CEUR-WS.org/Vol-2980/paper394.pdf

Towards Faster Reformulation-based Query
Answering on RDF Graphs with RDFS
Ontologies

Maxime Buron![0000-0002=8227-4771] " O eikh-Brahim El
Vaigh?2[0000-0002-9843-3001] ;1 Francois Goasdoug2l0000—0003—4532—7974]

1 Univ Oxford, Oxford, United Kingdom
maxime.buron@cs.ox.ac.uk
2 Univ Rennes, Lannion, France
{cheikh-brahim.el-vaigh,fg}@irisa.fr

Abstract. Answering queries on RDF knowledge bases is a crucial data
management task, usually performed through either graph saturation or
query reformulation. In this short paper, we optimize our recent state-
of-the-art query reformulation technique for RDF graphs with RDFS
ontologies [2], and we report on preliminary encouraging experiments
showing performance improvement by up to two orders of magnitudes!

Keywords: RDF/S - query answering - reformulation - optimization

1 Introduction

The RDF graph data model and its associated SPARQL query language are the
two well-established W3C standards for sharing data and knowledge, especially
on the Semantic Web through DBpedia, Wikidata, or more generally the Linked
Open Data cloud. Their rapid adoption over the last decade has made the study
of dedicated query answering techniques a hot topic in the data management
community at large, to design database management or data integration systems,
e.g., [9,3].

Answering queries on an RDF graph (graph in short) is not an easy task as
it combines database-style query evaluation with Al-style reasoning, to answer
queries from both the explicit and implicit information that the graph models.
Saturation-based query answering aims at computing first the saturation of the
graph by adding to it all its implicit information obtained through reasoning.
Then, the answers to a query on the graph are obtained by simply posing the
query to a data management system (DMS) that stores the graph saturation.
This technique provides fast query answering in general, but the saturation needs

possibly costly maintenance upon updates [6]. By contrast, reformulation-based

Copyright (©) 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



M. Buron, C.-B. El Vaigh, and F. Goasdoué

query answering amounts to transforming the query into a query reformulation,
so that the answers to the query are obtained by posing the query reformulation
to a DMS that stores only the explicit graph part. This technique does not need
maintenance upon updates, as it does not rely on the graph saturation, but query
reformulations may be too complex to be efficiently evaluated by a DMS [4].

In this paper, we consider the optimization of the reformulation-based query
answering approach that raises so far unsolved performance issues. In partic-
ular, we start with our recent technique [2] that applies to the core SPARQL
conjunctive queries, a.k.a. Basic Graph Pattern Queries (BGPQs), and RDF
graphs with RDF Schema (RDFS) ontologies; this technique supports the four
RDFS ontological constraints (subclass, subproperty, domain, and range) be-
tween classes (i.e., node types) and properties (i.e., edge labels), and all the
RDF entailment rules [10] that allow reasoning with these constraints. Other
techniques only focus on a subset of all these RDF entailment rules [6,4]. Cru-
cially, query answering performance decreases as the number of supported RDF
entailment rules increases (because the complexity of its query reformulation in-
creases), hence efficient reformulation-based query answering in the setting of [2]
is particularly challenging.

Our contributions are twofold. First, in Sec. 2, we identify two causes of lim-
ited performance for the reformulation-based query answering technique in [2]
and those it encompasses (e.g., [6]), and we propose three optimizations to ad-
dress them. They all consists in identifying and avoiding useless query refor-
mulation evaluation efforts either by reasoning on a query reformulation itself
via query containment or by reasoning on a query reformulation based on the
queried graph using the cardinalities (number of instances) of its classes and
properties, or a summary of it. Second, in Sec. 3, we discuss in which order these
optimizations must be applied to provide best performance and we report on ex-
periments we made to assess the effectiveness of our optimization workflow. As
we shall see, our workflow makes reformulation-based query answering (i) feasi-
ble when it was failing or timing out due to too complex query reformulations,
(7i) faster when it was feasible (up to 2 orders of magnitude), and (iii) better
than saturation-based query answering in a non-negligible number of occasions.

2 Optimizing reformulation-based query answering

The reformulation-based query answering technique we devised in [2] computes
for a given BGPQ ¢ a reformulation ¢’ of it w.r.t. the RDFS ontology O of the
queried graph G and the set R of entailment rules. ¢’ is expressed as a union
of BGPQs (UBGP(Q) that enumerates the — worst case exponentially many —
specializations of ¢ w.r.t. © and R. We present next three optimizations to apply
to ¢’ before it is sent for evaluation to some DMS that stores G; they consist in
removing useless BGPQs from ¢’ to speed up its evaluation time.

Containment-based BGPQ elimination. Because every BGPQ within the
UBGPQ reformulation ¢’ is computed independently from the others through
different reasoning paths, it may happen that ¢’ contains redundant BGPQs,



Towards Faster Reformulation-based Query Answering in RDF/S

i.e., whose answer sets are subsets of those of other BGPQs in ¢’. These can
be identified thus pruned away from ¢’ by comparing every pair of its BGPQs
through containment checking. We name this first optimization UBGPQ mini-
mization (M). We note that such minimization has been used in the literature
in other reformulation-based query answering settings, e.g., existential rules [8].

Cardinality-based and summary-based empty BGPQ elimination. An
essential property of reformulation-based query answering, which is common to
all reformulation-based techniques and not specific to [2], is that the reformula-
tion ¢’ computed from ¢ w.r.t. O and R allows retrieving the answers to ¢ on
all the graphs with ontology O. Though theoretically nice, the generality of ¢
needlessly limits its performance: ¢’ may contain BGPQs with no answer on the
specific queried graph G, while evaluating them may take (significant) time.

BGPQs in ¢’ may have no answer just because G has no instance for classes
or properties these BGPQs mention. To prune them away from ¢’, we compute
and store the cardinalities of the classes and properties in G, which, clearly, can
be maintained very fast upon graph updates. We name this second optimization
empty relation pruning (ER).

Also, BGPQs in ¢’ may have no answer because, though every class and
property they mention has instances, their selection or join conditions cannot be
matched in G. Thus, for each BGPQ in ¢’, we check whether it has no answer on a
summary of G, in which case it is pruned away from ¢’. We call this optimization
summary pruning (S). To do this, we reuse the notion of RDF graph summary
we defined in [5]: a summary is an RDF graph G= computed as the quotient
graph of the graph G to summarize, using an RDF equivalence relation = over
the nodes of G (discussed shortly); the particular = to use depends on the target
summary usage. We recall that the quotient operation basically fuses every set of
equivalent nodes into a single new node representing them all in G=; we say that
this latter node represents the former equivalent ones, in particular it inherits
of all their types and edges. We pointed out in [1] an important property of a
summary: a BGPQ ¢ has no answer on G if the BGPQ ¢= has no answer on
G—, where ¢= is obtained from ¢ by replacing each mention of a G’s node by the
G="s node it is represented by. We remark here that ¢ may have no answer on G
while g= does have some answer on G—. Importantly, the ability of a summary to
prune BGPQs depends on the choice of RDF equivalence relation =, all of those
presented in [5] have been devised for graph visualization. Therefore, we define a
novel RDF equivalence relation for BGPQ pruning that behaves as follows: two
nodes a,b in G are equivalent, noted a = b, iff (i) they both have the same class
(i.e., node type), or (ii) they are both equivalent to a third node cin G, ie.,a =c
and b = c. The rationale for this definition is that w.r.t. data compression we
want a single representative for every class/type (item (i) above) and w.r.t. of the
evaluation of BGPQs we want to capture joins between different classes/types
(item (7i) above).



M. Buron, C.-B. El Vaigh, and F. Goasdoué

LUBM100M (POSTGRESQL 12.7)

. Ref.

. Ref. ->Empty Relation->Summary

10 mmm Ref. ->Empty Relation->Minimization->Summary
Sat.

Time (ms)
-
<

=
L

10!

Q22(2561)
Q20(5319) 4
Q17(11664) -
Q04(540) 4
Q14(197) 4
Q11(130) 4
Q13(591)
Q18(13)
Q07(27) 4
Q02(270)
Q23(4)
Q15(156) 4
Q01(77)
Q03(9) 4
Q08(2)
Q09(10)
Q19(2)
Q21(1)
Q26(2364)
Q05(56)
Q24(788) f—
Q25(156)
Q06(1295)
Q10(6)
Q12(136) 4
Q16(12)

Fig. 1. Query answering times comparison using different optimization workflows.

3 Optimization workflow and experimental results

Optimization workflow. With the above three optimizations in place, the
crucial question is now in which order they should be applied to a reformulation
¢’ to maximize the performance gain. After experimenting on the possible orders,
the best we found is: ER, then M, and finally S. The intuition behind this
optimization workflow is that ER is very fast to perform (linear in the size of ¢’)
and may reduce the cost of both M by avoiding containment checks and S by
avoiding issuing BGPQs to the DMS while we “statically” know that they have
no answer. In practice, we observed that ER does help M but not S, because
DMSs are smart enough to efficiently detect queries with an empty relation.
Then, we chose to apply M because it is independent of the size of G and,
though it consists in a number quadratic in the size of ¢’ of NP-Complete BGPQ
containment checks, it is performed (i) in-memory and (i4) on BGPQs that are
not large in practice (although the UBGPQ ¢’ that unions them may be large).
By contrast, the difficulty of S augments with the size of ¢’ and of G= that grows
with the size of G. Applying M before S allows handling larger graphs. In our
experiments, the percentage of BGPQs pruned by ER, M and S is respectively
in average 32%, 19% and 25%, i.e., 76% in total! Further, while the time spent in
applying ER is negligible (always less than 2ms), in average, 3.73% of the query
answering time is spent in applying M and 24.97% in applying S (dropping to
14.32%, if we disregard the four queries with no answer for which most of the
query answering time is spent in applying S as expected).

Experiments. We have implemented our optimizations in OntoSQL? [1,2,4,6],
a Java platform for RDF data management on top of Postgres v12.7, in which we
stored a LUBM [7] graph G of 100M edges with its summary G= of 8.3M edges
(7.6% G’s size). For our experiments, we used a CentOs 7.5 linux server with a
2.7GHz Intel Core i7 CPU, 160GB of RAM and a fast HDD. Loading G took
2h27min and building G= took 13min. We reused 26 queries from [7,1,4] with 1

3 https://ontosql.inria.fr


https://ontosql.inria.fr

Towards Faster Reformulation-based Query Answering in RDF/S

to 11 joins and 0 to 20M answers. In Figure 1, we can see their corresponding re-
formulation size (number of BGPQs in the UBGPQ) before optimization (shown
as x-axis labels), and their answering times using the reformulation without and
with part of or all our optimization workflow; all are compared to the saturation-
based approach. We set a timeout to 10min; it is reached when answering Q22,
Q20 and Q17 without optimization. We observe that our optimization workflow
yields performance improvement except on very simple queries where its over-
head shows; we remark performance gain up to one order of magnitude for Q20,
Q04 and two orders for Q15, and quite surprisingly optimized reformulation-
based query answering is faster than saturation-based query answering on Q04,
Q15 and QO03.

4 Perspectives

A direct perspective to this work is to support fast summary maintenance upon
graph updates. We will investigate this using the union-find-delete data struc-
ture, which is suited to model and update equivalence relations.

Acknowledgements

This work was partially supported by the ANR project CQFD (ANR-18-CE23-
0003).

References

1. Buron, M., Goasdoué, F., Manolescu, I., Merabti, T., Mugnier, M.: Revisiting
RDF storage layouts for efficient query answering. In: International Workshop on
Scalable Semantic Web Knowledge Base Systems (2020)

2. Buron, M., Goasdoué, F., Manolescu, 1., Mugnier, M.: Reformulation-based query
answering for RDF graphs with RDFS ontologies. In: ESWC (2019)

3. Buron, M., Goasdoué, F., Manolescu, 1., Mugnier, M.: Ontology-based RDF inte-
gration of heterogeneous data. In: EDBT (2020)

4. Bursztyn, D., Goasdoué, F., Manolescu, I.: Optimizing reformulation-based query
answering in RDF. In: EDBT (2015)

5. Goasdoué, F., Guzewicz, P., Manolescu, I.:. RDF graph summarization for first-
sight structure discovery. VLDB J. 29(5) (2020)

6. Goasdoué, F., Manolescu, I., Roatis, A.: Efficient query answering against dynamic
RDF databases. In: EDBT (2013)

7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3) (2005)

8. Konig, M., Leclere, M., Mugnier, M., Thomazo, M.: Sound, complete and minimal
ucg-rewriting for existential rules. Semantic Web Journal 6(5), 451-475 (2015)

9. Nenov, Y., Piro, R., Motik, B., Horrocks, 1., Wu, Z., Banerjee, J.: RDFox: A
highly-scalable RDF store. In: ISWC (2015)

10. W3C: RDF 1.1 Semantics (2014), https://www.w3.org/TR/rdf11-mt/


https://www.w3.org/TR/rdf11-mt/

	Towards Faster Reformulation-based Query Answering on RDF Graphs with RDFS Ontologies

