
Evaluating Semantic Queries for Dataset
Engineering on the Hyperknowledge Platform

Marcio Moreno, Polyana Bezerra, Rodrigo Costa, Vı́tor Nascimento, Elton
Soares, and Marcelo Machado

IBM Research, Brazil, Av Pasteur 146 Rio de Janeiro - RJ, Brazil
mmoreno@br.ibm.com, {polyana.bezerra, rodrigo.costa, vitor.nascimento,

eltons, marcelo.machado}@ibm.com

Abstract. Machine learning typically requires training and validation of
models with large and heterogeneous datasets. The engineering of these
datasets is a critical task for enabling high accuracy and generalization,
although in many cases it is done following an ad-hoc approach. Hyper-
knowledge can enable more structured engineering of datasets, by rep-
resenting the datasets’ symbolic and non-symbolic information, within
the same framework, and enabling queries for dataset creation, retrieval,
resampling, and combination. In this poster paper, we present how the
Hyperknowledge Platform evaluates those queries and analyze its perfor-
mance quantitatively. The preliminary results indicate that our platform
can support data scientists’ work while adding negligible time overhead.

Keywords: Hyperknowledge; Hybrid Knowledge Representation; Hy-
perlinked Knowledge Graph; HyQL; Multimodal data.

1 Introduction

As the popularity of Machine Learning (ML) tasks increases, so does the amount
of data used to train and test them. The effectiveness of such algorithms is related
to the quality and variety of the data applied during the training stage [3]. The
continuous growth in size and heterogeneity of datasets used in ML tasks makes
what we call Dataset Engineering (DE) a key step for effective data exploitation,
leading to more effective models. Here we define DE as the process of handling
data through structuring and traceability. In this paper, we present how the
Hyperknowledge Platform [5] enables the engineering of datasets, by leveraging
the Hyperknowledge (HKW) model and the Hyperknowledge Query Language
(HyQL). We evaluate the response times of the HyQL queries related to those
tasks to check if these are lower, or in the same order of magnitude, as the
requirements posed by other data science tasks (such as model training, raw file
transfer time, and size). Thus, we designed a testbed containing a dataset that

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



combines a domain ontology and a dataset of images along with its metadata
and bounding boxes descriptions; and a set of queries that represents DE-related
tasks. We argue our approach can assist data scientists in their tasks saving time
and promoting better data exploitation.

2 Hyperknowledge Platform

The central component of the HKW Platform, depicted in Figure 1, is the HK-
Base that stores and maintains instances of HKW models. It has a flexible inter-
nal architecture to which components can be coupled through the implementa-
tion of one of its APIs (IObserver, IDataBase, and IReasoner).

Fig. 1. HKW Platform architecture [5].

The functionalities provided
by HKBase are exposed to ap-
plications through its REST-
ful API. The current HKBase
implementation uses two dif-
ferent data sources, one for
storing data structured fol-
lowing the HKW model and
another for storing unstruc-
tured content, which can be
used for storing datasets. It
also contains both the query
and reasoning engines that
will be used for processing
HyQL queries. An engine implementation might be optimized depending on
which data source is being used for storing the model, without creating a hard
dependency for HKBase.

The HyQL engine’s main components are its grammar 2 and its processing
engine. The processing steps followed by the HyQL processing engine are sum-
marized in Algorithms 1 and 2. In both algorithms, the variable insertClauses
will be used to store the set of pairs (c, E) such that c is the target context and E
is the set of entities to be inserted in c. Meanwhile, the variable updateClauses
will store the set of tuples (c, E,C, P ) such that c is the target context, E is the
set of entities to be inserted in c, C is the set of contexts to be generated by the
SPLIT function, and P is the set of proportion values associated with each con-
text in C. Finally, in Algorithm 1, the variable R stores the set of entities/rows
to be retrieved by the query.

The execDEClauses function logic is described in Algorithm 2. This function
receives the insertClauses and updateClauses variables, passed as parameters
to the call performed in line 13 of Algorithm 1, to identify which contexts and
reference nodes 3 must be created in HKBase as a result of the query.

2 Accessible at https://ibm.box.com/v/iswc2021-hyql-grammar. For clarity, we have
suppressed the handling of spaces, comments, and lower case keywords.

3 Reference node is a special type of HKW node that promotes the reuse of nodes
across multiple contexts.



Algorithm 1: HyQL engine main
processing steps.

Input: HyQL Query Q

1 insertClauses = ∅; updateClauses = ∅; R = ∅;
2 subQueriesObjects = ParseQuery(Q);
3 foreach subquery object sQ of

subQueriesObjects do
4 sQData = FetchData(sQ);
5 sQResultSet = EvaluateConstraints(sQ,

sQData);
6 sQR = getResults(sQResultSet, sQ);
7 sQI = (sQc, sQE) = getInsertClause(sQ,

sQR);
8 if sQI 6= ∅ then add sQI to insertClauses;
9 sQU = (sQc, sQC, sQP, sQE) =

getUpdateClause(sQ, sQR);
10 if sQU 6= ∅ then add sQU to

updateClauses;
11 merge sQR with R;

12 end
13 execDEClauses(insertClauses, updateClauses);

14 return R

Algorithm 2: Dataset engi-
neering clauses execution.

Input: insertClauses and updateClauses

1 foreach pair (c, E) of insertClauses do
2 create context c in HKBase;
3 foreach entity e of E do create a

reference node to e inside c;

4 end
5 foreach tuple (c, C, P, E) of updateClauses

do
6 if (C 6= ∅) and (P 6= ∅) then
7 foreach context sc of C and

corresponding proportion sp of P
do

8 create subcontext sc inside c;
9 create reference nodes to sp of

E within sc;

10 end

11 else
12 foreach entity e of E do create a

reference node to e inside c;

13 end

3 Experimental Evaluation

To evaluate our work quantitatively, we have measured the median execution
time the HyQL engine spends executing some of the queries related to DE tasks.
The main goal of this evaluation is to answer the following research questions
(RQs): (RQ1) Is the time required to answer DE queries within our platform
lower or in the same order of magnitude as the time consumed by other data
science tasks, such as model training and raw file transfer time? (RQ2) Are there
meaningful differences in response times across HKBase configurations?

To answer those RQs, we designed an experimental dataset based on the
Pascal VOC2012 [4]. Using the HKW Platform, this dataset was represented as
an HKW context containing descriptions of its classes, images, and relationships
between the bounding boxes of images and classes using 20 concept nodes, 17.125
content nodes, and 57.263 links between node anchors, respectively.

Based on this dataset we designed 11 experimental queries, presented in
Table 1, that include 4 SELECT queries, 4 INSERT queries based on the results
of SELECT queries, an UPDATE query that splits data into multiple contexts, a
SELECT query that uses spatial operators for filtering results, and an INSERT
query based on this SELECT query.

In total, 3 HKBase configurations, presented in Table 2, were evaluated.
Evaluating multiple combinations of HKBase data sources, and HyQL engine
implementations, helps us understand which configurations perform better for
each type of query and allows us to find the optimal setting for a given scenario.

The Generic HyQL engine implementation can work with any data source
supported by HKBase as all query processing is performed using the standard
data source API (IDB) while the SPARQL-based HyQL engine optimizes the
processing of HyQL clauses in Jena by translating them directly into a single
SPARQL query with multiple subqueries.



Table 1. HyQL queries designed for experiments.
ID HyQL Query
Q1 SELECT dataset
Q2 SELECT training set
Q3 SELECT test set
Q4 SELECT distinct image WHERE image has cat

Q5
INSERT INTO myDatasets
VALUES (SELECT dataset)

Q6
INSERT INTO myTrainingSets
VALUES (SELECT training set)

Q7
INSERT INTO myTestSets
VALUES (SELECT test set)

Q8
INSERT INTO myCatImages
VALUES (SELECT distinct image
WHERE image has cat)

Q9

UPDATE datasets APPLY
(SPLIT(image, [”image training set”,
”image validation set”, ”image test set”],
[0.65, 0.05, 0.3])
GROUP BY image)

Q10
SELECT image WHERE image has person
AND image has cat AND person contains cat

Q11
INSERT INTO myCatAndPersonImages VALUES
(SELECT image WHERE image has person
AND image has cat AND person contains cat)

Table 2. HKBase configurations evaluated.
Configuration Description

HKB + MongoDB +
Generic HyQL

HKBase with MongoDB
and Generic HyQL engine.

HKB + Jena +
Generic HyQL

HKBase with Jena and
Generic HyQL engine.

HKB + Jena +
HyQLtoSPARQL

HKBase with Jena and
SPARQL-based HyQL engine.

The hardware in which
these experiments were exe-
cuted was composed of two
dedicated Dell OptiPlex 7050
machines 4. Half the repeti-
tions for every configuration
were executed on each machine
to guarantee a fair compari-
son. The software setup of both
machines was also the same 5.
The scripts used to run the
experiments were implemented
in Python and used Docker
Compose to deploy and reset
the service containers. Both the
server and the client script ran
on the same host machine. For
running the queries, the dataset
was loaded once and all the
queries were executed in se-
quence, following their numeri-
cal order. All repetitions of each
query were also executed in se-
quence and after each repeti-
tion of queries with INSERT
and UPDATE clauses, the execution script removed all the entities generated by
the previous repetition to preserve the IID assumption [2].

A total of 100 query repetitions were executed on each machine, totaling 200
query repetitions. As highlighted by the 95% confidence intervals (vertical black
lines on the upper edge of each bar) in the bar plots of Figure 2, these were
sufficient to allow distinguishing which configurations were performed better for
each query. These preliminary results indicate that the time overhead required
for using our system is minimal when compared to time spent in typical data
science tasks, such as: (1) fitting a model to the data (training), which can take
multiple days or even months; (2) managing datasets manually, which currently
consumes a high proportion of data scientists’ work hours [1].

Therefore, we conclude that the answer to the RQ1 is that the requirements
posed by our solution can be up to several orders of magnitude lower than
the requirements posed by other data science tasks, introducing an overhead
of at maximum a couple of minutes required for the retrieval, creation and/or
integration of datasets using our system, while removing the need of performing
several tasks manually. Also, with regards to RQ2, the results indicate that HKB
+ Jena + HyQLtoSPARQL configuration presents lower response times.

4 CPU i7-7700T 2.90 GHz, DDR4 2400 MHz 8GiB, and SSD LITEON 119GiB.
5 Fedora OS 31, Docker 19, Conda, MongoDB 4.0, and Jena Fuseki 3.12.0 TDB2.



Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Query

100

101

102

103

104

105

Lo
g 

Qu
er

y 
Re

sp
on

se
 T

im
e 

(m
s)

HKB + Jena + Generic HyQL
HKB + Jena + HyQLtoSPARQL

HKB + MongoDB + Generic HyQL

Fig. 2. Median query response time for each HKBase configuration evaluated.

4 Conclusion

In this paper, we presented how the HKW Platform enables semantic queries
for dataset engineering. The main contributions of this work are the proposal,
implementation, and evaluation of the HyQL engine extensions required for sup-
porting these queries. Data scientists could use this solution to find new datasets,
balance, clean, and resample them, and select specific features, which saves time
and promotes better data exploitation. The quantitative analysis of the HyQL
engine has indicated that the queries discussed in this work can be evaluated
in a reasonable amount of time. When we compare the results obtained in our
preliminary analysis with the time currently spent for DE and ML tasks, we
conclude that the overhead introduced by our approach is negligible.

References

1. Anaconda: 2020 state of data science. Tech. rep., Anaconda, Inc. (2020)
2. Donatiello, L., Nelson, R.: Performance evaluation of computer and communica-

tion systems: joint tutorial papers of Performance’93 and Sigmetrics’ 93, vol. 729.
Springer Science & Business Media (1993)

3. Dong, X.L., Rekatsinas, T.: Data integration and machine learning: A natural syn-
ergy. In: Proceedings of the 2018 international conference on management of data.
pp. 1645–1650 (2018)

4. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman,
A.: The pascal visual object classes challenge: A retrospective. International journal
of computer vision 111(1), 98–136 (2015)

5. Moreno, M.F., Santos, R.C., dos Santos, W.H., Cerqueira, R.: Kes: The
knowledge explorer system. In: International Semantic Web Conference
(P&D/Industry/BlueSky) (2018)


	Evaluating Semantic Queries for Dataset Engineering on the Hyperknowledge Platform
	Introduction
	Hyperknowledge Platform
	Experimental Evaluation
	Conclusion


