CEUR-WS.org/Vol-2978/saml-paperl.pdf

Mapping Program Elements to Layers using Centrality
Measures and Machine Learning Techniques

Sanjay B Thakre, Arvind W Kiwelekar

Department of Computer Engineering, Dr Babasaheb Ambedkar Technological University, Lonere-Raigad, 402103, India

Abstract

The necessity of explicit architecture descriptions for communicating system functionalities and system maintenance activities
has been continuously emphasized. This paper presents an approach to extract layering information, a form of architecture
descriptions, using the centrality measures from Social Network Analysis theory and supervised machine learning algorithms.
The layer recovery approach presented in this paper works in two phases. The first phase calculates centrality measures
for each program element in an application. The second phase assumes that the application has been implemented around
the layered architecture style and maps program elements to appropriate layers. Two techniques for mapping program
elements to layers are presented. The first technique maps program elements to layer using pre-defined rules, while the
second technique learns the mapping rules from a pre-labelled data set. The paper presents the evaluation of both approaches.

Keywords
Layered Architecture Style, Architecture Descriptions, Architecture Recovery, Centrality Measures, Module Dependency

View, Supervised Classification.

1. Introduction

The value of explicit software architecture has been in-
creasingly recognized for software maintenance and evo-
lution activities [1]. Especially architecture descriptions
in terms of high-level abstractions such as patterns, styles
and views have been found as a valuable tool to commu-
nicate system functionalities effectively [2, 3]. Despite
the numerous benefits, a legacy or open-source software
system often lacks such kind of architecture descriptions.
Moreover, when such architecture descriptions are avail-
able, they are not aligned with the latest version [3].

A lightweight architecture recovery approach that ap-
proximately represents a system decomposition may be
more convenient than sophisticated architecture recov-
ery techniques in such situations. Such a light approach
shall quickly extract relevant information necessary to
build a system decomposition so that it can provide much-
needed assistance to software architects dealing with re-
engineering or modernization of existing systems, thus
increasing their productivity.

Intending to design a lightweight approach, this pa-
per presents an architecture recovery to extract layered
decomposition of an implemented system. The method
uses centrality measures from the theory of Social Net-
work Analysis [4] to analyze software structure formed

ECSA2021 Companion Volume, Robert Heinrich, Raffaela Mirandola
and Danny Weyns, Vixjo, Sweden, 1317 September, 2021

@) mail2sbt@gmail.com (S.B. Thakre); awk@dbatu.ac.in

(A. W. Kiwelekar)

&} https://awk-net.group/ (A. W. Kiwelekar)

@ 0000-0002-9647-6403 (S.B. Thakre); 0000-0002-3407-0221

(A. W. Kiwelekar)

e Commons L oo 19 s (OB 1y

=== CEUR Workshop Proceedings (CEUR-WS.org)

by dependency relationship. Three observations drove
the rationale behind using centrality measures for archi-
tecture extraction: (i) Most of these measures provide a
highly intuitive and computationally simple way to ana-
lyze interactions when a graph represents the structure
of a system. (ii) These measures quantify the structure of
a system at multiple levels, i.e., at a particular node level,
concerning other nodes in the graph, and at a group of
nodes or communities. (iii) These measures support the
development of data-driven approaches to architecture
recovery. Hence such approaches can learn the rules of
architecture recovery from given data. The approach
recovers layering information in two phases. In the first
phase, a centrality score is assigned to each program
element. We assume that system functionalities are de-
composed among multiple layers, and so in the second
phase, a layer is assigned to each program element.

The paper contributes to the existing knowledge base
of the architecture recovery domain in the following
ways. (1) It demonstrates the use of centrality measures
to recover layering information. (2) It describes a data-
driven approach to mapping program elements to layers
using supervised classification algorithms. (3) It presents
an evaluation of supervised classification algorithms to
extract layering information. The rest of the paper is
organized as follows: Section II defines various centrality
measures. Section III describes the central element of the
approach. The algorithmic and data-driven approaches to
the problem of layer assignment are explained in Section
IV. The evaluation of the approach is presented in Section
V. Section VI puts our approach in the context of existing
approaches. Finally, the paper concludes in Section VIL

mailto:mail2sbt@gmail.com
mailto:awk@dbatu.ac.in
https://awk-net.group/
https://orcid.org/0000-0002-9647-6403
https://orcid.org/0000-0002-3407-0221
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Social Network Analysis
Measures

The theory of Social Network Analysis (SNA) provides a
generic framework to analyze the structure of complex
systems. It includes a rich set of measures, models, and
methods to extract the patterns of interactions among
systems’ elements. A complex system is expressed as
a network of nodes and edges to support systems from
diverse application domains.

A few examples of complex systems that have been
analyzed with the help of SNA include communities on
social media platforms [5], and neural systems[6]. The
techniques from SNA have been applied to control the
influence of diseases [7] to understand biological systems
[8], and to investigate protein interactions [9]. In these
applications of SNA, a complex system is represented as
a graph, and then they are analyzed through measures
such as centrality, scale-free, small world, and community
structure [10, 11, 12, 13]. Some of these commonly used
SNA measures relevant to our study are described below.

The theory of Social Network Analysis (SNA) provides
a range of measures with varying levels. Some are ap-
plied at the node-level while others are applied at the
network-level. The node-level measures are calculated
from the nodes which are directly connected to a given
node. The centrality measures are the node-level mea-
sures quantifying the importance of an individual node
in the network. A central node is an influential node
having significant potential to communicate and access
information. There exists different centrality measures,
and they are derived from the connections to a node, po-
sition of a node in the network, and relative importance
of nodes.

2.1. Degree centrality

This measure determines a central node based on the
connections to individual nodes. A node with a higher
degree in a network is considered the most influential one.
In a directed graph, two different centrality measures
exist in-degree and out-degree based on the number of
incoming and outgoing edges, respectively. The degree
centrality, Cp(v), of a node, v, is equal to the number of its
connections, deg(v), normalized NCp to the maximum
possible degree of the node.

Cp(v) = deg(v)

_ Cp(v) _ deg(v)
==

1

NCp

@

n—1

2.2. Closeness centrality

This measure identifies an influential node in terms of a
faster and broader spread of information in a network.

The influential nodes are characterized by a smaller inter-
node distance which signifies the faster transfer of in-
formation. The closeness centrality is derived from the
average distance from a node to all the connected nodes
at different depths. However, the distance between the
disconnected components of the network is infinite, and
hence it is excluded. For the central node, the average
distance would be small and is calculated as the inverse
of the sum of the distances to all other nodes (d,,,). The
normalized closeness (NCp) is in the range from 0 to 1,
where 0 represents an isolated node, and 1 indicates a
strongly connected node.

)= Y () 3)

n

D)

©

2.3. Betweenness centrality

This measure identifies those central nodes which are
responsible for connecting two or more components of
the network. Removal of such a central node would mean
a disconnection of the complete network. Hence, these
nodes act as a bridge to pass the information [12, 14].
Betweenness centrality (Cg(v) is defined as the number
of shortest paths passing through a node v.

csm = Y, 2

sevet Ist

®)

where, oy is the total number of shortest paths from a
node s to t and oy(v) is the number of paths that pass
through v. The relative betweenness centrality, C};(v),
of any node in a graph with respect to the maximum
centrality of the node is calculated from Cg(v).

2Cp(v)

Ch(v) = ——BY)
5(V) n?—3n+2

(6)

2.4. Eigenvector centrality

The Eigenvector centrality is a relative centrality mea-
sure, unlike the last three measures that are absolute. The
Eigenvector centrality calculation depends on the largest
real Eigenvalue present in the symmetric adjacency ma-
trix. The centrality of a node vis proportional to the sum
of the centralities of the nodes connected to it [15, 12].

n
My =) ay; ()
j=1

In general, it requires the solution of the equation
Av = Alvwhere A is an adjacency matrix.

Figure 1: An Example of Class Dependencies with and their centrality scores.

Layer 2 | Class A || Class B || Class C | PID in-degree | out-degree | Cp(v) | Cp(v) | Cc(v) v
T N 5 Class A 0 3 3 0 0.71 0
Class B 0 1 1 0 0.5 0
\ % Class C 1 1 2 2 0.6 0.055
; Class D 2 2 4 2.5 1 0.27
Layer1 | |ChssD Class E Class E 2 3 5 5.5 0.8 | 0.0055
; Class F 3 0 3 0 0 1
Class G 2 0 2 0 0 0.99
P T e g B e I
tavero | [caser | [cass | Layer 0 5 0 5 0 0 1

Figure 1 shows the centrality scores of various pro-
gramming elements calculated by considering the depen-
dencies as shown in the figure. Here, it is to be noted
that centrality scores can be calculated at different granu-
larity levels, i.e., at the object, method, class, package, or
logical layer. In the figure, centrality scores are computed
at class and layer level. Here, we have considered a layer
as a logical encapsulation unit, loosely holding multiple
classes.

3. Approach

The broad objective of the approach is to extract high-
level layering information, a form of architecture descrip-
tions, from the implementation artefacts so that software
architects can perform the analysis specific to layer archi-
tecture style. In this paper, we demonstrate our approach
with the help of implementation artefacts available in a
Java-based system. The method assumes that a system
under study is implemented around the layered archi-
tecture style. Software maintenance engineer can verify
such assumptions from the earlier documentation of the
system when available. As shown in Figure 2, the ap-
proach consists of following two phases.

1. Dependency Network Builder and Analysis:
This phase retrieves the dependencies present
among implementation artefacts. For a Java-
based system, this phase takes Java or Jar files
as an input and generates a dependency network.
The programming elements such as Classes, In-
terfaces, and Packages are the nodes of the net-
work and the Java relationships such as extends,
implements, and imports are the edges in the de-
pendency network. The output of this stage is
represented as a graph in Graph Modeling Lan-
guage (GML). In the second stage, a centrality
score to each node is assigned. The centrality
score includes the different measures described

Dependency Network Builder and Analysis

Source Code Dep

y Extractor

java / jar

Centrality Calculator <

{ Centrality Score ;‘

Dependency
Repository

Architecture Style Recovery and Analysis
sV

Layers Layer Recovery

N~ /
> Architecture Analysis / Analysis

Figure 2: Block diagram of a tool implement in Java to dis-
cover layered architecture using centrality.

in Section 2, and they are calculated at the Class
and Interface levels. The output of this stage is
a data file in the CSV format describing the cen-
trality score assigned to each program element.

2. Layer Assignment: The layer assignment ac-
tivity aims to assign the most appropriate layer
to a program element. Additional style-specific
analyses such as analysis of layer violations, and
performance modeling can be supported once the
programming elements are assigned to appropri-
ate layers.

Building a dependency network and calculating central-
ity scores are straightforward activities to realize when
the tools such as JDependency ! are available. However,
assigning program elements to layers is a trickier issue
considering the large number of program elements and

'https://sourceforge.net/projects/javadepend/

Centrality upper | middle | lower
in-degree low - high
out-degree high - low
between-ness low high low
close-ness high high low
eigenvector low low high

Table 1
Relative Significance of centrality measures with respect to
layers

Sty O Lower and upper bound for in-degree cen-
trality values.

Sobs Oou Lower and upper bound for out-degree cen-
trality values.

S Critical Value for between-ness centrality

6, Critical Value for close-ness centrality

S, Critical Value for eigen-value centrality

Table 2

Configuration Parameters

relationships among them are present. We describe two
techniques for this purpose in the following section.

4. Layer Assignment

The objective of the layer assignment stage is to identify
the most appropriate layer based on the centrality mea-
sures. Here, we use the term layer in the loose sense that
a layer is a logical coarse-grained unit of decomposing
system functionalities and encapsulating program ele-
ments according to common system functionalities. It is
not the term layer in the strict sense as that used in Layer
architecture style [16].

We assume a three-layers based decomposition. The
decision to decompose all the system responsibilities into
three layers is based on the observation that most archi-
tectural styles’ functionalities can be cleanly decomposed
into three coarse-grained units of decomposition. For ex-
ample, architectural style such as Model-View-Controller
(MVC), Presentation-Abstraction-Control (PAC),[16], and
3-tier architectural patterns have three units of system
decomposition.

Two different techniques based on centrality measures
are developed to assign program elements to layers. The
first techniques uses a set of pre-defined rules. The sec-
ond technique automatically learns the assignment rules
from the pre-labelled layer-assignments using a supervi-
sory classification algorithm.

4.1. Rule-Driven Layer Assignment

This technique uses centrality measures, described in Sec-
tion 2, to map program elements to the most appropriate

Algorithm 1 : primaryLabel(inDegree, outDegree,
n)

Input: inDegree[1:n],outDegree[1:n]: Vector, n:Integer
Output: inPartition[1:n], outPartition[1:n] Vector

1: Initialize &, 8, 8oy, and
2: for node in 1 to n do
3: if in(node) = 0 and out(node) = 0 then

4: inPartition[node] < lower

5: outPartition[node] < lower 5

6: else

7 if in(node) > &; then

8: inPartition[node] < lower

9: else
10: if in(node) < &, then

11: inPartition[node] < upper
12: else
13: inPartition|node] < middle
14: end if
15: end if

16: if out(node) > 9, then

17: out Partition[node] < upper
18: else

19: if out(node) < §,; then
20: outPartition[node]| < lower
21: else
22: outPartition[node] < middle
23: end if
24: end if
25: end if
26: end for

layer. The measure of degree centrality from Section 2.1 is
further divided as in-degree and out-degree which count
the number of incoming and outgoing edges of a node.
Total five measures of centrality are used. Five acces-
sor functions namely in, out, between, closeness and eigen
are defined to get the values of in-degree centrality, out-
degree centrality, betweenness centrality, closeness cen-
trality and eigenvector centrality associated to a specific
node respectively.

Three layers are labelled as, i.e. upper, middle and
lower. Table 1 describes the relative significance of vari-
ous centrality measures with references to upper, middle
and lower layers. A set of configuration parameters, as
shown in Table 2, are defined. These parameters provide
flexibility while mapping program elements to a specific
layer.

The Algorithm 1 is operated on a dependency-
network in which nodes represent program elements
while edges represent dependencies. The objective of
this algorithm is to partition the node space representing
into three segments corresponding to lower, middle and
upper layers. This objective is achieved in two stages.

First, the algorithm calculates two different partitions.
The first partition i.e. inPartition is calculated using the
in-degree centrality measure while the second partition
is calculated using the out-degree centrality measure.

Algorithm 2 refineLabel(inParticion, outPartition,
n)

Input: inPartition[1:n], outPartition[1:n]: Vector

n: Integer

Output: nodeLabels[1:n]: Vector

1: Initialize &, &, and &,
2: for node in 1 to n do

3: if inPartition[node| = outPartition[node] then
4: nodeLabels[node] « outPartition[node]

5: else

6: nodeLabels[node] «

upDown(inPartition[node], out Patition[node])
7: end if
8: end for

After the execution of Algorithm 1 each node is la-
beled with two labels corresponding to layers. The vari-
ous combination of labels include (lower, lower), (middle,
middle), (top, top), (middle, top), and (middle, lower). Out
of these six labelling, the labels (middle, top), and (middle,
lower) are conflicting because two different labels are
assigned to a node. This conflict needs to be resolved.

The Algorithm 2 resolves the conflicting labels and
assigns the unique label to each node. The conflicting
labels are resolved by using the rules described in the
decision Table 3. The function upDown called in the
Algorithm 2 uses these rules. The rules in Table 3 re-
solve the conflicting assignments using the centrality
measures of close-ness, between-ness, and Eigen vector,
while the primary layer assignment by Algorithm 1 is
done with in-degree and out-degree centrality measures.
When Algorithm 2 is executed, some of the nodes from
the middle layer bubble up to the upper layer, and some
nodes fall to the lower level. Some nodes remain at the
middle layer. The vector nodeLabels holds the unique la-
belling of each node in the dependency network after
resolving all conflicts.

4.2. Supervised Classification based
Layered Assignment

The configuration parameters need to be suitably initial-
ized for the correct functioning of the rule-driven ap-
proach discussed in the previous section. The system ar-
chitect responsible for architecture recovery needs to fine
tune the parameters to get layering at the desired level of
abstraction. To overcome this drawback a data-driven ap-
proach is developed to assign labels to the programming
elements.

Table 3
Decision Table used to Refine Layering

Layer Measure | Significance Rationale

Classes with in-
degree value equal
to 0 are placed in

the upper layer.

in 0
upper

high Classes with high
out-degree are
placed in the top
layer because they
use services from
layers beneath

them.

out

high Classes with high
closeness value are
placed in the up-
per layer because
of large average dis-
tance from top layer

to bottom layer.

closeness

middle high Classes with high be-
tweenness value are
placed in the mid-
dle layer as they fall
on the path from
top layer to bottom

layer.

between

in high Classes with high
in-degree value are
placed in the bottom
layer because they

are highly used.

lower

Classes with out-
degree value equal
to zero are placed
to bottom layer
because they only
provide services.

out 0

Classes with eigen
value equal to 1 are
placed to bottom
layer because they
are highly reused.

eigen 1

Classes with
in-degree and out-
degree values are
equal to 0 are placed
to bottom layer,
because they are
isolated classes.

In the data-driven approach, the problem of layered
assignment is modeled as a multi-class classification prob-
lem with three labels i.e. lower (1), middle (2) and upper
(3) with numerically encoded as 1,2, and 3 respectively.
The classification model is trained on the labeled data-

Table 4

Sample observations from the Datasets used for Supervised Learning

Id Label In- Out- Close- Betweenness | Eigenvec- Layer
Degree Degree ness tor
HealthWatcher
1 ComplaintRecord 1 10 1.714 19 0.0056 2
2 ObjectAlreadylnsertedException | 37 0 0 0 0.347 1
3 ObjectNotFoundException 53 0 0 0 0.943 1
4 ObjectNotValidException 41 0 0 0 0.883 1
5 RepositoryException 60 0 0 0 1 1
ConStore
1 Cache 2 1 1 0 0.0162 2
2 CacheObject 4 0 0 0 0.053 2
3 LRUCache 0 2 1 0 0 2
4 MRUCache 1 2 1 0.0246 2
5 ItemQuery 1 20 0.412 47.166 0.0388 2
set. The data set, as shown in Table 4, includes program
element identifiers, values of all the centrality measures N
and layering labels as specified by the system architect " ’i A | | s | c l
responsible for architecture recovery. The layering la- T
bels can be used from the previous version of the system SEC \ / \ \
under study or the labels guessed by system architect to A AN S, |
explore different alternatives for system decomposition. — ¥ N

We implement three supervised classification algo-
rithm namely K-Nearest Neighbour, Support Vector Ma-
chine, and Decision Tree. These are the machine learning
algorithms particularly used for multi-class classification
problems. A detailed comparison of these various algo-
rithms can be found in [17]. Python’s Scikit-Learn [18]
library is used to develop classification model based on
these algorithms. Table 4 shows the format of the sam-
ple dataset used to train the classification models. The
developed models are evaluated against the classification
metrics such as accuracy, precision, recall, and F1-Score.

5. Model Development

The machine learning model development includes
phases like training, testing and evaluation. This sec-
tion describes how these phases are carried out.

5.1. Model Training

The following software systems are used to train and
build the machine learning models.

1. Training Architecture system: A small-scale
sample architecture system, as shown in Figure 3,
has been designed specially to train the approach.
It includes 16 classes without the implementation
of any functionalities; it contains only dependen-
cies among classes, as shown in Figure 3. The

AA
/
_I

Figure 3: An Architecture of a System Designed to Train the
approach

classes named as SEC, TX, SERI in the figure rep-
resent crosscutting concerns.

2. HealthWatcher: The HealthWatcher is a web-
based application providing healthcare-related
services [19]. This application is selected to train
the model because existing literature in the public
domain confirms that the application follows a
client-server and layered architecture style. Ini-
tially, the first author has manually assigned la-
bels to all the programming elements. Later the
second author checked the labelling of individual
elements. We used the following rules to label
programming elements. These are: (i) Program-
ming elements that access low-level device func-
tions and data access functions are labelled as
lower. (ii) Programming elements accessing pre-

Table 5

Accuracy and Confusion Matrix for Data-Driven and Algorithmic Approach

SVM H Decision Tree H KNN classifier H Rule based
HealthWatcher(Size: 135 classes or interfaces) Confusion Matrix
Layer lower | mid- | up- lower | mid- | up- lower | mid- | up- lower | mid- | up-
dle per dle per dle per dle per
lower 47 1 9 49 4 4 1 8 8 28 16 13
middle 20 5 12 15 20 2 7 28 2 6 30 1
upper 5 1 35 7 0 34 6 6 29 3 9 29
Accuracy = 0.64 Accuracy = 0.76 Accuracy = 0.72 Accuracy = 0.63
Recall (R), Precision (P), F1-Score (F1) Evaluation
R P F-1 R P F-1 R P F-1 R P F-1
lower 0.65 0.82 0.73 0.69 0.86 0.77 0.76 0.72 0.74 0.76 0.49 0.60
middle 0.71 0.14 0.23 0.83 0.54 0.66 0.67 0.76 0.71 0.55 0.81 0.65
upper 0.62 0.85 0.72 0.85 0.83 0.84 0.74 0.71 0.72 0.66 0.66 0.66
Training Architecture System (Size = 16 Classes) Confusion
Matrix
lower 5 2 0 4 3 0 5 2 0 5 2 0
middle 1 0 0 5 0 1 4 0 1 4 0
upper 1 0 3 0 1 3 4 0 0 1 0 3
Accuracy = 0.75 Accuracy = 0.75 Accuracy = 0.56 Accuracy =0.75
Recall (R), Precision (P), F1-Score (F1) Evaluation
R P F-1 R P F-1 R P F-1 R P F-1
lower 0.71 0.71 0.71 1.00 0.57 0.73 0.50 0.71 0.59 0.71 0.71 0.71
middle 0.67 0.80 0.73 0.56 1.00 0.71 0.67 0.80 0.73 0.67 0.80 0.73
upper 1.00 0.75 0.86 1.00 0.75 0.86 0.00 0.00 0.00 1.00 0.75 0.86
Constore (Size: 66 classes or interfaces) Confusion Matrix
lower 43 0 0 43 0 0 40 3 0 27 16 0]
middle 14 0 1 13 2 0 12 3 0 9 5 1
upper | 6 0 2 6 0 2 7 1 0 4 2 2
Accuracy = 0.68 Accuracy = 0.71 Accuracy = 0.65 Accuracy =0.52
Recall (R), Precision (P), F1-Score (F1) Evaluation
R P F-1 R P F-1 R P F-1 R P F-1
lower 0.68 1.00 0.81 0.69 1.00 0.82 0.68 0.93 0.78 0.68 0.63 0.65
middle 0.00 0.00 0.00 1.00 0.13 0.24 0.43 0.20 0.27 0.22 0.33 0.26
top 0.67 0.25 0.36 1.00 0.25 0.40 0.00 0.00 0.00 0.67 0.25 0.36

sentation functions are labelled as upper. (iii) Pro-
gramming elements that provide business logic or
depend on programming elements defined within
the application are labelled as middle.

Total one hundred fifty-one classes, i.e. data instances,
are used to train the model—sixteen classes from the
specially designed system and 135 classes from the
HealthW atcher system.

5.2. Model Testing

We used ConStore[20], a small scale Java-based library
designed to manage concept networks, to test the model.
This application is selected to test the model because the
second author has involved in recovering architecture
previously and knows the details of the system. The

ConStore is a framework for detailing out the concepts
and creating a domain model for a given application.

5.3. Model Evaluation

The performance of classification models is typically eval-
uated against measures such as accuracy, precision, recall,
and F1-Score [21]. These metrics are derived from a con-
fusion matrix which compares the count of actual class
labels for the observations in a given data set and the class
labels as predicted by a classification model. Four differ-
ent metrics are derived by comparing true labels with the
predicted labels. These are accuracy, recall, precision and
F1-score. Table 5 shows the performance analysis against
these metrics. The table compares the performance of
algorithmic-centric approach and data-driven approach.

5.3.1. Accuracy Analysis

The accuracy is the rate of correction for classification
models. Higher the value of accuracy, better is the model.
From the accuracy point of view, one can observe from
the Table 5 that the data-driven approach performs better
as compared to the algorithmic-centric approach. The
decision-based classifier preforms better on all the test
cases with an average accuracy of 74%. This is because
the performance of algorithmic approach depends on
the proper tuning of various configuration parameters.
The results shown in Table 5 are obtained with following
values in Table 6 of configuration parameters. The Table
6 shows combination of configuration values for the best
accuracy obtained during twenty-five iterations. During
each iterations, values of configuration parameters were
incremented by 1 or 0.1(for &, &,).

ConStore | Healthwatcher | Test Arch.
5 4 10 2
S i i
5 4 2 2
50 1 5 2
5, 6 9 6
5, 0.8 0.8 0.6
5, 0.6 05 0.6
Table 6

Configuration parameters and their values

The machine learning models automatically learn and
adjust the model parameters for the better results of accu-
racy. In case of algorithmic approach, the configuration
parameter tuning is an iterative process and need to try
different combinations.

5.3.2. Recall, Precision, F1-Score Analysis

Recall indicates the proportion of correctly identified
true positives while precision is the proportion of correct
positive identification. High values of both recall and
precision are desired, but it isn’t easy to get high values
simultaneously for recall and precision. Hence, F1- score
combines recall and precision into one metrics. From
the recall, precision, and F1-score point of view, one can
observe from Table 5 that decision tree-based classifier
performs better with the highest F1-score of 0.86 for
the upper layer classification of test architecture system.
Recalling class labels with higher precision for middie
layer is a challenging task for all the models described
in this paper. This is because of the presence of many
not so cleanly encapsulated functionalities in a module
at the middle layer and mapping crosscutting concerns
to one of the three layers.

5.3.3. Threats to Validation

The performance of the models has been evaluated in an
academic setting with internal validation only. By inter-
nal validation, we mean the performance of algorithmic
and data-driven techniques that have been compared and
analyzed. This is because our prime aim is to demonstrate
the significance of social network analysis measures in
recovering architecture descriptions. The model’s per-
formance needs to be further compared against similar
approaches developed earlier[22]. Also, the usefulness
of recovered layering information needs to be assessed
in the software industry setting.

6. Related Work

Recovering architecture descriptions from the code has
been one of the widely and continuously explored prob-
lem by Software Architecture researchers. This has re-
sulted in a large number of techniques[23, 24, 25], survey
papers [22] and books [26] devoted to the topic. In the
context of these earlier approaches, this section provides
the rationale behind the implementation decisions taken
while developing our approach.

(i) Include Dependencies vs Symbolic Dependen-
cies: The recent study reported in [27] has recognized
that the quality of recovered architecture depends on the
type of dependencies analyzed to recover architecture.
The study analyzes the impact of symbolic dependencies
i.e. dependencies at the program identifier level versus
include dependencies i.e. at the level of importing files or
including packages. Further, it emphasizes that symbolic
dependencies are more accurate way to recover struc-
tural information. The use of include dependencies is
error prone owing to the fact that a programmer may
include a package without using it.

We used include dependencies in our approach because
extracting and managing include dependencies are sim-
ple as compared to symbolic dependencies. Further, we
mitigated the risk of unused packages by excluding these
relationship from further analysis. Many programming
environments facilitate the removal of unused packages.
One of our objectives was to develop a data-driven ap-
proach and cleaning data in this way is an established
practice in the field of data engineering.

(ii) Unsupervised Clustering vs Supervised clas-
sification: The techniques of unsupervised clustering
have been adopted widely to extract high-level archi-
tectures through the analysis of dependencies between
implementation artefacts [23]. These approaches use
hierarchical and search-based methods for clustering.
These approaches usually take substantial search time
to find not so good architectures [28]. One of the ad-
vantages of clustering methods is that unlabelled data
sets drive these methods. But, the identified clusters of

program elements need to be labelled with appropriate
labels.

Our choice of supervised classification method is driven
by the fact that centrality measures quantify the structural
properties with reference to a node, and relation of the
nodes with respect to others. Processing such quantified
values in efficient way is one of the advantages of many
of supervised classification methods. Further, assigning
program elements with layering labels is not an issue if
such information is available from the previous version
of software, which may be the case for re-engineering or
modernization projects. In the absence of such labelled
data set, the approach presented in the paper can still be
adopted in two stages. In the first stage, a tentative layer
labelling can be done through algorithmic approach fol-
lowed by the labelling through supervised classification
method.

(ii) Applications of Social Network Analysis
(SNA) Measures: The interest in applying theory of
SNA has started growing in recent times. Some of the
recent applications of SNA include predicting architec-
tural smell [29], predicting vulnerable software compo-
nents [30] to measure structural similarity of program
elements. Our approach characterizes each program el-
ements through its centrality measures which can be
termed as feature representation, using machine learning
vocabulary, necessary to build data-driven models.

7. Conclusion

The main highlights of the approach presented in the
paper include: (i)The dependency graph formed by pro-
gramming elements (i.e. classes in Java) is treated as a
network, and centrality measures are applied to extract
structural properties. (ii) It represents each program ele-
ment as a set of values corresponding to different central-
ity measures. Thus, each program element is represented
as a feature vector in machine learning terminology. (iii)
The paper treats a layer as a coarsely granular abstraction
encapsulating common system functionalities. Then it
maps a group of programming elements sharing common
structural properties to a layer. (iv) The paper describes
two mapping methods for this purpose called algorith-
mic centric and data-driven. (v) Overall, the data-driven
method illustrated in the paper perform better compared
to the algorithmic centric method.

The paper makes several assumptions, such as (i) avail-
ability of Java-based system implementation, (ii) a system
is decomposed into three layers, and (iii) availability of
pre-labelled data set for supervised classification. These
are the assumption made to simplify the realization and
demonstration of the approach. Hence, these assump-
tions do not restrict the approach. However, these as-
sumptions can be relaxed, and the approach is flexible

enough to extend.

The layering information extracted by the approach
can be viewed as one way of decomposing a system. It
is not the single ground truth architecture that is often
difficult to agree upon and laborious to discover [22].
Further, the quality of extracted architecture descriptions,
i.e. clustering of program elements to layers, need to be
assessed for the properties such as a minimal layer of
violation [31, 32] or satisfaction of a particular quality
attribute[26] or any other project-specific criteria.

We described the working of the approach by assum-
ing a three-layer decomposition. The work presented
in this paper can be extended to more than three layers.
The algorithm-centric technique needs to be adapted by
redesigning rules for additional layers. Also, the super-
vised classification method can be adjusted by relabelling
program elements with the number of layers considered.

Exploring the impact of fusing structural properties
and some semantic features such as a dominant concern
addressed by a programming element would be an excit-
ing exercise for future exploration.

References

[1] D.Link, P. Behnamghader, R. Moazeni, B. Boehm,
The value of software architecture recovery for
maintenance, in: Proceedings of the 12th Inno-
vations on Software Engineering Conference (for-
merly known as India Software Engineering Con-
ference), 2019, pp. 1-10.

A. Pacheco, G. Marin-Raventés, G. Lopez, Design-
ing a technical debt visualization tool to improve
stakeholder communication in the decision-making
process: a case study, in: International Conference
on Research and Practical Issues of Enterprise In-
formation Systems, Springer, 2018, pp. 15-26.

A. Shahbazian, Y. K. Lee, D. Le, Y. Brun, N. Medvi-
dovic, Recovering architectural design decisions,
in: 2018 IEEE International Conference on Software
Architecture (ICSA), IEEE, 2018, pp. 95-9509.

P. J. Carrington, J. Scott, S. Wasserman, Models
and methods in social network analysis, volume 28,
Cambridge university press, 2005.

S. B. Thakare, A. W. Kiwelekar, Skiplpa: An effi-
cient label propagation algorithm for community
detection in sparse network, in: Proceedings of
the 9th Annual ACM India Conference, 2016, pp.
97-106.

R. Albert, A.-L. Barabasi, Statistical mechanics of
complex networks, Reviews of modern physics 74
(2002) 47.

D. J. Watts, Networks, dynamics, and the small-
world phenomenon 1, American Journal of sociol-
ogy 105 (1999) 493-527.

(8]

J. S. Silva, A. M. Saraiva, A methodology for ap-
plying social network analysis metrics to biologi-
cal interaction networks, in: Advances in Social
Networks Analysis and Mining (ASONAM), 2015
IEEE/ACM International Conference on, IEEE, 2015,
pp. 1300-1307.

G. Amitai, A. Shemesh, E. Sitbon, M. Shklar,
D. Netanely, L. Venger, S. Pietrokovski, Network
analysis of protein structures identifies functional
residues, Journal of Molecular Biology 344 (2004)
1135-1146. doi:http://dx.doi.org/10.1016/3. jmb.
2004.10.055.

M. E. J. Newman, Random graphs as models of
networks, arXiv preprint cond-mat/0202208 (2002).
M. E. Newman, The structure and function of com-
plex networks, SIAM review 45 (2003) 167-256.

S. P. Borgatti, Centrality and network flow, Social
networks 27 (2005) 55-71.

L. C. Freeman, Centrality in social networks concep-
tual clarification, Social networks 1 (1979) 215-239.
D. R. White, S. P. Borgatti, Betweenness centrality
measures for directed graphs, Social Networks 16
(1994) 335-346.

P. Bonacich, Some unique properties of eigenvector
centrality, Social networks 29 (2007) 555-564.

F. Buschmann, K. Henney, D. C. Schmidt, Pattern-
oriented software architecture, on patterns and pat-
tern languages, volume 5, John wiley & sons, 2007.
C. A.U. Hassan, M. S. Khan, M. A. Shah, Compari-
son of machine learning algorithms in data classifi-
cation, in: 2018 24th International Conference on
Automation and Computing (ICAC), IEEE, 2018, pp.
1-6.

J. Hao, T. K. Ho, Machine learning made easy: A
review of scikit-learn package in python program-
ming language, Journal of Educational and Behav-
ioral Statistics 44 (2019) 348-361.

P. Greenwood, T. Bartolomei, E. Figueiredo,
M. Dosea, A. Garcia, N. Cacho, C. Sant’Anna,
S. Soares, P. Borba, U. Kulesza, et al., On the im-
pact of aspectual decompositions on design stabil-
ity: An empirical study, in: European Conference
on Object-Oriented Programming, Springer, 2007,
pp- 176-200.

http://www.cse.litb.ac.in/constore,
http://www.cse.iitb.ac.in/constore, 2009.

C. Goutte, E. Gaussier, A probabilistic interpreta-
tion of precision, recall and f-score, with implica-
tion for evaluation, in: European conference on
information retrieval, Springer, 2005, pp. 345-359.
J. Garcia, I. Ivkovic, N. Medvidovic, A compara-
tive analysis of software architecture recovery tech-
niques, in: 2013 28th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
IEEE, 2013, pp. 486-496.

(23]

[24]

O. Magbool, H. Babri, Hierarchical clustering for
software architecture recovery, IEEE Transactions
on Software Engineering 33 (2007) 759-780.

A. W. Kiwelekar, R. K. Joshi, An ontological frame-
work for architecture model integration, in: Pro-
ceedings of the 4th International Workshop on
Twin Peaks of Requirements and Architecture, 2014,
pp. 24-27.

A. W. Kiwelekar, R. K. Joshi, Ontological analysis
for generating baseline architectural descriptions,
in: European Conference on Software Architecture,
Springer, 2010, pp. 417-424.

A. Isazadeh, H. Izadkhah, I. Elgedawy, Source code
modularization: theory and techniques, Springer,
2017.

T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside,
N. Medvidovi¢, R. Kroeger, Measuring the impact
of code dependencies on software architecture re-
covery techniques, IEEE Transactions on Software
Engineering 44 (2017) 159-181.

S. Mohammadi, H. Izadkhah, A new algorithm for
software clustering considering the knowledge of
dependency between artifacts in the source code,
Information and Software Technology 105 (2019)
252-256.

A. Tommasel, Applying social network analysis
techniques to architectural smell prediction, in:
2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), IEEE, 2019, pp.
254-261.

V. H. Nguyen, L. M. S. Tran, Predicting vulnerable
software components with dependency graphs, in:
Proceedings of the 6th International Workshop on
Security Measurements and Metrics, 2010, pp. 1-8.
S. Sarkar, G. Maskeri, S. Ramachandran, Discovery
of architectural layers and measurement of layering
violations in source code, Journal of Systems and
Software 82 (2009) 1891-1905.

S. Sarkar, V. Kaulgud, Architecture reconstruction
from code for business applications-a practical ap-
proach, in: 1st India Workshop on Reverse Engi-
neering,(IWRE), 2010.

http://dx.doi.org/http://dx.doi.org/10.1016/j.jmb.2004.10.055
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmb.2004.10.055

	1 Introduction
	2 Social Network Analysis Measures
	2.1 Degree centrality
	2.2 Closeness centrality
	2.3 Betweenness centrality
	2.4 Eigenvector centrality

	3 Approach
	4 Layer Assignment
	4.1 Rule-Driven Layer Assignment
	4.2 Supervised Classification based Layered Assignment

	5 Model Development
	5.1 Model Training
	5.2 Model Testing
	5.3 Model Evaluation
	5.3.1 Accuracy Analysis
	5.3.2 Recall, Precision, F1-Score Analysis
	5.3.3 Threats to Validation

	6 Related Work
	7 Conclusion

