(a) Total Memory Usage (b) Total Execution Duration

Figure 2: Iteration 1 Line Chart

functions, this iteration aimed to eliminate the perfor-
mance implications of cold starts on a single function.
This newly created function handled the network traffic
for both of the previous functions.

Table 3
Iteration 2 Results
Date of Run Total Memory Usage Total Execution Duration
24/02/2021 565,889,548,288 2,641,953.29
25/03/2021 639,237,783,552 2,716,128.474
28/03/2021 618,846,830,592 2,724,818.97

Average 607,991,387,477 2,694,300.24467
Cost Estimation $40.00
Baseline Comparison +61,436,099,242 +137,332.99134

(a) Total Memory Usage (b) Total Execution Duration

Figure 3: Iteration 2 Line Chart

As shown in Table 3, there is an overall increase in
memory consumption and execution duration compared
to the baseline iteration. Although this increase was not
substantial in the experiment, it would be quite substan-
tial on a larger scale. This enforces what is already a
recommended best practice, to implement the single re-
sponsibility pattern. Enforcing the single responsibility
pattern during the migration process is a recommended
best practice during the construction of the migration
technique.

Iteration 3 - Asynchronous Functions – It is a rec-

ommended best practice for Azure functions to be asyn-
chronous non-blocking calls [22]. When analysing the
functions, several were identified which did not adhere
to this best practice. Ensuring that the functions ran
asynchronous non-blocking calls was the next refactor-
ing iteration of this research. DatabaseQueryForReport,
DatabaseQuerySingle, DatabaseWrite, DatabaseQuery,
DownloadFile, and GenerateBarcodeImage were all up-
dated to run asynchronously using the async/await oper-
ators of the C# language [23].

Table 4
Iteration 3 Results
Date of Run Total Memory Usage Total Execution Duration
27/02/2021 565,889,548,288 2,545,098.398
14/03/2021 601,180,618,752 2,716,128.474
30/03/2021 649,217,093,632 3,336,305.686

Average 607,729,938,432 2,865,844.186
Cost Estimation $40.00
Baseline Comparison +61,174,650,197 +308,876.93267

(a) Total Memory Usage (b) Total Execution Duration
Figure 4: Iteration 3 Line Chart

As shown in Table 4, there is an increase in the memory
consumption and the execution duration compared to the
baseline run of the experiment. After further inspection
into the results and researching the best practice, it is
discovered that serverless functions were charge for the
time that the function waits for the results of an async
request [24].

These results demonstrate that enforcing functions to
run asynchronously can increase memory consumption
and duration. However, the serverless functions pro-
duced for this experiment have no external dependencies.
Using asynchronous programming in cases where the
function does not require a response from an external
dependency and can continue to execute calling multi-
ple dependencies asynchronously should have a positive
impact on the performance. Although, as demonstrated
in this experiment enforcing the synchronous functions
to run asynchronously has had a negative impact on
performance.

Iteration 4 - Dependency Injection Pattern – De-
pendency injection is a commonly utilised best practice
in which classes are decoupled from their dependencies
to provide better modularisation of software [25]. For
this iteration, the dependency injection pattern is applied



to the serverless functions to abstract the initialisation
of the database context. The goal of this iteration is to
remove this initialisation from the serverless functions
to reduce the duration in which the functions executed
and increase the performance of the functions. The

Table 5
Iteration 4 Results
Date of Run Total Memory Usage Total Execution Duration
01/03/2021 578,505,195,520 2,663,114.111
22/03/2021 616,094,019,584 2,645,294.872
23/03/2021 549,142,319,104 2,549,578.342

Average 581,247,178,069 2,619,329.10833
Cost Estimation $36.80
Baseline Comparison +34,691,889,834 +62,361.855

(a) Total Memory Usage (b) Total Execution Duration

Figure 5: Iteration 4 Line Chart
results displayed in Table 5 shows that although the de-
pendency injection pattern increased modularity and
testability it has a negative impact on the running costs
of the serverless functions. Dependency injection has
its own merits, including the testability of functions. It
is a known best practice in the industry. However, this
research is focused solely on optimising costs. Therefore,
this research recommends that before implementing the
dependency injection pattern in a FaaS environment, the
change should be evaluated to identify the impact on the
hosting costs.

Iteration 5 - GET vs POST – In this iteration, the
serverless functions are modified to examine the effect of
different HTTP methods. Several endpoints were modi-
fied from accepting data via a POST request to accepting
via a GET request. This change also affected the function
code as the different HTTP methods required different
parsing functionality. With a GET method, the data is
taken straight from the query parameters but required
manual parsing of integers or decimals. With the POST
method, data in the body of the request is parsed using
a stream reader. Therefore, this iteration tested the ef-
ficiency of the HTTP methods and the parsing method
required with each. Table 6 presents the findings of this
iteration.

Table 6 presents the results of the GET vs POST it-
eration. The iteration produced interesting results. As
shown, the average memory consumption has increased.
However, the average execution duration has decreased
compared with the baseline iteration. It is gathered from
these results that GET requests execute faster than POST

Table 6
Iteration 5 Results
Date of Run Total Memory Usage Total Execution Duration
04/03/2021 595,949,375,488 2,446,181.996
06/03/2021 610,399,891,456 2,621,606.274
07/03/2021 597,077,692,416 2,509,399.675

Average 601,142,319,787 2,525,729.315
Cost Estimation $36.80
Baseline Comparison +54,587,031,552 -38,463.661

(a) Total Memory Usage (b) Total Execution Duration

Figure 6: Iteration 5 Line Chart

requests. However, POST requests perform better in
terms of memory consumption.

Figure 10 presents a comparison of the two refactored
function. Since the memory consumption of individ-
ual functions is not a supported metric exportable from
Azure Application Insights, the function duration was
used for comparison. The bar chart displays the duration
of the two modified functions from the fifth iteration
compared to the baseline iteration. The bar chart in fig-
ure 10 highlights the reduction in duration when using
GET over POST for these functions. Following this dis-
covery, the migration technique favours GET over POST
methods were applicable.

Figure 7: Iteration 5 Duration Comparison

Iteration 6 - Changing the ORM – The Object Rela-
tional Model (ORM) is replaced from Entity Framework to
Dapper. The Dapper ORM boasted performance improve-
ments compared to the Entity Framework ORM. Several
serverless functions are refactored to use the improved
ORM and tested to identify how this change affected the
performance in a FaaS architecture.

Table 7 shows an overall improvement in performance



compared to the baseline iteration. This is the first itera-
tion to demonstrate a successful improvement in memory
consumption and execution duration. Figure 9 presents
the duration of the serverless functions which had been
refactored to use the Dapper ORM.

The results in Figure 9 show a significant improvement
in the duration of the serverless functions as a group and
individually. For each of the four functions, the duration
dropped by more than half. This is a very clear indicator
that this refactoring iteration is successful in improving
the performance and reducing the costs. When construct-
ing the migration technique, the ORM was analysed and
replace with the Dapper ORM due to its improvements
in performance when running in a FaaS environment.

Table 7
Iteration 6 Results
Date of Run Total Memory Usage Total Execution Duration
30/03/2021 498,894,196,736 2,234,666.598
31/03/2021 561,415,585,792 2,102,961.566
01/04/2021 580,808,814,592 2,177,295.468

Average 547,039,532,373 2,171,641.21067
Cost Estimation $33.60
Baseline Comparison +484,244,138 -385,326.04266

(a) Total Memory Usage (b) Total Execution Duration

Figure 8: Iteration 6 Line Chart

Figure 9: Iteration 6 Duration Comparison

5.3. Discovered Best Practices
The experiment successfully produced several best prac-
tices (Figure 10) to adhere to when migrating functions to
a FaaS environment. Throughout the experiment, it was

identified that some of the industry recommended pat-
terns may have benefits in other aspects of software con-
struction however, they increased the memory consump-
tion of the serverless function group and therefore, would
increase the overall hosting costs. These results demon-
strate unclarity regarding cost implications of CSPs rec-
ommended best practices. This experiment is successful
in producing best practices based on these two factors.
Although some of the best practices may go against in-
dustry recommendations, this experiment was focused
solely on memory consumption and the execution dura-
tion of the serverless function. As discussed in section
4, these two metrics contribute to the costs of running
serverless functions across all of the leading CSPs.

Figure 10: Summary of the Discovered Best Practices

5.4. Decomposition of Monolithic to
Serverless Functions Results

In this section, the results of the Decomposition of Mono-
lithic to Serverless Functions experiment are presented
and evaluated. The functions suitable for migration to
a FaaS architecture are identified from a monolithic ap-
plication and extracted into serverless functions. Once
extracted, the functions are deployed to an Azure Func-
tion app. The performance of the serverless functions
was monitored over three days to estimate the hosting
cost. Next, the previously discovered best practices were
implemented and the functions redeployed to the Azure
Function app where they were monitored for a further
three days. The experiment provided the data required to
evaluate the effectiveness of the best practices discovered
in the Analysis of FaaS Serverless Functions experiment
and were used to construct the migration technique.

Function Extraction – The Data Access Layer was
identified as suitable for extraction to a FaaS environment
during this experiment. The functions were identified
by understanding the limitations and suitability of FaaS.
Once identified, an Azure Function app was created and
all function dependencies were migrated into the new
function app. This included the database context used
by the functions to manipulate the database as well as
any data model object classes. The functions were refac-
tored to run in a FaaS environment, accepting data via
RESTful endpoints instead of direct dependencies. Fi-
nally, the functions were migrated and deployed to the



Azure Function app.
Setting a Baseline – The serverless functions ex-

tracted from the monolithic application are deployed to
the Azure Function app. With the functions running in
Azure, the benchmark application is deployed to a virtual
machine to generate traffic to the endpoints. This experi-
ment demonstrated the cost implications of the migration
technique by comparing the memory consumption and
execution duration before and after the best practices are
implemented. The total memory consumption and total
execution duration exported from Azure Application In-
sights. Table 8 presents the results of the serverless func-
tions before the best practices were implemented. This
initial iteration shows the average memory consumption
of 531,748,489,899 bytes per day and an average execution
duration of 631,612.481 milliseconds per day.

Table 8
Experiment 2 Before Best Practices
Date Total Memory Usage Total Execution Duration
28/03/2021 531,556,438,016 642,659.234
29/03/2021 531,175,735,296 615,578.125
30/03/2021 532,513,296,384 636,600.084

Average 531,748,489,899 631,612.481

Applying Best Practices – Table 9 presents the
changes made to the application when applying the best
practices

Evaluating Best Practices – After the initial execu-
tion, the serverless functions were refactored to imple-
ment the previously discovered best practices outlined
in section 5.3. After refactoring, the functions were re-
deployed and analysed a second time to demonstrate
any performance. Table 10 presents the results of this
experiment. Table 10 displays a significant improve-
ment in performance across the three days. The average
was compared to the average prior to the best practices
being implemented. The results show the number of
bytes consumed per day on average by the functions was
reduced by 27,784,484,182 bytes or 27.78 GB, and the to-
tal execution duration was reduced by 241,638.730333
milliseconds or 241.64 seconds. This simple refactoring
experiment identifies the importance of optimisation in
a serverless environment. The results demonstrate a sig-
nificant improvement in memory consumption and exe-
cution duration with a simple implementation of several
best practices.

Evaluating the Cost Reduction of the Migration
Technique – The cost presented in Azure only displayed
the overall cost for the monthly billing period and not a
detailed breakdown. For that reason, a manual calcula-
tion must be performed to present the cost analysis. Ad-
ditional data was required to calculate the cost. This data
exported from Azure Application Insights included the
average allocated memory per execution in megabytes
and the average duration per execution in seconds. Since

Table 9
Best Practices Applied

Best Prac-
tice

Changes Applied

Single Re-
sponsibility
Pattern

Each of the functions extracted performed
some form of CRUD operation on the
database and each had a single purpose.
For that reason, the function had already
adhered to the single responsibility pat-
tern.

Async Func-
tions

Each of the extracted functions ran syn-
chronously, the second best-practice iden-
tified that running synchronous functions
asynchronously had a negative impact on
the performance of the functions. There-
fore, for the extracted functions, no asyn-
chronous code was introduced.

Dependency
Injection

The dependency injection pattern was re-
moved and replaced with the C# using
statement to instantiate and dispose of the
database context within the function code.

Favour GET
over POST

Due to the complex data type being sent
in each request, the endpoints could not
be changed to use the GET method over
POST.

Changing
the ORM

The Entity Framework ORM and that was
replaced by the Dapper ORM

Table 10
Experiment 2 After Best Practices
Date Total Memory Usage Total Execution Duration
22/04/2021 497,534,685,184 392,567.499
23/04/2021 513,865,043,968 416,414.657
26/04/2021 500,492,288,000 360,939.096

Average 503,964,005,717 389,973.750667

Compared to Baseline -27,784,484,182 -241,638.730333

the experiments didn’t run for a consecutive month, a
value of 8 million requests per month was used to calcu-
late the costs. This value was purely for demonstration
purposes and didn’t impact the differences in costs since
it was the same for both the before and after best practices
calculations. Table 11 presents the exported data.

Table 11
Additional Exported Metrics

Request Count Memory Usage Execution Duration
Before Best Practices 8,000,000 229 MB 0.44208 s
After Best Practices 8,000,000 224 MB 0.25 s

The formula for calculating the cost is given as:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = (𝑇𝑜𝑡𝑎𝑙𝐺𝐵𝑠× $0.000016)

+ (𝑅𝑞𝑠𝑡.𝐶𝑜𝑢𝑛𝑡× $0.00000020)



𝑇𝑜𝑡𝑎𝑙𝐺𝐵𝑠 = (𝑅𝑞𝑠𝑡.𝐶𝑜𝑢𝑛𝑡× 𝐸𝑥𝑒.𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

× (𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑎𝑔𝑒÷ 1024)

Using the data and formulas presented in this section,
the costs of hosting the serverless functions could then be
calculated. Firstly, the cost of hosting the functions was
calculated before the best practices were implemented.

𝑇𝑜𝑡𝑎𝑙𝐺𝐵𝑠 = (8000000× 0.44208)

× (256÷ 1024) = 884160

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = (884160×$0.000016)+(8×$0.20) = $15.75

Next, after the serverless function had been refactored
to implement the best practices, the hosting costs were
calculated again.

𝑇𝑜𝑡𝑎𝑙𝐺𝐵𝑠 = (8000000× 0.24)

× (224÷ 1024) = 480000

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = (480000×$0.000016)+(8×$0.20) = $9.28

As shown from the calculations, the total charge after
implementing the best practices was calculated as $9.28.
This shows a reduction in overall running costs of the
serverless functions of $6.25. The experiment was con-
ducted on a relatively small scale and reduced the cost by
40%. This hugely significant cost reduction was produced
by simply understanding the FaaS environment and how
code refactoring can impact the memory consumption
and duration of the functions. It also illustrates the im-
portance of optimisation to reduce costs when hosting
serverless functions.

Evaluating & Comparing Migration Techniques
– To the best of our knowledge, no established migration
techniques of monolithic to the FaaS architecture exist in
the field of FaaS. In this section, the migration technique
outlined in this research is evaluated against similar tech-
niques from alternative architectures. As part of this
evaluation, two techniques from the Microservices archi-
tecture style have been identified as suitable comparisons
to the technique outlined in this research.

Agarwal & Lakshmi [26], identify the shortcomings
of some Microservices deployments and focus their re-
search on optimising costs in terms of sizing and scaling
of the Microservices. Although with FaaS the scaling
is taken care of by the cloud services providers, this re-
search has similarities in terms of the consumption of
additional unused resources. Agarwal & Lakshmi pro-
pose an algorithm for enabling real-time scaling deci-
sions to reduce the amount of unused resources occupied
by the Microservices. In comparison, the Migration of
Monolithic Applications to Functions-as-a-Service Ar-
chitecture for Reduced Hosting Cost technique outlined
in this research goes slightly further than the size and
scaling and identifies code refactoring techniques which
ultimately reduce the amount of resources consumed by
the functions.

Similar to the identification of functions from a mono-
lithic application outlined in this research, Mazlami et al.
[27] identified a technique for identifying Microservices
in a monolithic application. In the five phase migration
technique outlined in this research, the serverless func-
tions are identified by simply understanding the applica-
tion and the FaaS environment. In addition, the mono-
lithic application was categorised in terms of the multiple
layers before the extraction was applied. In the research
carried out by Mazlami et al., they discuss a much more
in-depth technique of identifying the Microservices. The
formal model proposed in the research uses a clustering
algorithm to generate recommendations for potential mi-
croservice candidates throughout the refactoring process.
The migration technique proposed in this paper, provides
a more hands-on approach and focuses more on the code
refactoring and performance optimisation of the migra-
tion. However, this comparison opens up future work to
identify a formal model for the extraction of functions
from a monolithic application.

6. Conclusions
FaaS currently lacks the industry standards of its estab-
lished architectural predecessors and this research pro-
poses a technique to help bridge this gap.

We propose several best practices which feed into a mi-
gration technique. The proposed five-phased technique
facilitates the migration of a monolithic architecture to a
FaaS environment with a focus on optimizing for reduc-
ing hosting costs.

Furthermore, in our experiments we identified several
industry standards or recommendations that although
have their own merits, had a negative impact on cost. We
identified several functions suitable for migration from a
monolithic application to the FaaS architecture. When
extracting the functions according to the proposed best
practices, our experiments point towards significant sav-
ings in terms of the overall hosting cost of the serverless
functions.

This research opens the area of FaaS in terms of mem-
ory consumption and optimisation and provides insights
into the behaviour of this architecture. Future work will
focus in identifying additional refactoring methods and
analyse different types of applications and use cases for
serverless functions to refactor and develop this migra-
tion technique into a pattern verified across different
application types.

The migration technique completed as part of this
research encourages the adaptation of FaaS architecture
and identifies the cost implications of code refactoring
when working working with the architecture style.
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