
A Demonstration of ColChain: Collaborative
Knowledge Chains?

Christian Aebeloe(�)[0000−0003−3186−1607], Gabriela
Montoya[0000−0001−5835−0335], and Katja Hose[0000−0001−7025−8099]

Aalborg University, Aalborg, Denmark
{caebel,gmontoya,khose}@cs.aau.dk

Abstract. The current architecture of the Semantic Web fully relies on
the individual data providers to maintain access to their data and to
keep their data up-to-date. While this may seem like a practical and
straightforward solution, it often results in the data being unavailable or
outdated. In this demo paper, we present a fully functioning client along
with a user-friendly interface for ColChain, a system that increases
availability of knowledge graphs and enables users to update the data in
a community-driven way while still allowing them to query old versions.

1 Introduction

In recent years, the continuous advances of Semantic Web technologies have
led to a rapid increase in the amount of data published as Linked Open Data.
Naturally, the published information is subject to change and evolution [6]; errors
are corrected, major updates are released, etc. However, the proliferation of data
on the Web of Data and the fact that we currently rely on the data providers
to maintain access to their datasets and keep them up-to-date represents a
significant burden on the data providers [1, 9]. As a result, SPARQL endpoints
often experience downtime [4, 8] and available data is sometimes outdated [3].

SELECT ?pr2 WHERE {
dbr : P r e s i d en t o f t h e Un i t e d S t a t e s dbo : incumbent ?pr1 .
? pr1 dbo : party ?pa .
? pr2 dct : sub j e c t dbr : Category : P r e s i d en t s o f t h e Un i t e d S t a t e s .
? pr2 dbo : party ?pa
}
Listing 1: SPARQL query Q that finds former U.S. presidents of the same party
as the current (incumbent) U.S. president.

Consider, for instance, query Q in Listing 1. Q finds all former U.S. presidents
that have been a member of the same party as the current (incumbent) U.S.
president. However, as of the writing of this paper, processing Q over the latest
DBpedia release (version 2021-01)1 results in ?pr1, i.e., the current (incumbent)

? Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

1 https://www.dbpedia.org/resources/latest-core/



president, being bound to dbr:Donald Trump although the inauguration of
President Biden took place months ago. While this is likely to be changed in
the next release, the delay in the update shows that information available on the
Semantic Web is not always up-to-date.

In this paper, we demonstrate a fully functioning client along with a user-
friendly interface for ColChain (COLlaborative knowledge CHAINs) [3], a
system that builds on unstructured Peer-to-Peer (P2P) networks [1] and uses
replication of data fragments across several nodes to maintain high availability.
Furthermore, ColChain enables users to collaboratively update datasets while
also allowing users to process queries over previous versions. ColChain divides
the P2P network into smaller communities of nodes that collaborate on keeping
certain data up-to-date relying on community-wide consensus. Updates in
ColChain are stored in blockchain-like chains; when a consensus for an update
is reached, it is applied to the end of the chain. This allows any user to
propose updates to any dataset while making malicious updates less likely.
Furthermore, the update chains allow users to access previous versions of the
datasets. While [3] presents the theoretical framework, this demo paper presents
a working ColChain implementation with a user-friendly interface2.

This paper is structured as follows. In Section 2, we present an architectural
overview of ColChain while in Section 3 we describe the demonstration that
will be conducted at the conference.

2 System Overview

Figure 1a shows an example of a ColChain network that consists of three nodes
that store data from two communities, where the nodes either participate in or
observe the communities. Participating nodes share a set of data fragments with
the community they participate in and collaborate on keeping those fragments
up-to-date. In Figure 1a, since node A participates in community C1, it stores
C1’s fragments in its local datastore. Furthermore, A observes community C2,
and thus only indexes C2’s fragments, relying on asking either node B or C (i.e.,
participants) to access C2’s data. Due to space restrictions, we do not go into
details with aspects, such as how to create and maintain communities, but refer
the interested reader to [3] for a more technically detailed description.

ColChain relies on the consensus of participating nodes within a community
to apply updates collaboratively. In its current form, users of at least half
the participants in a community have to actively accept the update using our
interface. While this means applying a proposed update might entail an overhead
on the validation, this is acceptable to let users ensure that updates are factual
and non-malicious. Furthermore, as described in [3], our future work includes
providing consensus protocols that make the active participation of users more
scalable, e.g., by detecting malicious updates automatically or letting fragment
owners specify a qualified majority.

2 The client and source code are available at https://relweb.cs.aau.dk/colchain/



C1 C2

Datastore

Index

Datastore

IndexDatastore

Index

participant observer

Node A

Node B

Node C

(a) Example ColChain network.

Web Interface

SPARQL Query
Processor

User

Node Interface

Triple Pattern Mappings

Data Storage Layer

SPARQL
Queries

Other Nodes

Triple Pattern
Requests

Community
Manager

Community
Management

Updates

Transaction
Consensus

Communication Layer

nil

nil

nil
Processing
Layer

(b) Architecture of a ColChain node.

Fig. 1: An example ColChain network and the architecture of a ColChain
node (adapted from [3]).

2.1 Architecture of a ColChain Client

A ColChain node generally consists of several architectural layers as illustrated
in Figure 1b These layers are as follows.

Communication Layer. The communication layer exposes two components:
the Web interface and the node interface. The Web interface provides a GUI
that allows users to interact with the system, e.g., to issue SPARQL queries (on
current or previous versions of the data), propose updates, and decide whether
to accept or reject updates proposed by other users. The node interface accepts
messages from other nodes, e.g., when another participant accepts an update.

Processing Layer. The processing layer consists of two components: the
community manager and the query processor. The community manager validates
updates, and manages chains and fragments as well as community memberships.
The query processor is able to process SPARQL queries over current and previous
dataset versions available at any user-specified point in time.

Data Storage Layer. The data storage layer contains the node’s local data
store. ColChain nodes use HDT [5] as backend for storing data fragments.
Changes to fragments are applied to the data storage layer by the community
manager and appended to the chain for the given fragment. The data storage
layer is used to process triple pattern requests by the SPARQL query processor.
Furthermore, it can roll back fragments to earlier versions to allow users to
process queries over those versions.

2.2 Graphical User Interface for ColChain

Consider again query Q from Listing 1 and a user who wants to suggest
an update to obtain the expected result. Figure 2 shows how the user
interacts with ColChain to propose an update over the corresponding



Fig. 2: ColChain’s graphical interface when proposing an update to a fragment.

fragment with dbo:incumbent as the identifier. The user searches for the URI
dbr:President of the United States (Figure 2a) and finds the triple with
dbr:Donald Trump as object (Figure 2b), which they then remove. The user
then adds the triple with dbr:Joe Biden as object to the fragment (Figure 2c).
Figure 2d shows the changes made by the user. Once the user saves the update
(Figure 2e), it is forwarded to the other participants in the community, which
are notified (Figure 2f). Once a majority accepts the update, it is applied across
the community, and the updated index is sent to the observers.

2.3 Implementation Details

ColChain is implemented in Java 8. The Web interface and node interfaces
(Figure 1b) are implemented as Java 8 servlets using Jetty3. We implemented
the query processor as an extension of Apache Jena4, thus it can process any
SPARQL query that Jena can process (e.g., queries with UNION or OPTIONAL).
As previously mentioned, ColChain nodes use HDT [5] as backend for storing
data fragments, as well as Prefix-Partitioned Bloom Filter (PPBF) indexes [2]
to index the fragments available locally or remotely. The chains of updates are
stored in persistent storage separately from the fragments. However, if possible,
ColChain also stores the update chains temporarily in main memory.

3 https://www.eclipse.org/jetty/
4 https://jena.apache.org/



3 Demonstration

At the conference, we will demonstrate ColChain using two scenarios that
attendees can explore and interact with. We will run a network with the data
from LargeRDFBench [7], which comprises 13 interlinked datasets with over
a billion triples in total. Furthermore, we will run a separate network with
data from a subset of DBpedia that includes update chains back to version
2015-04, i.e., attendees will have the opportunity to explore query answers over
different versions of DBpedia. ColChain will be showcased using networks with
varying numbers of nodes and community sizes that follow different distributions
(e.g., Zipfian as in [3]). A video demonstration of ColChain using the DBpedia
scenario is available on our website5.

To ease interaction with the system, we will provide several interesting
SPARQL queries for attendees to explore each scenario. Attendees will be invited
to build upon these queries, formulate queries on their own, explore query
answers over different versions, and propose updates. For instance, attendees
could propose the update shown in Figure 2. Query Q from Listing 1 could then
be processed over the updated data as well as over DBpedia version 2015-04
when ?pr1 would be bound to dbr:Barack Obama.

Acknowledgments. This research was partially funded by the Danish Council
for Independent Research (DFF) under grant agreement no. DFF-8048-00051B,
Aalborg University’s Talent Programme, and the Poul Due Jensen Foundation.

References

1. Aebeloe, C., Montoya, G., Hose, K.: A Decentralized Architecture for Sharing and
Querying Semantic Data. In: ESWC 2019. pp. 3–18 (2019)

2. Aebeloe, C., Montoya, G., Hose, K.: Decentralized Indexing over a Network of RDF
Peers. In: ISWC 2019. pp. 3–20 (2019)

3. Aebeloe, C., Montoya, G., Hose, K.: ColChain: Collaborative Linked Data Networks.
In: WWW 2021. pp. 1385–1396 (2021)

4. Aranda, C.B., Hogan, A., Umbrich, J., Vandenbussche, P.: SPARQL Web-Querying
Infrastructure: Ready for Action? In: ISWC 2013. pp. 277–293 (2013)

5. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). J. Web Semant.
19, 22–41 (2013)

6. Pelgrin, O., Galárraga, L., Hose, K.: Towards Fully-fledged Archiving for RDF
Datasets. Semantic Web (2021)

7. Saleem, M., Hasnain, A., Ngomo, A.N.: LargeRDFBench: A billion triples
benchmark for SPARQL endpoint federation. vol. 48, pp. 85–125 (2018)

8. Vandenbussche, P., Umbrich, J., Matteis, L., Hogan, A., Aranda, C.B.: SPARQLES:
monitoring public SPARQL endpoints. Semantic Web 8(6), 1049–1065 (2017)

9. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D.,
Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: A low-cost knowledge
graph interface for the Web. J. Web Sem. 37-38, 184–206 (2016)

5 https://relweb.cs.aau.dk/colchain#demonstration


