
Modeling, Visualizing, and Checking Software
Architectures Collaboratively in Shared Virtual Worlds
Rainer Koschke1, Marcel Steinbeck1

1University of Bremen, Bibliothekstraße 1, 28359 Bremen, Germany

Abstract
Software visualization is useful to highlight certain aspects of software in a way that is easy to grasp for humans. In this paper,
we present our software visualization platform SEE which, among other use cases related to software development, assists
developers and architects in identifying inconsistencies between the architecture and the implementation of a software—
using the software reflexion model. SEE is based on the software-as-a-city metaphor and presents the generated software
cities in virtual worlds that can be entered by multiple users from different locations (i.e., they do not have to be physically
in the same place). Within these worlds, users can see each other as avatars and communicate via a built-in voice chat. A
special feature of SEE is the ability for users to interact remotely with the cities in real-time and thus creates a basis for
collaborative work that goes far beyond the classic means of distributed software development.

Keywords
reflexion analysis, software visualization, virtual and augmented reality, code cities, distributed development

1. Introduction
There has been a sustained trend towards distributed
software development long before the current pandemic
situation [1]. Distributed development is a consequence
of budget and time limitations, lack of developers, need
for specialized expertise, lack of space, and other factors.
It takes place at large scale in terms of offshoring but also
at small scale within an organization whose developers
of the same team are not all in the same room. If devel-
opers of distributed teams need to work together, spatial
gaps need to be bridged. Remote joint development is a
particular challenge in situations where tight collabora-
tion requires a high degree of communication. This is,
for instance, the case when a team needs to recover and
validate a software architecture from an existing system.
For large systems, there is rarely a single person who
knows all the details. Hence, multiple developers need
to work together to reconstruct an accurate architectural
description and to decide which implementation depen-
dencies violate the architectural rules and how to handle
these violations.

There are a few collaborative UML modeling tools,
where different users can work on the same diagrams to
model an architecture [2, 3]. Likewise, there are collabo-
rative integrated development tools (IDE) such as Intelli/J
IDEA with the feature Code With Me, which allow to edit
and debug code collaboratively at the source-code level.
Even though there are several tools to model and validate
an architecture—even in the market place—we are not

ECSA2021 Companion Volume
" koschke@uni-bremen.de (R. Koschke);
marcel@informatik.uni-bremen.de (M. Steinbeck)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

aware of any truly collaborative architecture modeling
and checking tool that enables developers to model and
validate architecture together at the same time, yet at
different locations. Currently, architects and developers
need to use screen sharing and video-conferencing sys-
tems to use such tools remotely. These, however, are very
generic tools with no relation to the actual task at hand
and, hence, are cumbersome to use.

Contributions In this paper, we present our software
visualization tool SEE (for Software Engineering Expe-
rience). SEE is a multi-purpose visualization platform
based on the software-as-a-city metaphor that allows
users (software architects, developers, etc.) at different lo-
cations (i.e., they do not have to be physically in the same
place) to work collaboratively on software architecture
in shared virtual worlds. Within these worlds, all users
have a visual representation—an avatar—and can thus see
each other. In addition, users can talk to each other via an
integrated voice chat. The virtual worlds created by SEE
are dynamic so that users can highlight and change parts
of the visualized software cities, which is visible to the
other users in real-time. SEE can be used from different
hardware devices: desktop computers, tablets, and virtual
reality systems (VR). One of the primary use cases of SEE
is the support of the software reflexion model [4], that is,
the automatic identification of inconsistencies between a
specified software architecture its implementation. This
use case, and how it is implemented in SEE, will be the
central subject of this paper.

Outline The remainder of this paper is structured as
follows. Section 2 presents related research. Section 3
describes SEE and Section 4 how SEE can be used to
support remote collaborative reflexion analysis. Section 5
concludes.

mailto:koschke@uni-bremen.de
mailto:marcel@informatik.uni-bremen.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Virtual room with code cities for different use cases

2. Related Research
Our research focuses on the visualization of software
and software architecture using the software-as-a-city
metaphor with a special emphasis on collaborative vi-
sualizations where users can face each other in shared
virtual worlds from different hardware devices. In this
section, we will present related research of software visu-
alization with regard to the software-as-a-city metaphor,
software visualization in virtual and augmented reality
environments, and collaborative software visualization.

2.1. Software as a City
In addition to the quantitative properties of software (e.g.,
lines of code), the hierarchy (e.g., namespaces) is often
another aspect that needs to be visualized. An early ap-
proach that covers both aspects at the same time is the
so called Tree-map [5] visualization. In Tree-maps the
hierarchy of a software system is depicted with recur-
sively nested rectangles where the area of the innermost
rectangles is proportional to a certain metric. Initially,
Tree-maps were designed as a two-dimensional visual-
ization. However, quickly the idea came up to map an ad-
ditional metric to the height of the rectangles, leading to
three-dimensional blocks. Such three-dimensional Tree-
maps create the impression of a typical North American
city with buildings arranged in a grid. Due to this pic-
torial representation, three-dimensional Tree-maps are
also known as Code-Cities [6]. Code-Cities were quickly
adopted by the research community and are still very
popular today [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26]. Besides the original Tree-
map/Code-City algorithm there are also other layout
methods grounded in the software-as-a-city metaphor,
e.g., the EvoStreets visualization [27]. Using additional
visual attributes, such as colors and textures mapped
onto the surface of the three-dimensional blocks, further
metrics can be expressed in Code-Cities [22]. Relations

between entities (e.g., include dependencies, function
calls, and so on) can be visualized with edges [28]. Hier-
archical edge bundles, as proposed by Holten [29, 30], is
a tried and tested means of diminishing the visual clutter
that occurs when drawing lots of (overlapping) edges.

Code-Cities have long since arrived in practice and
are now used in commercial products to visualize the
change history and code quality of software. Examples
include the software packages from Hello2morrow and
Serene [31]. There is also a plug-in for the widespread
software analysis platform SonarQube, SoftVis3D, which
is based on Tree-maps and EvoStreets [32].

2.2. Software Visualization in AR/VR
As early as 2000 there were considerations to bring Code-
Cities into virtual reality (VR) environments [7, 8]. Then
as today it was hoped that the advantages of VR observed
outside of computer science [33, 34, 35, 36] also apply
in software visualization. Since then, Code-Cities were
used in pseudo 3D (desktop computer monitors) and VR
environments to visualize static [37, 38, 10, 39, 16, 40, 41,
42, 23] as well as dynamic [43, 15, 44, 45, 21] aspects of
software. Studies have shown that head-mounted dis-
plays (HMDs) may have a positive effect on the orienta-
tion [33] and navigation speed [46] of users. That said,
there are also studies where a positive effect could not
be found [47] or where using HMDs had only little ef-
fect [48]. How these different results are to be assessed
is a subject of further research.

2.3. Collaborative Software Visualization
Co-located collaborative software visualization where
people interact with each other physically in the same
place was studied by Isenberg et al. [49, 50] und Anslow
et al. [51, 52]. The authors developed a multi-touch dis-
play mounted onto a table that can be used by several
people (primarily pairs of users) at the same time. One of



the key findings of these studies was that working face-
to-face around the table (i.e., sharing individual findings
and communicating throughout) was a successful way
for the pairs to solve complex problems, and that collab-
orative software visualization should support multiple
users. An early attempt of implementing a distributed
collaborative visualization (i.e., users do not have to be
physically in the same place) in the context of software
comprehension can be found in the work of Kot et al. [53].
Based on the Quake 3 game engine, the authors devel-
oped a shared three-dimensional world where users can
view, move, and arrange source-code files interactively.
Further works in the area of collaborative software visual-
ization are [38, 54, 55, 56, 3]—in a broader sense also [57].
Collaborative software visualization with focus on Code-
Cities in shared virtual words was recently studied by
Zirkelbach et al. [58] and Jung et al. [25]. In both studies
users were represented as abstract avatars in the virtual
world, allowing them to perceive each other and to sup-
port their verbal communication with a simple form of
gesture. This aspect was in particular received positively
in the study by Zirkelbach et al. [58], yet, the participants
would have preferred a more realistic, human represen-
tation.

None of those studies aimed at architecture modeling
and validation, which is the focus of our paper.

3. SEE Software Visualization
SEE (Software Engineering Experience) is a multi-purpose
multi-user software visualization platform built upon
the Unity game engine. The underlying data model vi-
sualized by SEE is a hierarchical graph with attributed
nodes and edges—hierarchical means that nodes can be
nested. Generally, SEE does not make any assumptions
about what nodes, edges, and attributes represent and
thus could be used to visualize anything that can be en-
coded as hierarchical graph. However, the main purpose
of SEE lies on the visualization of aspects related to soft-
ware (e.g., source-code files, packages, components, and
so on) and software development (e.g., change history,
quality metrics, and the like). Graphs can be imported
from GXL files, a standard file format for exchanging
arbitrary graphs that is used both in academia and in-
dustry [59]. The nodes and edges of an imported graph
are visualized as three-dimensional blocks (leaf nodes),
two-dimensional surfaces enclosing blocks (inner nodes),
and splines connecting blocks or surfaces (edges) that
can be hierarchically bundled. The visual components
of the blocks (width, height, depth, and color), surfaces
(shape and color), and splines (thickness, color gradient,
and bundling strategy) can be freely configured based on
the attributes attached to the corresponding nodes and
edges. Using one of the built-in layout engines, blocks

(and thus implicitly also surfaces and splines) can be
arranged automatically—at the moment of writing, SEE
supports Circular Balloon, Circle Packing, Rectangle Pack-
ing, Tree-map, and EvoStreets layouts. That said, it is also
possible to change the position of blocks and splines, and
insert and delete blocks and splines at any time (we will
elaborate on that in Section 4.3).

The entirety of all visualized nodes and edges of a
graph and their visual mappings form a Code-City. That
is, there is a one-to-one relation between an imported
graph and a Code-City. Code-Cities can be placed ar-
bitrarily in the virtual world of SEE. For example, we
created a virtual world—a Unity scene—that reminds one
of a small library. Within this library are different tables
on which a city could be placed as desired. Actually, SEE
allows to visualize multiple cities at once. That is, with
respect to our example, it is possible to import different
graphs (or even the same graph multiple times), config-
ure their visual mappings independently, and place each
of the generated cities on its own table (cf. Figure 1).

4. Telecollaborative Reflexion
If one has an architecture modeling tool, one can share
it via a screen sharing tool. Generally, those generic
screen sharing tools provide very limited modes of in-
teractions. Often only a single person has control over
the screen and everyone is forced to view its content
from the same perspective, that is, the shared content is
identical for everyone. Users cannot take their own per-
spective, see different details, or otherwise interact with
the shown content independently from others. Screen
sharing embedded in video conference systems allows
to also view the other present members of the team, but
just at the edges of the shared content. They may be able
to point to particular areas of interest via their mouse
cursor but this pointing gesture is disconnected from
the small video showing the participant triggering this
gesture. There are first attempts to provide truly collab-
orative UML modeling tools, where different users can
work on the same diagrams [2]. Likewise, there are col-
laborative integrated development tools (IDE) such as
Intelli/J IDEA with the feature Code With Me. Yet, we
are not aware of any collaborative architecture modeling
and checking tool. Moreover, those collaborative coding
or modeling tools do not allow to actually see the other
team members. A lot of information between humans is
exchanged by non-verbal communication, however. For
instance, delayed movements or frowning may express
hesitation or uncertainty.

Our goal is to enable developers in distributed teams
to model and validate software architectures even when
they are not at the same place. To do that we integrate
different technologies ranging from ordinary desktop



computers with 2D display, keyboard, mouse, and cam-
era over tablet computers with touchscreens to modern
hardware for augmented (AR) and virtual reality (VR).
The decisions for our kind of visualization and the pro-
vided interactions are founded on concepts of cognitive
psychology including but not limited to laws of Gestalt,
cognitive schemes, and mirror neurons. In the following,
we will delve into those details.

4.1. Cognitive Foundations
Visualization and interaction should be as intuitive as
possible. Intuition provides insights without inferences
of the conscious mind by drawing on processes that are
entrenched in human cognition [60]. These cognitive
mechanisms should be taken into account in the design
of efficient and effective visualization and interactions.

One such cognitive mechanism are cognitive schemas
that describe associative structures in a human brain by
which knowledge and experience is organized. For in-
stance, if an object is observed, typical perceptions of
how one can interact with this object are activated in the
memory. These associations are not limited to simple
relations; they can also include more complex behavior.
All cognitive schemas have in common that they are trig-
gered by a particular perception, for instance, an object,
a situation, or a sensation. Dominic et al., for instance,
have investigated how the activation of such cognitive
schemas have effected the behavior of participants in
a VR scene [61]. They found that emotional reactions
could be triggered based on a suitable stimulus. Kot et al.
observed in a visualization in VR how the participants
grabbed objects—here representing files—to take those
objects to other present members to show them to others
Kot et al. [53]. The observed behavior has not been fore-
seen, let alone purposefully implemented by the authors.
The behavior just arose from a cognitive schema for small
physical objects that can be grabbed. That means for our
context that we should present objects in a visualization
in a way that triggers the wanted behavior. For instance,
the mapping of implementation elements onto architec-
tural components can be expressed by simply stacking
one on the other. Metaphorically, the architecture is a
city map and an architectural component a district within
this city map. Implementation elements are physical ob-
jects, for instance, blocks that can be grabbed and put on
the map. If an entity is to be re-mapped, it is just moved
to the other place. The possible interaction is naturally
suggested by a human’s experience with physical objects.

Another relevant cognitive mechanism are the laws of
Gestalt, which hold independently of cultural and even
interpersonal differences [62]. The laws of Gestalt are a
set of principles of human perception of viewn sceneries.
For instance, the law of similarity predicts that physically
similar items will be perceived as the same kind of object.

That is, in our context the same kind of implementation
entities, for instance, all methods, should be depicted
alike. The inverse implication of that for us is that it
would be rather misleading if architectural and imple-
mentation components would look alike. Their form and
color and other visual attributes should be different to
make clear that they are different concepts. The law of
proximity states that objects close to each other appear to
form a group. Automatic layout algorithms are generally
agnostic to this law. They place their objects according
to other criteria. For instance, tree-maps just try to save
space and the objects put in close neighborhood have gen-
erally no semantic relation. In our visualization, humans
will model the architecture and in doing so obey to this
law naturally. Moreover, because we have multiple hu-
mans modeling the same architecture together, a process
to reach a consensus is enforced because an object can
be at only one place. Implementation entities are gener-
ally not modeled by humans, they are typically extracted
from the source code through static or dynamic analysis.
They have no initial physical location in 2D or 3D. The
only partial ordering criteria we can extract from the
code is hierarchical nesting (e.g., syntactic nesting, phys-
ical containment in the file system, or type hierarchies),
linear order of declaration within a file, and dependencies
among declarations, e.g., call relations. There are many
layout algorithms that consider hierarchies. For instance,
our current implementation offers tree-maps, EvoStreets,
circle packing, rectangle packing, and balloon layouting.
Moreover, force-directed layouts will group together el-
ements according to their dependencies. While these
algorithms may provide a first good placement of the
elements extracted from the code, they have no deeper
knowledge of the semantics beyond direct dependencies
and hierarchies. For this reason, humans are free to move
the objects in our visualization arbitrarily once they have
been laid out automatically. In particular, when it comes
to the mapping of implementation entities onto archi-
tectural components, they may stack those at arbitrary
places within the boundaries of the visual element repre-
senting the architectural component they are mapped to.
This way, the law of proximity will again hold.

Mirror neurons describe a property of certain neu-
rons that were first detected in brains of monkeys but
were later shown to exist in human brains, too. Cer-
tain neurons, for instance, those responsible to control
a particular movement of the human body are not only
activated when this behavior is to be executed but also
when a human just observes this behavior for another
person [63]. Recent research has shown that this property
is not limited to motor neurons specialized on muscle
control. Even neurons deriving bodily reactions from
certain sensations were shown to have this property [64].
The implication in the context of collaborative visualiza-
tion may be that it could be advantageous to show other



present participants in a visualization as avatars such
that their movements can be observed by the behold-
ers. Triggering their respective mirror neurons could
not only help in learning interactions by example but
also provide non-verbal clues on the sentiment of the
acting person, e.g., hesitant movements indicating uncer-
tainty or forceful movements indicating definiteness or
even anger. Our conjecture of the relevance of showing
the behavior of collaborating partners triggering mirror
neurons is indicated by several studies on collaborative
visualization [58, 49, 51, 52, 25]. In particular the partic-
ipants of the study by Zirkelbach et al. have explicitly
stated that they appreciated the presence of other mem-
bers [58]. That study is interesting in two ways due to
the way the presence of the other participants was vi-
sualized: The participants were drawn only by a virtual
head-mounted display and the two handheld controllers
in VR, not as human-like avatars. This way, others could
observe where someone was looking or where someone
was pointing to with the hand, which was appraised to
be useful by the participants of the study. However, the
participants stated that they would have preferred a more
human-like representation. This outcome is consistent
with studies in robotics which found that more human-
like robots are generally more accepted [65] (up to the
point where these machines become too similar to real
humans [66] and start to frighten humans). To further
explore the advantages of avatars and also to overcome
the said disadvantages of current video conference and
screen sharing systems discussed above, we show the
participants present by way of human avatars.

4.2. Visualization and Interaction
After having introduced some of the foundations of hu-
man cognition influencing our design decision for the
visualization and interaction, we will describe the latter
two in greater detail.

Our early ideas with Code-Cities was to present them
true to scale, that is, the proportions of the human body
and the buildings representing software entities were as
in real world [24, 67, 68, 69]. This causes problems of
orientation due to occlusion and the limitations of the
human short-term memory. While some of that might
be mitigated by mini maps showing the current posi-
tion of a person as in real world, it is still difficult to see
other participants if they are in other parts of the city.
Of course, one could blend them into the visible area of
the beholder either at its edges as in video conference
systems or as part of a hand-held device analogously to
video calls with a smart phone. Yet, that basically means
to virtualize video conference systems in a virtual world,
and we wanted to overcome the problems of those. Mini
maps and embedded video conference calls are just tech-
nical crutches to remedy bad design decisions. Moreover,

cognitive schemas will not be triggered by this design.
Humans would not be tempted to move around buildings
that are magnitudes larger than themselves.

Our new design is more similar to approaches to soft-
ware visualization in co-located environments. In pre-
vious studies on collaborative visualization, researchers
have experimented with large multi-touch displays inte-
grated in tables for the joint interaction with software vi-
sualizations at the same physical location [49, 50, 51, 52].
The human beholders group around the physical table
(display) and can see both the visualization and the other
participants at the same time. They can communicate
with each other both verbally and non-verbally, which
has been observed as a great advantage in these studies.
Our approach can be viewed as a virtualization of this
setting.

We provide a virtual room with several tables, each
showing one particular software architecture and its im-
plementation. Large organizations may have multiple
applications and all of them could be made available in
the same virtual room. This way participants could walk
from table to table and work on different programs or
just compare these. Each program is represented by one
Code-City and generally there is one Code-City on each
table. Participants are, however, able to take a Code-City
to another table if they want to make comparisons be-
tween different programs. The Code-Cities are shown in
miniature. They can be scaled and zoomed, however. Un-
like the physical monitors for co-located environments,
there are no limits for scaling enforced; participants will
stop scaling by themselves at the point when they think it
becomes useless. And also unlike the physical displays in
co-located environments, our visualization has three di-
mensions. In particular, for implementation components,
height may have an important meaning, for instance,
the size of a class. If they are embedded in architectural
components, it becomes immediately visible which ar-
chitectural components tend to have god classes.

Another advantage over physical multi-touch tables
is that we can individualize what can be seen for each
beholder. We take great care that the virtual room is
consistent among all participants; for instance, if one
participant grabs an object, this object must move in all
representations of the virtual room for all participants.
Thus, our visualization is essentially a distributed real-
time application. We even have a global undo/redo his-
tory identifying and prohibiting conflicting actions, e.g.,
one participant renames an element and the other one re-
moves the same element. Nonetheless, there are aspects
for which it makes sense to drawn them specifically to
one beholder. For instance, on physical multi-touch ta-
bles, labels necessarily have exactly one orientation. A
person on the opposite side will have difficulties to read
them. Our virtual labels always face the beholder. More-
over, participants can query additional details on demand,



for instance, the source code of an implementation entity
presented in a code viewer or additional metrics shown
in a scatter plot. These additional views can be shared
or not, depending upon whether the beholder has only
a personal interest or whether she or he wants to talk
about it. If they were always shown as it would be the
case for physical multi-touch tables, they could distract
others.

The participants are visible as human avatars and can
communicate via voice to each other. The avatar’s lips are
synchronized with the spoken word so that it can be seen
who is talking. To synchronize the movement of a human
in the real world with his or her avatar, we leverage the
position data of the head-mounted display and hand-held
controllers in VR. In case of an ordinary desktop envi-
ronment, we can derive the viewing angle of the avatar’s
head by the viewpoint (in game-engine lingo, the game
camera angle) of his human counterpart. We currently
do not have sensors for the human’s hands in desktop
environments. We plan to derive this information from
3D depth cameras or even ordinary cameras with suitable
image-recognition software or physical trackers such as
HTC’s Vive trackers. Neither do we have a way to cap-
ture, transfer, and present mimics yet. Again, we will
attempt to capture this data through cameras and ide-
ally present them as real-time videos on the avatar’s face.
There are already commercial applications1 for animating
avatars according to the mimics of a human face showing
that this is doable.

4.3. Virtual Reflexion Analysis
We are using the reflexion analysis [4, 70, 71] to recon-
struct and validate the software architecture. This section
describes in more detail how each step is implemented in
terms of the design of the visualization and interaction.

Architecture modeling The first step of the reflexion
analysis is to create a model of the architecture. Concep-
tually, the model forms a graph where nodes represent
architectural components and directed edges specify ex-
pected dependencies between the connected components.
Nodes can be nested in other nodes expressing hierar-
chical systems [70]. Our users can create such models
on various devices, namely, ordinary desktop computers
with mouse interactions, tablets with a pen recognizing
shapes and edge-drawing actions (a user can virtually
draw an architecture with the pen), and with physical ac-
tions with the handheld controllers in VR environments.
We plan to support MicroSoft’s HoloLens for AR, too. For
desktops, we also experimented with a hand-tracking de-
vice named Leap Motion enabling a user to create nodes
and edges with hand gestures. The problem with this

1https://facewaretech.com

approach is that the device has a limited range of visibil-
ity forcing a user’s hands to be held out uncomfortably,
gesture detection can be difficult if fingers occlude each
other, and the precision was not enough for fine interac-
tions through direct manipulation with selected objects.

The architecture can be modeled on the plane of a ta-
ble around which all participants group. The creation
of objects is instantaneous on all connected computers
so that all participants always have the same view. If
hand-tracking data is available, all participants can ob-
serve who is creating the new node or edge by visually
following the hand. New and deleted nodes and edges
are animated so that changes are highlighted to every-
one present. It is important that everyone can see who
initiated a change even before the change is actually fi-
nalized so that they can possibly intervene and that all
recent changes are obvious. To make sure, the architec-
ture is syntactically consistent (e.g., there are no dangling
edges), conflicting changes are detected and refused.

Users want to name the nodes they created, which can
be a challenge in VR. We offer a virtual keyboard, but the
haptic feedback is of course missing. For this reason, we
allow a user to dictate a name for a new node through
voice recognition, which works surprisingly well when
the name is not cryptic—and maybe it is better to avoid
cryptic names anyhow. At least, the recognized name
may a good starting pointing that can then be corrected
by way of virtual keyboard keeping the necessary virtual
key strokes at a minimum. Similarly to Seipel et. [72],
we also offer a conversational interface to initiate other
actions (e.g., for showing the code of a component) to
free the user from the need to use a keyboard.

Mapping the implementation onto the architec-
ture Once the architecture model is created to the point
that one can move on to relate the implementation com-
ponents to the architecture components they implement,
users can drag and drop implementation components
onto architecture components. This kind of mapping is
expressed through nesting, that is, the objects represent-
ing an implementation entity are stacked on the area of
an object representing an architectural component. This
interaction leverages the conceptual schemas (small ob-
jects can be grabbed and moved) and the laws of Gestalt
(an implementation entity is enclosed by an architecture
component). It also leverages the mirror neurons as the
physical action of the movement can be observed by the
other participants.

Initially, the implementation is drawn as a Code-City
next to the space where the architecture model is created
by the user. Because the Code-City’s elements are ex-
tracted by a static analysis, an automated layout will first
decide how to place them. The user has the choice among
various layouts we offer. The implementation nodes can
afterwards be moved around within the limits of their

https://facewaretech.com


containing node. The user can select the code metrics
determining the width, height, depth, and color range
of the nodes. All nodes of the same type (e.g., classes)
have the same shape, which can be selected by the user,
too. The type of the edges is depicted by color. Their
direction is shown as a color gradient of the chosen color.
Many other applications use arrow heads instead, but
they may overlap for nodes with many connecting edges.
Edges are laid out through hierarchical bundling [29],
which helps to reduce visual clutter when there are many
dependencies. Incoming and outgoing direct and transi-
tive edges can be hidden or highlighted on demand. The
source code leading to a particular node or edge can be
opened in an in-game window with syntax highlighting.

To map an implementation entity onto the architecture,
the user just grabs the object and drags it to the archi-
tecture component. This constitutes an explicit mapping.
All descendants of the moved object in the node hierarchy
are moved along with it—unless they have been mapped
before. Those are implicitly mapped. If a user wants to
map the implicitly mapped entities to somewhere else, he
or she just moves its node in the architecture to another
target. Again, syntactic checks are in place to make sure
that an implementation node cannot be moved to another
implementation node (unless that one is its original par-
ent), because that would create a node hierarchy that is
inconsistent to the code.

Nodes that were mapped explicitly or implicitly are
marked visually as such. The mapping creates a logi-
cal copy of a node when it was moved into an archi-
tecture node. Its original representation in the separate
Code-City for the implementation becomes transparent
to make clear that it has already been mapped. If either of
the two nodes is selected, its counterpart is selected, too,
to make their connection clear. Preserving the original
node in the implementation representation helps to study
its relation to other nodes in the context of the original
implementation, which may be a useful information for
the decision where to map its neighbors. It also helps to
assess the progress of the mapping process.

Reflexion analysis As soon as two ends of an imple-
mentation dependency (source and target nodes of the
corresponding edge) are mapped (implicitly or explicitly),
the automated reflexion analysis can determine whether
the implementation dependency is allowed (i.e., covered
by a corresponding architecture dependency) or repre-
sents a divergence (i.e., there is no such corresponding
architecture dependency allowing it). Likewise, initially
when nothing has been mapped, all architecture depen-
dencies are so called absences, that is, there is no im-
plementation dependency confirming them. Whenever
nodes are mapped, these could turn into so called con-
vergences, that is, there is actually an implementation
dependency confirming them. We are using our incre-

mental reflexion analysis [71] to compute the effect of
each mapping decision thereby keeping the effort of the
recalculation to a minimum. This on-the-fly computation
also supports what-if scenarios, where a user can drag an
implementation node over different architecture nodes
to see the possible effect of a mapping immediately. All
edges effected by a new mapping are animated so that
the mapping effects can be observed among the many
other edges present in the scene.

Edges in both the implementation and architecture
are typed. Typed dependencies in an architecture make
sense, for instance, to allow calls between components
but not accesses to attributes. As mentioned above, col-
ors are used for the type of edges. As a consequence,
edge color cannot be used to distinguish between imple-
mentation and architecture dependencies. To show this
distinction, architecture dependencies are drawn noti-
cably thicker than implementation edges. For realistic
systems, there are many more implementation than ar-
chitecture edges and the focus in this visualization is the
architecture, hence, it makes sense to show the architec-
ture dependencies more prominently.

The remaining question is now: how to show whether
an edge is allowed, divergent, absent, or convergent when
color is no option because it is already used for edge
types? Animation is already used for changed edges and
animation in generally should be kept to a minimum;
otherwise it may become annoying. We see no need to
highlight allowed implementation edges and convergent
architecture edges, because everything is in order with
these. A user wants to see primarily where implementa-
tion and architecture differ, that is, divergent and absent
edges should be easy to spot. Some tools decorate edges
with a symbol to mark them as divergent or absent, but
we find such decorations be difficult to relate to a par-
ticular edge when there are many edges, in particular,
if edge bundling is applied. For this reason, we are us-
ing a radiance effect and dashed lines for absences and
divergences.

Added value of architecture Architecture confor-
mance checking is an important measure to ensure ar-
chitecture and implementation are in sync, but there is
potential for more added value. Architecture is a suitable
abstraction to discuss other aspects of the implementa-
tion within distributed teams. Because the implementa-
tion is visually embedded in the architecture in our visu-
alization it is easy to relate details of the implementation
to the architecture. For instance, we support dynamic
analysis where a user can trace the control flow by way of
animated edges for dynamic calls, which raises the level
of abstraction in the context of debugging. This way, the
static architecture gets also a dynamic view. Similarly,
we visualize performance data by way of spheres above
methods whose radius represents the CPU time spent



within those and the number of calls by way of a color
gradient, which allows to relate performance bottlenecks
to the architecture. Test coverage metrics can be visu-
alized through coloring such that the untested parts of
the architecture can be spotted easily. Also, we show the
change history along with the trends in code erosion as
a kind of movie that allows how the system evolved both
in terms of changes and quality. The implementation
embedded in the architecture drawn as a Code-City is
a uniform representation in all these development prac-
tices and may provide insights that can be discussed in a
distributed team.

5. Conclusions
In this paper, we have described our software visualiza-
tion platform SEE and how it can be used to support the
reflexion analysis collaboratively for distributed teams.
We explained the most important design decisions for
the visualization and interaction based on current knowl-
edge of cognitive psychology. It is still work in progress.
As a next step, we plan to evaluate our design decisions
empirically.

References
[1] C. Ebert, M. Kuhrmann, R. Prikladnicki, Global

software engineering: evolution and trends, in:
International Conference on Global Software Engi-
neering, 2016, pp. 144–153.

[2] M. Magin, S. Kopf, A Collaborative Multi-Touch
UML Design Tool, Technical Report TR-2013-001,
University of Mannheim, Germany, 2013.

[3] M. Ferenc, I. Polasek, J. Vincur, Collaborative mod-
eling and visualization of software systems using
multidimensional UML, in: IEEE Working Confer-
ence on Software Visualization, 2017, pp. 99–103.

[4] G. C. Murphy, D. Notkin, K. Sullivan, Software re-
flexion models: Bridging the gap between source
and high-level models, in: ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering,
ACM Press, 1995, pp. 18–28.

[5] B. Johnson, B. Shneiderman, Tree-maps: A space-
filling approach to the visualization of hierarchical
information structures, in: Proceedings of the Con-
ference on Visualization, IEEE Computer Society
Press, 1991, pp. 284–291.

[6] K. Andrews, J. Wolte, M. Pichler, Information pyra-
mids: A new approach to visualising large hierar-
chies, in: IEEE Conference on Visualization, 1997,
pp. 49–52.

[7] C. Knight, M. Munro, Virtual but visible software,
in: International Conference on Information Visu-
alization, IEEE, 2000, pp. 198–205.

[8] S. M. Charters, C. Knight, N. Thomas, M. Munro,
Visualisation for informed decision making; from
code to components, in: International Conference
on Software Engineering and Knowledge Engineer-
ing, 2002, pp. 765–772.

[9] M. Balzer, A. Noack, O. Deussen, C. Lewerentz, Soft-
ware landscapes: Visualizing the structure of large
software systems, in: IEEE TCVG Symposium on
Visualization, 2004, pp. 261–266.

[10] T. Panas, R. Berrigan, J. Grundy, A 3d metaphor
for software production visualization, in: Inter-
national Conference on Information Visualization,
IEEE, 2003, pp. 314–319.

[11] A. Marcus, L. Feng, J. I. Maletic, 3D representations
for software visualization, in: ACM International
Symposium on Software Visualization, 2003, pp.
27–36.

[12] R. Wettel, M. Lanza, Visualizing software systems
as cities, in: IEEE International Workshop on Visu-
alizing Software for Understanding and Analysis,
2007, pp. 92–99.

[13] R. Wettel, M. Lanza, Codecity: 3d visualization of
large-scale software, in: Companion of the 30th
International Conference on Software Engineering,
ACM, 2008, pp. 921–922.

[14] R. Wettel, M. Lanza, Visual exploration of large-
scale system evolution, in: IEEE Working Confer-
ence on Reverse Engineering, 2008, pp. 219–228.

[15] F. Fittkau, S. Roth, W. Hasselbring, ExplorViz: vi-
sual runtime behavior analysis of enterprise appli-
cation landscapes, in: European Conference on
Information Systems, 2015, pp. 1–13.

[16] F. Fittkau, A. Krause, W. Hasselbring, Exploring
software cities in virtual reality, in: IEEE Work-
ing Conference on Software Visualization, 2015, pp.
130–134.

[17] G. o. Balogh, A. Szabolics, A. Beszédes,
Codemetropolis: Eclipse over the city of source
code, in: IEEE International Working Conference
on Source Code Analysis and Manipulation, 2015,
pp. 271–276.

[18] L. Merino, M. Ghafari, C. Anslow, O. Nierstrasz,
Cityvr: Gameful software visualization, in: IEEE
International Conference on Software Maintenance
and Evolution (TD Track), 2017, pp. 633–637.

[19] L. Merino, A. Bergel, O. Nierstrasz, Overcoming
issues of 3d software visualization through immer-
sive augmented reality, in: IEEE Working Confer-
ence on Software Visualization, 2018, pp. 54–64.

[20] W. Scheibel, C. Weyand, J. Döllner, Evocells - A
treemap layout algorithm for evolving tree data,
in: International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory
and Applications, 2018, pp. 273–280.

[21] L. Merino, M. Hess, A. Bergel, O. Nierstrasz,



D. Weiskopf, Perfvis: Pervasive visualization in im-
mersive augmented reality for performance aware-
ness, in: ACM/SPEC International Conference on
Performance Engineering, 2019, pp. 13–16.

[22] D. Limberger, W. Scheibel, J. Döllner, M. Trapp, Ad-
vanced visual metaphors and techniques for soft-
ware maps, in: International Symposium on Visual
Information Communication and Interaction, 2019,
pp. 1–8.

[23] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel,
M. Misiak, Visualization of software architectures
in virtual reality and augmented reality, IEEE
Aerospace Conference (2019) 1–12.

[24] M. Steinbeck, R. Koschke, M.-O. Rüdel, How
EvoStreets are observed in three-dimensional and
virtual reality environments, in: IEEE International
Conference on Software Analysis, Evolution and
Reengineering, 2020, pp. 332–343.

[25] F. Jung, V. Dashuber, M. Philippsen, Towards col-
laborative and dynamic software visualization in
vr, in: Proceedings of the International Joint Con-
ference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications - Volume
3: IVAPP, INSTICC, SciTePress, 2020, pp. 149–156.

[26] V. Dashuber, M. Philippsen, J. Weigend, A layered
software city for dependency visualization, in: In-
ternational Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Ap-
plications, volume 3, SciTePress, 2021, pp. 15–26.

[27] F. Steinbrückner, C. Lewerentz, Representing de-
velopment history in software cities, in: ACM In-
ternational Symposium on Software Visualization,
ACM, 2010, pp. 193–202.

[28] R. Koschke, Software visualization in software
maintenance, reverse engineering, and reengineer-
ing: A research survey, Journal on Software Main-
tenance and Evolution 15 (2003) 87–109.

[29] D. H. R. Holten, Hierarchical edge bundles: Visual-
ization of adjacency relations in hierarchical data,
IEEE Transactions on Visualization and Computer
Graphics 12 (2006) 741–748.

[30] D. H. R. Holten, Visualization of graphs and trees
for software analysis, Ph.D. thesis, Technical Uni-
versity of Delft, 2009.

[31] J. Bohnet, Visualization of Execution Traces and its
Application to Software Maintenance, Dissertation,
Hasso-Plattner-Institut, Universität Potsdam, 2010.

[32] SoftVis3D, Softvis3d website, https://softvis3d.com,
2021. Online; accessed 30-June-2021.

[33] S. S. Chance, F. Gaunet, A. C. Beall, J. M. Loomis,
Locomotion mode affects the updating of objects
encountered during travel: The contribution of
vestibular and proprioceptive inputs to path integra-
tion, Presence: Teleoper. Virtual Environ. 7 (1998)
168–178.

[34] D. A. Bowman, E. T. Davis, L. F. Hodges, A. N. Badre,
Maintaining spatial orientation during travel in an
immersive virtual environment, Presence: Teleoper.
Virtual Environ. 8 (1999) 618–631.

[35] B. E. Riecke, D. W. Cunningham, H. H. Bülthoff,
Spatial updating in virtual reality: the sufficiency
of visual information, Psychological Research 71
(2007) 298–313.

[36] J. W. Regian, W. L. Shebilske, J. M. Monk, Virtual
reality: An instructional medium for visual-spatial
tasks, Journal of Communication 42 (1992) 136–149.

[37] N. Capece, U. Erra, S. Romano, G. Scanniello, Visu-
alising a software system as a city through virtual
reality, in: L. T. De Paolis, P. Bourdot, A. Mongelli
(Eds.), Augmented Reality, Virtual Reality, and Com-
puter Graphics, Springer International Publishing,
Cham, 2017, pp. 319–327.

[38] J. I. Maletic, J. Leigh, A. Marcus, G. Dunlap, Visual-
izing object-oriented software in virtual reality, in:
International Workshop on Program Comprehen-
sion, 2001, pp. 26–35.

[39] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen,
R. Vuduc, Communicating software architecture
using a unified single-view visualization, in: IEEE
International Conference on Engineering Complex
Computer Systems, IEEE, 2007, pp. 217–228.

[40] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner,
J. Laviola, Code park: A new 3d code visualization
tool, in: IEEE Working Conference on Software
Visualization, IEEE, 2017, pp. 43–53.

[41] L. Merino, J. Fuchs, M. Blumenschein, C. Anslow,
M. Ghafari, O. Nierstrasz, M. Behrisch, D. A. Keim,
On the impact of the medium in the effectiveness
of 3d software visualizations, in: IEEE Working
Conference on Software Visualization, IEEE, 2017,
pp. 11–21.

[42] A. Schreiber, M. Brüggemann, Interactive visual-
ization of software components with virtual reality
headsets, in: IEEE Working Conference on Soft-
ware Visualization, IEEE, 2017, pp. 119–123.

[43] J. Waller, C. Wulf, F. Fittkau, P. Döhring, W. Hassel-
bring, Synchrovis: 3d visualization of monitoring
traces in the city metaphor for analyzing concur-
rency, in: IEEE Working Conference on Software
Visualization, 2013, pp. 1–4.

[44] K. Ogami, R. G. Kula, H. Hata, T. Ishio, K. Mat-
sumoto, Using high-rising cities to visualize perfor-
mance in real-time, in: Software Visualization (VIS-
SOFT), 2017 IEEE Working Conference on, IEEE,
2017, pp. 33–42.

[45] F. Fernandes, C. S. Rodrigues, C. Werner, Dynamic
analysis of software systems through virtual reality,
in: Symposium on Virtual and Augmented Reality,
2017, pp. 331–340. In Spanish.

[46] R. A. Ruddle, S. J. Payne, D. M. Jones, Navigating

https://softvis3d.com


large-scale virtual environments: what differences
occur between helmet-mounted and desk-top dis-
plays?, Presence: Teleoperators & Virtual Environ-
ments 8 (1999) 157–168.

[47] B. Sousa Santos, P. Dias, A. Pimentel, J.-W. Bagger-
man, C. Ferreira, S. Silva, J. Madeira, Head-mounted
display versus desktop for 3d navigation in virtual
reality: A user study, Multimedia Tools and Appli-
cations 41 (2009) 161–181.

[48] R. A. Ruddle, P. Péruch, Effects of proprioceptive
feedback and environmental characteristics on spa-
tial learning in virtual environments, International
Journal of Human-Computer Studies 60 (2004) 299–
326.

[49] P. Isenberg, D. Fisher, M. R. Morris, K. Inkpen Quinn,
M. Czerwinski, An exploratory study of co-located
collaborative visual analytics around a tabletop dis-
play, IEEE Symposium on Visual Analytics Science
and Technology (2010) 179–186.

[50] P. Isenberg, D. Fisher, S. A. Paul, M. R. Morris,
K. Inkpen, M. Czerwinski, Co-located collabora-
tive visual analytics around a tabletop display, IEEE
Transactions on Visualization and Computer Graph-
ics 18 (2012) 689–702.

[51] C. Anslow, S. Marshall, J. Noble, R. Biddle, Source-
vis: Collaborative software visualization for co-
located environments, in: IEEE Working Confer-
ence on Software Visualization, 2013, pp. 1–10.

[52] C. Anslow, Reflections on collaborative software
visualization in co-located environments, in: IEEE
International Conference on Software Maintenance
and Evolution, 2014, pp. 645–650.

[53] B. Kot, B. Wuensche, J. Grundy, J. Hosking, Infor-
mation visualisation utilising 3d computer game
engines case study: A source code comprehension
tool, in: ACM SIGCHI New Zealand Chapter’s
International Conference on Computer-Human In-
teraction: Making CHI Natural, 2005, pp. 53–60.

[54] M. D’Ambros, M. Lanza, A flexible framework to
support collaborative software evolution analysis,
in: European Conference on Software Maintenance
and Reengineering, 2008, pp. 3–12.

[55] M. D’Ambros, M. Lanza, Distributed and collabo-
rative software evolution analysis with Churrasco,
Science of Computer Programming 75 (2010) 276–
287.

[56] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen,
R. Vuduc, Communicating software architecture
using a unified single-view visualization, in: IEEE
International Conference on Engineering Complex
Computer Systems, 2007, pp. 217–228.

[57] E. Stroulia, I. Matichuk, F. Rocha, K. Bauer, In-
teractive exploration of collaborative software-
development data, in: IEEE International Confer-
ence on Software Maintenance, 2013, pp. 504–507.

[58] C. Zirkelbach, A. Krause, W. Hasselbring, Hands-
On: Experiencing Software Architecture in Virtual
Reality, Research Report 1809, Christian-Albrechts-
Universität zu Kiel, 2019.

[59] R. Holt, A. Winter, A. Schürr, GXL: toward a stan-
dard exchange format, in: IEEE Working Confer-
ence on Reverse Engineering, 2000, pp. 162–171.

[60] C. G. Jung, Gesammelte Werke, Band 6: Psycholo-
gische Typen, Walter Verlag, 1995, p. 474 f.

[61] J. Dominic, B. Tubre, J. Houser, C. Ritter, D. Kunkel,
P. Rodeghero, Program comprehension in virtual
reality, in: Proceedings of the 28th International
Conference on Program Comprehension, 2020, pp.
391–395.

[62] W. MacNamara, Evaluating the effectiveness of
the gestalt principles of perceptual observation for
virtual reality user interface design (2017).

[63] M. Fabbri-Destro, G. Rizzolatti, Mirror neurons and
mirror systems in monkeys and humans, Physiol-
ogy 23 (2008) 171–179.

[64] F. De Vignemont, T. Singer, The empathic brain:
how, when and why?, Trends in cognitive sciences
10 (2006) 435–441.

[65] A. Prakash, W. A. Rogers, Why some humanoid
faces are perceived more positively than others:
Effects of human-likeness and task, International
Journal of Social Robotics 7 (2015) 309–331.

[66] M. Mori, K. F. MacDorman, N. Kageki, The uncanny
valley [from the field], IEEE Robotics & Automation
Magazine 19 (2012) 98–100.

[67] R. Koschke, M. Steinbeck, Clustering paths with dy-
namic time warping, in: IEEE Working Conference
on Software Visualization, 2020, pp. 89–99.

[68] M. Steinbeck, R. Koschke, M.-O. Rüdel, Comparing
the EvoStreet visualization technique in two- and
three-dimensional environments—a controlled ex-
periment, in: International Conference on Program
Comprehension, 2019, pp. 231–242.

[69] M. Rüdel, J. Ganser, R. Koschke, A controlled exper-
iment on spatial orientation in VR-based software
cities, in: IEEE Working Conference on Software
Visualization, 2018, pp. 21–31.

[70] R. Koschke, D. Simon, Hierarchical reflexion mod-
els, in: IEEE Working Conference on Reverse Engi-
neering, 2003, pp. 36–45.

[71] R. Koschke, Incremental reflexion analysis, Journal
on Software Maintenance and Evolution 25 (2013)
601–637.

[72] P. Seipel, A. Stock, S. Santhanam, A. Baranowski,
N. Hochgeschwender, A. Schreiber, Adopt-
ing conversational interfaces for exploring OSGi-
based software architectures in augmented reality,
IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE) (2019) 20–21.


	1 Introduction
	2 Related Research
	2.1 Software as a City
	2.2 Software Visualization in AR/VR
	2.3 Collaborative Software Visualization

	3 SEE Software Visualization
	4 Telecollaborative Reflexion
	4.1 Cognitive Foundations
	4.2 Visualization and Interaction
	4.3 Virtual Reflexion Analysis

	5 Conclusions

