
Gropius-VSC: IDE Support for Cross-Component
Issue Management
Sandro Speth1, Niklas Krieger1, Uwe Breitenbücher1 and Steffen Becker1

1University of Stuttgart, Universitätsstraße 38, Stuttgart, 70569, Germany

Abstract
Modern software systems are increasingly built as component-based architectures, e.g., as microservices.
However, such architectural styles result in many challenges for development teams regarding issue
management: Since the individual components are developed independently of each other, the teams
manage the issues of the respective components often in separate issue management systems, making
the tracking of cross-component issues much more difficult, i.e. issues that affect multiple components
concurrently. To solve this problem, in previous work, we developed Gropius, which is a tool that acts
as a wrapper for existing issue management systems enabling the management of issues across the
different components managed in different issue management systems. While Gropius is particularly
suitable for stakeholders who want to have an overall view of the architecture and the issues therein, a
developer’s daily work is primarily done in an IDE. Thus, frequent context switches between the issue
management systems and the IDE reduce developer productivity, so IDE plugins for issue management
have been developed in the past. However, these do not support cross-component issue management
features as provided by Gropius. Therefore, in this work, we present Gropius-VSC, a Visual Studio Code
extension that allows developers to manage cross-component issues directly in Visual Studio Code.

Keywords
Issue Management, Component-based Architecture, Cross-Component Issues, IDE Extension

1. Introduction

Component-based architectural styles, such as microservices, are becoming increasingly com-
mon. Due to the independence in development and use of the individual components, these
architectures bring many advantages. At the same time, however, new challenges arise, such as
cross-component issue management: Due to the free choice of tools, the individual development
teams typically manage the issues of the components in independent issue management systems,
e.g. GitHub or Jira. As a result, tracking issues across component boundaries becomes much
more difficult [1, 2, 3]. While an issue management system (IMS) helps individual teams to
report, track, assign, and archive issues [4], no established IMS supports managing issues that
affect components managed in other issue management systems. Thus, this requires manually
synchronising issues between multiple issue management systems. To solve this problem, we
introduced Gropius [2] in previous work, which is a tool that serves as a wrapper for existing
IMSs and that can synchronise and link issues between different issue management systems.

ECSA’21: 15th European Conference on Software Architecture, Sep 13–17, 2021, Växjö, Sweden
" sandro.speth@iste.uni-stuttgart.de (S. Speth); niklas.krieger@studi.informatik.uni-stuttgart.de (N. Krieger);
uwe.breitenbuecher@iaas.uni-stuttgart.de (U. Breitenbücher); steffen.becker@iste.uni-stuttgart.de (S. Becker)
� 0000-0002-9790-3702 (S. Speth); 0000-0002-8816-5541 (U. Breitenbücher); 0000-0002-4532-1460 (S. Becker)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sandro.speth@iste.uni-stuttgart.de
mailto:niklas.krieger@studi.informatik.uni-stuttgart.de
mailto:uwe.breitenbuecher@iaas.uni-stuttgart.de
mailto:steffen.becker@iste.uni-stuttgart.de
https://orcid.org/0000-0002-9790-3702
https://orcid.org/0000-0002-8816-5541
https://orcid.org/0000-0002-4532-1460
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Gropius implements the Cross-Component Issue Metamodel [3] and represents issues using the
graphical Gropius Cross-Component Issue Modelling Language [2], which enables modelling
of issues of each component of the system in a typical architectural view. Thus, the Gropius
Web Frontend [2] is particularly suitable for software architects, product owners, and other
stakeholders who need an overall view of the system. The daily work of a developer, on the
other hand, takes place primarily in an IDE. Therefore, frequent context switches between the
IDE and issue management systems reduce the developer’s productivity. For this reason, many
IDEs offer plugins and extensions for IMSs [5, 6]. However, existing issue management IDE
plugins and extensions do not support features for cross-component issue management in the
way Gropius supports. Therefore, in this demonstrator paper, we introduce Gropius-VSC, a
Visual Studio Code (VS Code) extension for the integrated management of issues in component-
based architectures. Since Gropius-VSC uses the Gropius API, cross-component issues can be
propagated directly from the IDE to the underlying issue management systems, such as GitHub.

2. Research Design

Before we describe the concept of Gropius-VSC, we explain our research design. First, we
developed the concept by asking various stakeholders for the required features of such an
IDE extension. Based on these requirements and the Cross-Component Issue Metamodel [3],
the concept for the IDE extension was developed. For an initial evaluation of whether the
concept makes sense, a prototype was developed with the Eclipse Modelling Framework (EMF),
which we gave to industry experts for evaluation. The API connection to the Gropius backend
server [2] and test data were mocked up. Questions for the evaluation were created using a
Goal-Question-Metric [7] approach. Due to the positive evaluation, we decided to build this
Gropius IDE extension integrated with the Gropius server instead of a mocked API. Based on
the limitations in generated views of EMF Parsley, the evaluation of the industry developers
and their feature requests, we decided to switch to VS Code as IDE.

3. The Concept of Gropius-VSC

The presented IDE extension Gropius-VSC is a client for the Gropius backend that supports the
Cross-Component Issue Metamodel [3] and, thus, the cross-component features of Gropius [2].
However, in contrast to the original Gropius Web Frontend [2], Gropius-VSC aims to provide a
focused component-specific view of cross-component issues while keeping the cross-component
issue management features, e.g., linking issues to other components’ issues and traversing these
links. A demonstrator video presenting our Gropius-VSC concept is available on YouTube1.

Gropius-VSC consists of four components which are depicted in fig. 1: 1 a Component Detail
View, 2 an Issue List, 3 a Issue Detail View, which is a detailed view of a single issue, and
4 Issue Bookmarks, which display the areas affected by an issue in a file. The sidebar next to

the line numbers, which is also used for breakpoints, shows these issue bookmarks. After the
IDE extension is configured for a Gropius project’s component, the Component Detail View

1https://youtu.be/1sfY18-R-YE

https://youtu.be/1sfY18-R-YE


1

2

3

4
4

5

6

7

8

9

Figure 1: Example project in Gropius-VSC showing all primary components of the concept.

1 provides the current component’s name and description and issue filter functionality 5 .
Additionally, the Issue List 2 shows all issues of the current component. This list can be filtered
in the Component Detail View 5 by the status of the issue (open or closed), type of issue, e.g.
bug report, and issues assigned to the developer using the extension. Issues assigned to the
developer show a star in the issue’s icon. Furthermore, the Component Detail View provides
a search bar to filter according to the issues’ titles and body matching to the filter text. The
individual Issue Detail View 3 shows the title, body, issue type, labels and assigned users of the
issue. Additionally, the semantical links to other issues 6 and artefact links 7 are displayed.
Ingoing or outgoing issue links to another issue are hinted with an ingoing or outgoing arrow
in the issue’s icon. The issue links can be traversed by clicking on the linked issue 6 , whereby
the detailed view 3 always opens the linked issue. Furthermore, the linked issues and artefacts
do not have to belong to the same component. If a linked issue concerns another component
or the issue concerns multiple components, the detail view shows all affected components’
names next to this issue to clarify that this issue’s location is another component. A click on an
artefact link opens the artefact, e.g. a source code file, in the text editor and jumps, if specified,
to the area affected by the issue 9 . All artefacts are specified as URIs. An URI is opened in the
web browser if it could not be transformed to a relative path to a file. In addition to displaying
an issue in the detailed view, issues can be edited, e.g., changing the body text or adding new
issue links and artefact links. Issue Bookmarks 4 in the sidebar show for a linked artefact file
which areas are affected by an issue. However, the Issue Bookmarks contain only open issues
to keep it more concise. Additionally, bookmarks cover a range of lines as shown in fig. 1. In
the concept, clicking on an issue bookmark opens the issue which is linking to this artefact.
However, since clickable custom sidebar elements are an open issue for VS Code, our extension
contains a filter button 8 for issues linking to this artefact until this issue is resolved.



Extension Core
Typescript, VS Code Extension API

Component Quickselect Provider

Gropius Backend API

Issue List ViewIssue Detail Webview
Typescript, Vue Js, lit-element

Markdown Issue Body Renderer
monaco editor, markdown-it

Messaging

Component Detail Webview
Typescript, Vue Js

Messaging

Editor Controller Gropius Backend Connector

GraphQL

Figure 2: Architecture of the Visual Studio Code extension Gropius-VSC.

4. Architecture and Implementation

The architecture for Gropius-VSC consists of three main components: (1) the Extension Core,
(2) the Issue Detail Webview, and (3) the Component Detail Webview. The components communi-
cate with each other via messaging, which is handled by VS Code. Figure 2 shows the overview
of the architecture. The extension is written in Vue JS and is open source available in GitHub2.

The Extension Core uses the Gropius’ GraphQL API in the Gropius Backend Connector compo-
nent to communicate with the Gropius backend. The Component Quickselect Provider component
is a QuickInput which sets the component’s id of the current workspace. This allows the user
to search the name and description of all available components instead of setting the id in the
settings manually. The Editor Controller decorates the TextEditor with Issue Bookmark icons.
The Issue List View is a TreeView showing all issues of the current component. If the user clicks
on an issue, the Issue Detail Webview opens this issue to show the details of the selected issue
as stated in section 3 and enables editing it. The issue’s body is rendered with the Markdown
Issue Body Renderer which consists of two parts: (1) a Monaco Editor (the same editor VS Code
uses) for editing the body and (2) markdown-it with emoji plugin to render markdown. The
Component Detail Webview displays information about the selected component and provides
search and filter functionality for the Issue List View. VS Code Commands offers some internal
commands to the user, e.g. create a new issue, reload issue view, and check API connection.

VS Code’s flexible extension API allows web view extension panels which developers can
develop using modern web development tools and frameworks. As a current limitation, custom
sidebar elements like our Issue Bookmarks are not clickable.

5. Related Work

In his PhD thesis [8], Janák introduces two categories for IMS IDE extensions: (1) universal
extensions, which allows integrating different IMSs while not supporting IMS-specific features,
and (2) extensions limited to specific issue management systems which provide support of
IMS-specific features. We classify Gropius-VSC as a universal IMS IDE extension since it
integrates through Gropius several IMSs while focuses on the features provided by Gropius.
Other universal extensions, e.g. Mylin3, do not support cross-component issue management

2https://github.com/ccims/ccims-vsc/tree/gropiusify
3https://marketplace.eclipse.org/content/mylyn

https://github.com/ccims/ccims-vsc/tree/gropiusify
https://marketplace.eclipse.org/content/mylyn


features as Gropius-VSC does. Therefore, such IMS IDE extensions are not suited for integrated
cross-component issue management. Examples for specific IMS IDE extensions are Atlassian
IntelliJ IDEA Connector4 and JiraBuddy - Eclipse Plugin for JIRA5. However, they do not provide
cross-component issue features. Furthermore, there is the Teamscale Integration for Eclipse6

which allows users to browse defects found by the Teamscale Software Quality Analysis Server.
However, all these IDE extensions are limited to the boundaries of a single IMS. Therefore, issues
cannot be managed beyond the boundaries of an IMS as supported by our Gropius approach.

6. Conclusion

The presented VS Code extension Gropius-VSC can improve issue management in component-
based architectures in a less error-prone and time-consuming way by allowing developers to
manage cross-component issues directly in their IDE without context switches. In particular,
traversing the links between issues of different components and opening the affected resources
enables efficient issue management. Especially in systems with many components, this could
significantly increase the focus on the issues that actually affect the developer’s components.

References

[1] S. Mahmood, M. Niazi, A. Hussain, Identifying the challenges for managing component-
based development in global software development: Preliminary results, in: 2015 Science
and Information Conference (SAI), IEEE, 2015, pp. 933–938.

[2] S. Speth, U. Breitenbücher, S. Becker, Gropius—a tool for managing cross-component issues,
in: Communications in Computer and Information Science, volume 1269, Springer, Springer,
2020, pp. 82–94.

[3] S. Speth, S. Becker, U. Breitenbücher, Cross-component issue metamodel and modelling
language, in: Proceedings of the 11th International Conference on Cloud Computing and
Services Science (CLOSER 2021), INSTICC, SciTePress, 2021, pp. 304–311.

[4] D. Bertram, A. Voida, S. Greenberg, R. Walker, Communication, collaboration, and bugs:
the social nature of issue tracking in small, collocated teams, in: Proceedings of the 2010
ACM conference on Computer supported cooperative work, 2010, pp. 291–300.

[5] S. H.-H. Chang, X. Chen, R. A. Priest, B. Plimmer, Issues of extending the user interface
of integrated development environments, in: Proceedings of the 9th ACM SIGCHI New
Zealand Chapter’s International Conference on Human-Computer Interaction: Design
Centered HCI, 2008, pp. 23–30.

[6] A. I. Wasserman, Tool integration in software engineering environments, in: Software
Engineering Environments, Springer, 1990, pp. 137–149.

[7] V. R. B. G. Caldiera, H. D. Rombach, The goal question metric approach, Encyclopedia of
software engineering (1994) 528–532.

[8] J. Janák, Issue tracking systems, Ph.D. thesis, Masarykova univerzita, 2009.

4https://plugins.jetbrains.com/plugin/2190-atlassian-connector-for-intellij-ide
5https://marketplace.eclipse.org/content/jirabuddy-eclipse-plugin-jira
6https://marketplace.eclipse.org/content/teamscale-integration-eclipse

https://plugins.jetbrains.com/plugin/2190-atlassian-connector-for-intellij-ide
https://marketplace.eclipse.org/content/jirabuddy-eclipse-plugin-jira
https://marketplace.eclipse.org/content/teamscale-integration-eclipse

	1 Introduction
	2 Research Design
	3 The Concept of Gropius-VSC
	4 Architecture and Implementation
	5 Related Work
	6 Conclusion

