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Abstract
Graph neural networks (GNNs), similarly to other connectionist models, lack transparency in their
decision-making. A number of sub-symbolic approaches, such as generating importance masks, have
been developed to provide insights into the decision making process of such GNNs. These are first
important steps on the way to model explainability, but leaving the interpretation of these sub-symbolic
explanations to human analysts can be problematic since humans naturally rely on their background
knowledge and therefore also their biases about the data and its domain. To overcome this problem
we introduce a conceptual approach by suggesting model-level explanation rule extraction through a
standard white-box learning method from the generated importance masks.
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1. Introduction

Many important real-world data sets come in the form of graphs or networks. These
include social networks, knowledge graphs, protein-interaction networks, the World Wide
Web and many more. Graph neural networks designed to leverage relational inductive
biases induced by a graph via a neural message passing strategy. Unlike standard neu-
ral networks, graph neural networks encode relational information in addition to node
and edge feature information [1]. Similarly to other connectionist models, GNNs lack
transparency in their decision-making. Since the unprecedented levels of performance
of such AI methods lead to their increasingly dominant role, there is an emerging need
to understand the decision-making process of such systems [2]. The growing concern
regarding potential bias in these models creates demand for model transparency and
interpretability. In other words, model explainability is a prerequisite for building trust
and the adoption of an AI system in high stakes domains requiring reliability and safety
such as healthcare and mission critical industrial applications with significant economic
implications, e.g. predictive maintenance. This includes being able to explain the decision
making processes of GNNs in learning from complex graph structure. While the increasing
demand for explainable AI is a positive development, explanatory models are often built
for AI researchers, making them hard to understand for non-experts. Our approach
targets experts of the application domain. Explainable AI and with it the widespread
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application of AI models are more likely to succeed if the evaluation of these models is
focused more on the user’s needs [3].

While a variety of explainable models for graph neural networks are being developed [4] [5]
[6], a common weakness among these approaches is the user’s responsibility for compiling
and comprehending the symbols in the final step, relying on their own implicit form of
knowledge and reasoning about them [7]. How the input, the output and the emitted
symbols relate to each other, is often an implicit cognitive intuition on the user side, with
differing grades of tolerance in their interpretation. Humans utilize their background
knowledge and therefore also their biases about the data when drawing conclusions. This
can lead to the deduction of inconsistent or meaningless explanations.

In this position paper, we address this weakness of existing approaches by proposing a
post-processing rule-based companion to such a sub-symbolic explainer method, with the
conceptual schema shown in Figure 1. Thereby we want to complement the sub-symbolic
instance-level explanations with model-level rules. By extracting and aggregating global
rule-based explanations through a standard white-box machine learning method from the
generated explainer subgraph, we reduce the amount of additional interpretation needed
by the user and provide a model-level explanation, that captures explanations about the
global behavior of a model by investigating what input patterns can lead to a specific
prediction. As an example of such an approach, we developed a novel method known as
SUBGREX. We take the output of the state-of-the-art explainer method as input as well
as graph-specific attributes such as node distances and network motifs and use decision
trees to generate rule-based explanations.

2. Rule-Based Explanations of Subgraphs

The goal is to generate systems that can provide model-level rule-based explanations,
which don’t rely on the user’s understanding of the domain. We can achieve this by
combining the results of a sub-symbolic explainer method with a white-box rule generator
which satisfies the representation needs for human comprehensibility and reasoning. The
rule-based explanation generation isn’t a stand-alone approach, but an add-on post-
processing method in order to enhance the explanations and make them more user-centric.
After training a GNN, the GNNs decision making process is interpreted by identifying
a sparse receptive field containing influential elements. Our post-processing approach
consists of taking these initial symbolic explanations and lifting them to the level of rules.
The proposed process can be seen in Algorithm 1 for a node classification task, where
an edge mask 𝑀𝐸 and node feature mask 𝑀𝑋 are generated by a sub-symbolic explainer
model 𝐹𝑒𝑥, and subsequently rules for edge and node features are created by the white-box
models 𝐷𝐸 and 𝐷𝑋. The rules are created through a classification process, where the
individual edges and features are assigned binary labels “influential" or “not-influential"
based on their masking value. The white-box model is trained using the binary masks as
the target variable. The generated rules then function as a model-level explanation for



the respective classes of the original classification problem and furthermore, introduce a
verbalization element that can make explanations more comprehensible for the user.

Figure 1: Conceptual schema of generating rule-based explanations

An important part of generating an user-centric explanation is to make explanation
customizable and include provenance, e.g. by including information about the domain
knowledge utilized by the system to increase user-understandability and acceptability.
Such domain knowledge can be included by extracting attributes from the subgraphs
depending on the domain and classification task. An example of such inclusion of domain
knowledge are graph-specific attributes, such as motifs mapped to the domain language
(see Algorithm 1). In a more formalized setting, relational rules could also be included
e.g. to represent domain-specific constraints.

2.1. SUBGREX Model

To test this conceptual approach, we propose our SUBGREX model, which enables the
generation of model-level explanations. Since the state-of-the-art method outperforms
alternative baseline approaches by 43.0% in explanation accuracy [4], we chose the
GNNExplainer as the sub-symbolic explainer method 𝐹𝑒𝑥. As a method for extracting
the rules, the standard machine learning mechanism decision tree is employed with
𝐷𝐸 = 𝐼𝐷3𝐸, 𝐷𝑋 = 𝐼𝐷3𝑋. The decision trees can be linearized into decision rules 𝑅𝐸 and
𝑅𝑋. The classification by the decision tree is binary and based on whether the node
𝑣𝑖 is considered influential by the chosen subgraph generation method stemming from
the edge mask 𝑀𝐸, which is a 0/1-valued vector and therefore our target attribute for
the white-box model 𝐷𝐸. The attributes 𝑎1, …𝑎𝐿 for the 𝐷𝐸 input are extracted from
node, edge, and graph meta information from the explanation subgraphs. Since graph
architecture offers more information than tabular data, it is vital to take graph-specific
data such as network motifs into account. In order to enhance the user-friendliness of
our approach, the attributes are personalized to the domain by mapping them to the
respective domain terminology as shown in Algorithm 1. The feature selection rules are
generated analogously with the corresponding node feature mask 𝑀𝑋.



Algorithm 1 Rule-Based Explanation Generation
1: Inputs: Explanation Subgraph Model: 𝐹𝑒𝑥; Graph adjacency: 𝐴(𝑁 × 𝑁); Node

features: 𝑋(𝑁 × 𝑑); Set of attributes: 𝐿 = {𝑎1, …𝑎𝐿}; Attribute mapping dictionary:
𝑇 = {𝑎1 ∶ 𝑡1, …𝑎𝐿 ∶ 𝑡𝑇}; White-box model: 𝐷𝐸, 𝐷𝑋

2: for 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = 1, 2, … , 𝐾 do
3: for 𝑛𝑜𝑑𝑒 = 1, 2, … , 𝑁 do
4: 𝑀𝑋, 𝑀𝐸 = 𝐹𝑒𝑥(𝑛𝑜𝑑𝑒, 𝐴, 𝑋)
5: for support_node in 𝑀𝐸 do
6: If 𝑀𝐸(𝑠𝑢𝑝𝑝𝑜𝑟 𝑡_𝑛𝑜𝑑𝑒) → 𝑦𝑠𝑢𝑝𝑝𝑜𝑟 𝑡
7: 𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡 = Extract-Attributes(𝑠𝑢𝑝𝑝𝑜𝑟 𝑡_𝑛𝑜𝑑𝑒, 𝑀𝑋, 𝑀𝐸, 𝐿)
8: 𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡𝑚 = Map-Attributes(𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡, 𝑇)
9: 𝐷𝐸.fit(𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡𝑚, 𝑦𝑠𝑢𝑝𝑝𝑜𝑟 𝑡)

10: end for
11: for support_node in 𝑀𝑋 do
12: If 𝑀𝐸(𝑠𝑢𝑝𝑝𝑜𝑟 𝑡_𝑛𝑜𝑑𝑒) → 𝑦𝑠𝑢𝑝𝑝𝑜𝑟 𝑡
13: 𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡 = Extract-Attributes(𝑠𝑢𝑝𝑝𝑜𝑟 𝑡_𝑛𝑜𝑑𝑒, 𝑀𝑋, 𝑀𝐸, 𝐿)
14: 𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡𝑚 = Map-Attributes(𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡, 𝑇)
15: 𝐷𝑋.fit(𝑥𝑠𝑢𝑝𝑝𝑜𝑟 𝑡𝑚, 𝑦𝑠𝑢𝑝𝑝𝑜𝑟 𝑡)
16: end for
17: end for
18: end for

2.2. Preliminary Results

The MUTAG dataset, which is comprised of molecule graphs labeled according to their
mutagenic effec [8] is used. We carry out graph classification with a vanilla 2-layer
Graph Convolutional Network. In the next step, we generate a corresponding edge mask
𝑀𝐸 and node feature mask 𝑀𝑋 with the GNNExplainer. For our experiment, we use a
subset of 30 subgraphs that are symmetrically either classified as 𝑚𝑢𝑡𝑎𝑔𝑒𝑛 or 𝑛𝑜𝑛𝑚𝑢𝑡𝑎𝑔𝑒𝑛,
with respectively 14 feature attributes. Decision tree training and testing data follows
a random 80%-20% split. In the following, linearized rule-based explanations from the
respective decision trees are listed:

𝑅𝑀𝑢𝑡𝑎𝑔𝑒𝑛
𝑋 ={If molecule contains atom C AND atom O; If molecule contains atom C AND

atom S AND no atom O; If molecule contains atom H AND no atom C} Sensitivity (Sens):
0.98; Accuracy (Acc): 0.83
𝑅𝑀𝑢𝑡𝑎𝑔𝑒𝑛
𝐸 ={ If atom has more than 2 bonds AND if atom is part of an atom ring; If

atom has only one bond AND is not part of an atom ring} Sens: 0.72; Acc: 0.64
𝑅𝑁𝑜𝑛𝑚𝑢𝑡𝑎𝑔𝑒𝑛
𝑋 ={If molecule contains no atom N AND no atom H } Sens: 0.95: Acc: 0.94

The extracted node rules give the user an comprehensible idea of the network mo-
tifs that are influential in the GNN’s decision making, either being a part of a cycle motif
(atom ring) with a high degree (in this case, more than 2 bonds) or not being part of



the cycle motif and having only one bond. Also the node feature rules represent clear
explanations which atoms, e.g. atom H, are influential in the respective classification. We
can see, that SUBGREX correctly identifies, that atom N and atom H not being in the
molecule is influential for classifying it as nonmutagen, with chemical group 𝑁𝐻2 being
known to be mutagenic [8]. No node selection rules with a low Gini impurity could be
extracted for the 𝑛𝑜𝑛𝑚𝑢𝑡𝑎𝑔𝑒𝑛 category. This indicates that no feature is influential enough
to generate a model-level explanation of when a molecule is classified as nonmutagen.
We report the sensitivity to show to which extent our explanations can function as a
model-level explanation. Sensitivity indicates the ability of the decision tree to correctly
classify a node or feature as influential. The sensitivity lies between 72% for mutagen
node selection rules and 98% for mutagen feature selection rules and indicate a a high
level of model explainability.

3. Conclusion
We have proposed a conceptual vision for how to approach generating enhanced, more
user-centric rule-based explanations from sub-symbolic instance-level explanations, which
improve model-level understanding. We also report on initial experiments that demon-
strate the validity of our method. Even with the rather simple SUBGREX method we
show some surprisingly effective results in terms of meaningfulness of explanations and
high sensitivity. In further research we plan to evaluate and compare the effectiveness of
different white-box models including semantic web technologies such as inductive logic
programming.
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