
Studying Expert Initial Set and Hard to Map Cases in
Automated Code-to-Architecture Mappings
Tobias Olsson, Morgan Ericsson and Anna Wingkvist

Department of Computer Science and Media Technology, Linnaeus University, Kalmar/Växjö, Sweden

Abstract
We study the mapping of software source code to architectural modules.

Background: To evaluate techniques for performing automatic mapping of code-to-architecture, a ground truth map-
ping, often provided by an expert, is needed. From this ground truth, techniques use an initial set of mapped source code as
a starting point. The size and composition of this set affect the techniques’ performance, and to make comparisons, random
sizes and compositions are used. However, while randomness will give a baseline for comparison, it is not likely that a human
expert would compose an initial set on random to map source code. We are interested in letting an expert create an initial
set based on their experience with the system and study how this affects how a technique performs. Also, previous research
has shown that when comparing an automatic mapping with the ground truth mappings, human experts often accept the
automated mappings and, if not, point to the need for refactoring the source code. We want to study this phenomenon
further.

Audience: Researchers and developers of tools in the area of architecture conformance. The system expert can gain
valuable insights into where the source code needs to be refactored.

Aim: We hypothesize that an initial set assigned by an expert performs better than a random initial set of similar size
and that an expert will agree upon or find opportunities for refactoring in a majority of cases where the automatic mapping
and expert mapping disagrees.

Method: The initial set will be extracted from an interview with the expert. Then the performance (precision and recall
f1 score) will be compared to mappings starting from random initial sets and using an automatic technique. We will also use
our tool to find the cases where the automatic and human mapping disagrees and then let the expert review these cases.

Results: We expect to find a difference when performance is compared. We expect the expert review to reveal source
code that should be remapped, source code that needs refactoring (e.g., possible architectural violations), and points where
the automatic technique needs to be improved.

Limitations: The study will only focus on only a single system, which limits the external validity significantly. The
protocol for the interaction with the human expert can also introduce validity problems; for example, a mapping presented
by an algorithm could be perceived as more objective and thus more acceptable for a software engineer.

Conclusions: We seek to improve our understanding of how a human creates an initial set for automatic mapping and
its effect on how well an automated mapping technique performs. By improving the ground truth mappings, we can improve
our techniques, tools, and methods for architecture conformance checking.

Keywords
Orphan Adoption, Software Architecture, Source Code Clustering, Naive Bayes

1. Introduction
Creating a mapping from the source code to an archi-
tectural model is perceived as labor-intensive. It hin-
ders widespread use of Static Architecture Conformance
Checking (SACC) practices such as Reflexion modeling in
industry [1, 2]. A mapping is an assignment of a source
code entity, e.g., a source code file or class, to an architec-
tural module, e.g., a layer or a sub-system. The architec-
tural modules and the dependencies between them form
an intended architecture, see Figure 1. The mappings
are used to determine if the dependencies in the source
code conform to or violate the intended dependencies as

ECSA2021 Companion Volume
email: tobias.olsson@lnu.se (T. Olsson); morgan.ericsson@lnu.se
(M. Ericsson); anna.wingkvist@lnu.se (A. Wingkvist)
orcid: 0000-0003-1154-5308 (T. Olsson); 0000-0003-1173-5187
(M. Ericsson); 0000-0002-0835-823X (A. Wingkvist)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

described in the architecture, i.e., conformance checking.

2. Background
Current semi-automatic techniques build on the Human
Guided clustering Method (HuGMe) and introduce dif-
ferent attraction functions that guide the automatic map-
ping [3, 4, 5, 6, 7]. HuGMe consists of a few essential
steps as described below:

1. An initial set is created manually.
2. The entities to be mapped are determined.
3. The attraction function calculates an attraction

for each entity and module.
4. If the attraction of a single module is deemed

valid, the entity is mapped to this module.
5. If no valid attraction is found, the decision is left

to a human user.

1

mailto:tobias.olsson@lnu.se
mailto:morgan.ericsson@lnu.se
mailto:anna.wingkvist@lnu.se
https://orcid.org/0000-0003-1154-5308
https://orcid.org/0000-0003-1173-5187
https://orcid.org/0000-0002-0835-823X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Tobias Olsson et al. CEUR Workshop Proceedings 1–5

Figure 1: The intended architecture of JabRef version 3.7.
The boxes represent modules, and the arrows represent al-
lowed directed dependencies between these modules. The
module Global has been omitted for clarity.

6. If new mappings are made, and there are entities
remaining, continue at Step 2.

7. If entities are remaining, let the human user de-
cide a mapping.

There are some things to note. First, the method is
iterative, as the set of mapped entities can grow, and
more mappings can be done. An initial set is needed to
start the method, i.e., the attraction functions need some
initial mappings to work with, see Figure 2. The human
user is involved in several steps of the method. Thus
it is semi-automatic and human-guided. However, the
focus of most studies has been on the development and
comparison of attraction functions, i.e., the automatic
step of the method.

2.1. Initial Set
The attraction functions used in HuGMe all need an ini-
tial set of pre-mapped entities to work. In general, the
previous studies have focused on comparing the auto-
matic performance, e.g., precision and recall of differ-
ent functions. In these studies, the initial set has been
treated as a random variable considering size and com-
position [3, 4, 5, 6]. This assumption is fair in a general
performance comparison. However, it does not necessar-
ily reflect a realistic scenario.

A system expert would not select entities to map at
random. Realistically, a system expert user could make a
careful and well-thought-out initial set, select represen-
tative parts of the source code to map, or map everything
easy to map and leave complex cases to the machine.

We have previously studied the effect of the initial
set. We found large variations in attraction function
performance depending on both size and composition of
the initial set: A representative initial set can give good
results even if the set is small, and vice versa [8]. Our goal
was to help guide a system expert to produce a minimal
but high-performing initial set with the help of standard
source code metrics, and we found limited success in
using inheritance-based metrics. However, the results
did not generalize well for different subject systems.

ChangeScanner DOICheck XMLUtil DataBankAttachFileAction

StringChange

Attraction Function

Initial Set of Mapped Entities

Entity to be Mapped

?

Figure 2: An example of how entities are mapped to mod-
ules. In this case, two classes are mapped to GUI, and three
classes are mapped to Logic. These form the initial set. A sixth
class, StringChange, is about to be mapped. The Attraction
Function uses the information in the initial set to calculate
an attraction to each module.

2.2. Ground Truth Mapping
Related to the performance of a technique is also the
quest for a perfect mapping compared to the ground truth
mappings. Previous research indicates that mappings’
differences often reveal points where the source code
needs refactoring, or developers made a mistake in the
mapping.

Tzerpos and Holt [9] found that their technique sug-
gested 46 entities to change mapping compared to the
developers’ assignment in one of their case studies. The
developers agreed on this new suggested mapping in 33
cases, and the remaining 13 original mappings were con-
sidered valid but not optimal. In these 13 remaining cases,
the developers expressed that restructuring the entities
was needed to motivate their inclusion in the original
modules. We have previously constructed a heuristic
for automatic mapping of source code to Model-View-
Controller-based architectures [10]. We evaluated the
approach on four products in a product-line of games.

We compared the automatic mapping to the manual
mapping of 653 entities and found a difference in map-
pings in 96 cases. Architectural problems caused 76 of
these. Source code refactorings were suggested and im-
plemented for two of the projects covering 23 architec-
tural problems. An interesting finding is that the most
common refactoring was Move Type (12 instances), i.e.,
move the type to the correct module. This indicates that
a perfect automatic mapping is an elusive or even unde-
sirable target, especially if a system has evolved for some
time and has accumulated some erosion or drift.

2



Tobias Olsson et al. CEUR Workshop Proceedings 1–5

2.3. Attraction Function and Tool
We have previously evaluated and implemented the at-
traction functions found in research by Bittencourt et al.
[3], and Christl et al. [4] as well as implemented our own
attraction function NBAttract based on machine learn-
ing [5]. To aid evaluations of attraction functions, we
have set up an open-source tool aimed at allowing ex-
perimentation of different parameters and settings [11].
NBAttract has shown the most promise in our previous
evaluation [5] and will be the main function used in this
study. Our tool allows us to vary the information the
function uses, and we plan on evaluating different com-
binations of the following:

• File names and paths.
• Architectural module names.
• Source code dependencies.
• Names of identifiers in the source code, e.g.,

method names, variable names, etc.

3. Audience
The study will be valuable to researchers and developers
of tools in the area of architecture conformance. The
system expert can gain valuable insights into where the
source code needs to be refactored.

4. Aim
We want to know more about how a system expert would
create an initial set of entities for semi-automatic map-
ping and the rationale for the specific mappings. This
would give insight into the composition and distribution
of an initial set created by an expert. We also want to
know more about discrepancies in the automatic map-
pings compared to system expert mappings. To enable
this, we need to build a broad set of data over multiple
systems and experts. This study would act as a first initial
study towards this goal.

We hypothesize that an initial set assigned by an ex-
pert performs better than a random initial set of similar
size when used by our current best automatic mapping
attraction function, NBAttract [5]

We hypothesize that an expert will agree upon or find
opportunities for refactoring in a majority of cases where
the automatic mapping using NBAttract [5] and expert
mapping disagrees.

5. Method
The study will involve a human that is a system expert
for a subject system. We assume a subject system im-
plemented in Java with a documented architecture with

defined architectural modules and allowed dependencies
between these and a mapping from the source code to the
architectural modules. If these do not exist, they need to
be prepared before we can initiate the study. Optimally
we will study these artifacts beforehand.

We perform the study in three phases. 1. we interview
the expert to create an initial set and the rationale for the
mapping. 2. we conduct experiments to find the perfor-
mance of the initial set created by the expert compared
to a random initial set of similar size. During this phase,
we will generate a list of mapping discrepancies for the
automatic mappings. And 3. we will interview the ex-
pert once more. This interview aims at investigating the
mapping discrepancies found in Phase 2.

5.1. Phase 1: Initial Set Creation
To create an initial set, we will interview the human
expert in a semi-formal way. The interview will be held
online and recorded. There will be an agreement on the
use and handling of the recording. This session will likely
take less time than two hours. The interview protocol
will follow this design.

1. Introduce yourself and explain that the interview
is recorded and that the expert agrees to this.

2. Explain the purpose of the study and the use of
the data.

3. Ask the expert about their involvement in the sub-
ject system’s development, what role they have,
and the general experience and the time frame of
involvement.

4. Ask the expert about the subject system, its ba-
sic purpose, the end-users, and the architecture:
what is the purpose of the architecture, the de-
fined modules and dependencies, and did the ex-
pert create the architecture and mapping? How
were the architecture and mapping created?

5. Explain the mapping scenario and give a rough
outline of how an automatic mapping would work.

6. Ask the system expert for where they would start
to map, any parts that jump to their mind or any
easy to map parts of the system, e.g., whole direc-
tories/packages that can be mapped.

7. For each module in the architecture, ask the sys-
tem expert to provide the most typical and im-
portant source code files. Ask why each file is
deemed typical or important. At least 10% of the
files should be provided.

8. Ask the expert if there is anything they would
like to add.

9. Thank the expert and explain the remainder of
the study. Book a new interview for Phase 3 to
take place a few days later.

3



Tobias Olsson et al. CEUR Workshop Proceedings 1–5

5.2. Phase 2: Experiments
We perform experiments where the expert’s initial set is
used with different combinations of information for the
NBAttract attraction function. If we get differences in
the initial sets (e.g., typical mappings vs. easy mappings)
based on the first interview, we can compare these ini-
tial sets to each other. For further comparison, we will
use a random initial set combination. Note that for ran-
dom initial sets, several hundred experiments are needed,
depending on the number of architectural modules, the
number of source code entities, and the size of the ex-
pert’s initial set. This phase will likely take three days to
complete.

Experiments will generate the mapping data to calcu-
late the precision and recall of the mappings. The data
will also include a record of failed mappings, with the
name of the source code entity and the failure frequency.
Depending on the number of failures, a limit may be
needed to not create an overwhelming burden for Phase
3. A suggestion is that a failure rate of more than 50%
suggests a mapping discrepancy.

We will consider the expert’s initial set better than a
random initial set if the F1 score is better than the median
F1 score of the random initial sets.

5.3. Phase 3: Validation of Mapping
Discrepancies

We will investigate the generated mapping discrepancies
by interviewing the human expert in a semi-formal way.
The interview will be held online and recorded. There
will be an agreement on the use and handling of the
recording. The interview will likely involve looking at
source code, so both the expert and researcher should
prepare a development environment. If the interview
session extends over two hours or if the expert expresses
fatigue, it should be split into several sessions. The inter-
view protocol will be conducted as follows.

1. Explain that the interview is recorded and that
the expert agrees to this.

2. Explain the purpose of the study and the use of
the data.

3. Roughly explain the results from the experiment.
4. For each mapping discrepancy, let the expert in-

spect the corresponding source code.
a) Ask if the expert thinks the entity would

need refactoring or that it contains serious
problems.

b) Remind the expert of the original mapping
and ask if the expert still agrees to this
mapping. If not, ask the expert for what
mapping would be more appropriate and
why.

c) Show the automatic mapping results (sev-
eral modules may be suggested). Ask if the
expert would consider any of these map-
pings valid and why/why not.

5. Ask the expert if there is anything they would
like to add.

6. Thank the expert.

6. Expected Results
We expect to find a difference when we compare per-
formance. We expect that the human expert’s initial set
performs better than a random initial set of similar size.
We expect the expert review to reveal source code that
should be remapped, source code that needs refactoring
(e.g., possible architectural violations), and points where
the automatic technique needs to be improved.

7. Limitations
The study will only focus on a single system which lim-
its the external validity. However, the long-term goal is
to find more systems and experts and perform similar
studies and build and refine the dataset over time. The
protocol for the interaction with the human expert can
also introduce validity problems; for example, a mapping
presented by an algorithm could be perceived as more
objective and thus more acceptable than the expert’s
informal knowledge. The expert may also be biased re-
garding certain parts of the source code that they have
been more or less involved in. This will need to be noted
in the interview protocol. And, the expert may be biased
if they have created the original mapping or not, e.g., it
is probably easier to accept a mapping presented by an
algorithm if someone else did the original mapping. This
has to be noted in the interview protocol.

8. Conclusions
We seek to improve our understanding of how a human
creates an initial set for automatic mapping and its effect
on how well an automated mapping technique performs.
Based on what we learn, we can start to explore methods
that actively suggest initial set candidates. By improving
the ground truth mappings, we can improve our tech-
niques, tools, and methods for architecture conformance
checking.

Acknowledgments
The research was supported by the Centre for Data Inten-
sive Sciences and Applications at Linnaeus University.

4



Tobias Olsson et al. CEUR Workshop Proceedings 1–5

References
[1] G. C. Murphy, D. Notkin, K. Sullivan, Software

reflexion models: Bridging the gap between source
and high-level models, ACM SIGSOFT Software
Engineering Notes 20 (1995) 18–28.

[2] N. Ali, S. Baker, R. O’Crowley, S. Herold, J. Buck-
ley, Architecture consistency: State of the practice,
challenges and requirements, Empirical Software
Engineering 23 (2017) 1–35.

[3] R. A. Bittencourt, G. Jansen de Souza Santos, D. D. S.
Guerrero, G. C. Murphy, Improving automated map-
ping in reflexion models using information retrieval
techniques, in: IEEE Working Conference on Re-
verse Engineering, 2010, pp. 163–172.

[4] A. Christl, R. Koschke, M.-A. Storey, Automated
clustering to support the reflexion method, Infor-
mation and Software Technology 49 (2007) 255–274.

[5] T. Olsson, M. Ericsson, A. Wingkvist, Semi-
automatic mapping of source code using naive
bayes, in: Proceedings of the 13th European Con-
ference on Software Architecture - Volume 2, ECSA
’19, 2019, p. 209–216.

[6] A. Christl, R. Koschke, M.-A. Storey, Equipping the
reflexion method with automated clustering, in:
IEEE Working Conference on Reverse Engineering,
2005, pp. 98–108.

[7] F. Chen, L. Zhang, X. Lian, An improved mapping
method for automated consistency check between
software architecture and source code, in: IEEE
20th International Conference on Software Quality,
Reliability and Security (QRS), 2020, pp. 60–71.

[8] T. Olsson, M. Ericsson, A. Wingkvist, Towards im-
proved initial mapping in semi automatic clustering,
in: Proceedings of the 12th European Conference
on Software Architecture: Companion Proceedings,
ECSA ’18, ACM, 2018, pp. 51:1–51:7.

[9] V. Tzerpos, R. C. Holt, The orphan adoption prob-
lem in architecture maintenance, in: Proceedings
of the Fourth Working Conference on Reverse En-
gineering, IEEE, 1997, pp. 76–82.

[10] T. Olsson, D. Toll, A. Wingkvist, M. Ericsson, Evalu-
ation of a static architectural conformance checking
method in a line of computer games, in: Proceed-
ings of the 10th international ACM Sigsoft confer-
ence on Quality of software architectures, ACM,
2014, pp. 113–118.

[11] T. Olsson, M. Ericsson, A. Wingkvist, An explo-
ration and experiment tool suite for code to archi-
tecture mapping techniques, in: Proceedings of the
13th European Conference on Software Architec-
ture - Volume 2, ECSA ’19, 2019, p. 26–29.

5


	1 Introduction
	2 Background
	2.1 Initial Set
	2.2 Ground Truth Mapping
	2.3 Attraction Function and Tool

	3 Audience
	4 Aim
	5 Method
	5.1 Phase 1: Initial Set Creation
	5.2 Phase 2: Experiments
	5.3 Phase 3: Validation of Mapping Discrepancies

	6 Expected Results
	7 Limitations
	8 Conclusions

