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Abstract
There has been increasing interest in recent years on investigating whether neural models can learn
mathematical reasoning. Previous approaches have attempted to train models to derive the final answer
directly from the question in a single step. However, they have typically failed to generalize to problems
more complex than those in the training set. In this paper, we posit that these failures can be circumvented
by introducing a strongly supervised recursive framework to the traditional transformer architecture.
Rather than having the model output the answer directly in a single shot, we reduce each problem
into a sequence of intermediate steps that are teacher forced during training. During inference, the
autoregressive model recursively generates each intermediate step until it arrives at the final solution.
We validate our method by training models to solve a popular mathematical reasoning task: complex
addition and subtraction with parentheses. Our model not only attains a near perfect accuracy on
problems of similar difficulty to the train set but also showcases generalization capabilities: while current
state-of-the-art neural architectures completely fail to extrapolate to more complex arithmetic problems,
we achieve a 66.26% accuracy.
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1. Introduction

Although neural architectures have made large advances in natural language processing and
understanding, these models often seem to be black boxes, their inner workings difficult to
interpret. Because mathematics is often referred to as a universal language – digits, operators,
and other symbols have fixed meaning independent of spoken language – training neural
language models to learn mathematics may provide insight into the internal mechanisms by
which they learn other languages. In this paper, we explore the ability of neural models to
develop their own representations and intuition for integer arithmetic.

Past sequence-to-sequence approaches have trained models to take the full problem statement
as input and produce the final answer as output. These methods perform well when evaluating
the models on test samples from the same distribution as the training samples, but even the
most promising models, which use transformers [1], have lacked the ability to extrapolate.
We tackle the generalization issues encountered by existing models by introducing an al-

ternative approach that trains the model to perform a single computational step rather than
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to predict the final answer in one shot. By feeding the reduced output back into the model as
input, the model eventually reduces the original problem into the final numerical answer. We
propose an architecture for this method that we call the Recursive Transformer (RecT), which
builds upon a standard transformer by allowing the output to be recursively fed back into its
input, similarly to an RNN.
Training on arithmetic addition and subtraction of up to six operators, we show that RecT

performs exceedingly well on test problems of the same structure (i.e. up to six operators),
scoring nearly perfectly on that test set. Notably, RecT achieves over 66% accuracy on a more
difficult dataset, consisting of problems with nine to eleven operators, which state-of-the-art
methods have entirely failed. In addition to the improved performance on the extrapolation
dataset, RecT has far fewer parameters than other state-of-the-art models and also “shows its
work” by computing the answer step-by-step, so we can analyze its mistakes for insight into its
understanding of arithmetic.

2. Related Work

Arithmetic can be framed as a sequence-to-sequence language processing problem, where the
resulting value is the output of the input expression. Accordingly, some prior research has
been done investigating the application of neural architectures typically used for language
tasks, such as LSTMs [2] and transformers [3], to mathematical problems. Wangperawong [4]
trained a transformer model on addition, subtraction, and multiplication of two numbers and
saw high accuracies in those tasks. More recently, Saxton et al. [1] analyzed the performance
of both LSTM and transformer architectures in training a general neural model for various
mathematical tasks, ranging from simple arithmetic to factoring polynomials. Their study
yielded promising results, achieving over 90% accuracy on arithmetic problems, including
problems with multiple numbers. Another architecture that has been proposed for the purpose
mathematical and algorithmic reasoning is Kaiser and Sutskever’s Neural GPU [5], which is able
to perform addition and multiplication on a pair of binary numbers. It has since been improved
upon by Price et al. [6] as well as Freivalds and Liepins [7] to successfully learn arithmetic with
decimal inputs.
However, none of these architectures have proven successful at extrapolating to problems

larger and more complex than those seen in training. Saxton et al. yielded the most promising
results, training and succeeding on arithmetic expressions with multiple operators, such as
adding four or five numbers together, but their transformer model is unable to generalize to
an expression with more than seven or eight numbers. Likewise, the Neural GPU is able to
extrapolate to much larger numbers than it is trained on but completely fails at operations with
more than two numbers.

3. Approach

RecT inherits the benefits of both recursive and transformer based models:

• Tokens that are not positionally close together can still interact with each other through
the transformer’s attention mechanism.



• The model uses the same parameter values (in the form of a transformer) at each “compu-
tation step”, similar to how RNNs use the same weights when generating each token. We
hypothesise that by sharing parameter values across computation steps, the model will
be able to perform well with a smaller number of parameters while also generalizing well
because of its recursive formulation.

RecT treats each recursive step independently, allowing us to supervise each intermediate
step. For example, rather than providing 1 + 2 + 3 as a question and 6 as the answer, we instead
split the solution into a series of reductions: 1 + 2 + 3 will reduce to 3 + 3 , and 3 + 3 will
reduce to 6 . By re-framing the original problem into a series of single-step reductions, we are
able to completely eliminate the recurrent loop when training the model, making the model
highly efficient. This approach can be thought of as teacher forcing abstracted to both the
“thinking step” level and the character generation level.

Similar to how natural language models must produce an end token to signify the end of a
sentence, the RecT model needs a way of communicating the end of its recursion. We introduce
two special tokens, “Loop Continue” and “Loop End”, which allow the model to signal whether
or not it should continue to recurse. By adding one of the two tokens to the output, the model
is taught during training whether it has reached the final answer or needs to recurse.

Figure 1: An abstracted diagram of the RecT model architecture, sans marking. When fed the input
(2+3)-1 , the transformer produces 5-1 and the loop continue token. The output is fed back into the
transformer’s input because of the loop continue flag, as illustrated by the purple line. The second step
produces 4 and the loop stop flag. Thus, the final answer produced by RecT is 4 .

Sub-problem marking. Central to the transformer design is the concept of cross-attention,
which works by performing dot products between keys and queries between the encoder and
decoder [3]. This particular mechanism – without augmenting the token space – may not be
optimal for the task at hand; for example, consider the problem 11+33-9 . After the decoder
produces the first two tokens (44 ) it could be difficult for the transformer to learn to attend to the
“-” token. From human experience, we have observed that children frequently cross-off parts



of the problem that they’ve already visited. In other words, children augment the generated
sequence in order to better determine where they should focus their attention.
Taking inspiration from this example, we introduce a new strategy to RecT which adds an

additional step. Rather than directly performing a single reduction on the input problem, the
model is now taught to highlight the sub-problem it will solve using two special tokens and then
subsequently reduce the marked problem as a separate step. For example, given the problem 1
+ 2 + 3 , the marking step would yield $1 + 2# + 3 , where $ and # mark the beginning and end
of the sub-problem. The subsequent step reduces the problem to 3 + 3 . As we show in Section
6.3, the introduction of these two marking tokens helps the model distinguish between the part
of the problem that must be solved and the part that should be copied.

4. Experiment Setup

Our experimentation consists of two phases. In the first phase, we examine the relative perfor-
mance of various strategies, such as sub-problem marking and randomized padding (4.1). In the
second phase, we apply the best performing strategies on three variants of the RecT model and
compare the results to a baseline single-shot transformer model.

4.1. Data

Simple arithmetic data. Due to the complexity of the task at hand, our experimentation takes
a curriculum based approach where the models are first pre-trained on simple arithmetic. The
pretraining dataset consists of 2 million data points, each being an addition or subtraction
between two numbers of up to 9 digits each. The distribution of numbers is carefully tuned in
order to guarantee an even mix in digit length.
Multi-step arithmetic data. In order to train and test on problems that require multi-step

operations (problems consisting multiple arithmetic operators and parentheses), we leverage the
DeepMind Mathematics Dataset [1]. We parse each multi-step expression in order to generate
the intermediate steps by adapting an open-source arithmetic parser [8]. This allows us to
generate increasingly ”reduced” representations of the questions. As described in the approach
section, a boolean flag which indicates whether the model should halt or not is appended to the
expressions.
Notice, however, that if every intermediate step is included in the final dataset, the dataset

skews towards smaller problems since every 𝑁 step problem can be reduced to problems of
size 𝑁 − 1, 𝑁 − 2, and down to 1 step. To control for the fact that the number of operators
is unbalanced, we introduce the idea of ”step corruption”, where we randomly choose which
intermediate steps to include in the training data using a calibrated probability distribution.
This method is motivated by masked language modeling and span corruption introduced by the
BERT [9] and T5 [10] models.
With this parsing method, we generate our multi-step training set by parsing the 666,666

train-hard/arithmetic__add_sub_multiple examples from DeepMind’s dataset to obtain 2 mil-
lion multi-step examples. Then, we randomly sample 1.5 million of the multi-step examples and
combine them with 500 thousand randomly selected datapoints from the simple addition/sub-
traction training data to ensure the model does not completely forget the previous task. We



repeat the process on DeepMind’s interpolation and extrapolation test sets in order to generate
our multi-step interpolation and extrapolation tests.
Sub-problem marking. As described in the approach section, another method for training

RecT is to simulate a “marking step” where the model marks the sub-problem it will solve and
a separate “reduction step” where the model actually reduces the problem. We modify the
arithmetic parser code to include marked sub-problems and reductions and then repeat the
same process as described for the regular multi-step datasets.
Randomized padding. A key component of the transformer is the positional encoder,

which allows the model to capture the ordering of the characters. Since we are testing the
generalization of the model, the problem lengths in the extrapolation test set are longer than
those in the training set. Consequently, at test time, the model may see characters at positions
that it has never seen or used before. As a result, the model runs the risk of unintentionally
overfitting its interpretation of different positions that it saw during training. For the task at
hand, the model simply needs to know the relative positions of characters - not the absolute
positions. Equivalently, the model should be robust enough to produce the same result regardless
of whether the problem starts at the 0𝑡ℎ position or the 𝑛𝑡ℎ position. This insight motivates our
randomized padding technique: a random amount of padding is inserted before the problem,
ensuring that the model “sees” all character positions being used although the problem lengths
during training are shorter than those in extrapolation.
End-to-end testing. RecT predicts the result of a single computational step rather than the

final answer. In order to generate the final answer, the result from each computation step is
fed back into the model – recursively making predictions – until it produces a halt token. For
this end-to-end evaluation, we use the unprocessed DeepMind interpolation and extrapolation
test sets for recursive prediction. This allows us to accurately compare our RecT architectures
side-by-side with the baseline single-shot transformer model.

4.2. Evaluation Method

We evaluate the model by feeding it a question from the test set and comparing whether the
output is an exact character match with the dataset’s answer, the same method as described
in Saxton et. al [1]. Although this metric is quite unforgiving towards carrying mistakes and
small discrepancies in the single digit place, we choose not to be lenient with any inaccuracies
produced by the model, regardless of their proximity to the correct answer. However, we
qualitatively examine a selection of such near-misses in Section 6.2.
We measure two types of accuracy: the first is the per-step accuracy, which describes the

model’s ability to perform a single computational step such as 1+2+3 → 3+3 ; and the second is
the end-to-end accuracy, which denotes the model’s accuracy in recursively reducing the initial
problems into their final numerical answers.

4.3. RecT Models

Weexperimentwith three sizes of the RecTmodel, whichwe refer to as RecT_Small, RecT_Medium,
and RecT_Large (hyperparameters detailed in Table 1). In addition to the training method above



using both sub-problem marking and randomized padding, we train variants that skip either
the marking or the padding to demonstrate the benefits of the two techniques.

Table 1
Configurations details for RecT Small, Medium, Large, and Baseline models.

Variant Features Attention Heads Enc/Dec Layers Feed Forward Size Learning Rate Parameters
RecT_Small 32 4 6 64 5 ⋅ 10−4 130, 464

RecT_Medium 128 8 6 256 5 ⋅ 10−4 1, 996, 320

RecT_Large 256 16 6 512 10−4 7, 924, 768

Baseline 256 16 6 512 10−4 7, 924, 768

4.4. Baseline Model

We believe that the proposed method will generalize better to more complex problems when
compared to prior work. Though it is well-known that previous attempts completely fail to
generalize, we seek to experimentally confirm these results by training and evaluating a baseline
model. Doing so enables us to accurately determine the benefits of the proposed method.
The baseline model, a vanilla transformer, attempts to solve the math problems in a single

shot – without recursion – as described by prior work such as Saxton et al. [1]. Since solving
the problem in a single shot is a harder task than single step reductions, we use the same model
configuration as RecT_Large, which has ∼8M parameters.

5. Results

We find an average accuracy improvement of 22.65% on the extrapolation task when the models
are trained with sub-problem marking. Results from our experimentation show an additional
20.53% improvement in extrapolation accuracy when randomized padding is also included.
Hence, we decide to utilize sub-problem marked data and randomized padding in subsequent
experimentation.
All three models achieve near perfect single step accuracy on the interpolation set, and

consequently, the end-to-end interpolation accuracies of the three models are also extremely
high, with RecT_Small performing the worst at 98.890%. Notably, RecT_Medium achieves a
perfect score on the interpolation set. On the extrapolation set, the per-step accuracies are fairly
high, with RecT_Medium scoring 96.426% and the other two just under 90%. However, due to
the recursive architecture, errors propagate through each step, causing the end-to-end accuracy
to decrease exponentially as the size of the problem increases. RecT_Medium performs the
highest across the board and scores decently on the extrapolation set with 66.260% accuracy,
but the other two models fall off significantly.



Table 2
Results of RecT model variants.

Test Data Variant Per-Step Accuracy End-to-End Accuracy
Simple addition/subtraction of two numbers, each
up to 9 digits

RecT_Small N/A 97.210%

RecT_Medium N/A 99.220%
RecT_Large N/A 99.820%

Interpolation: Multi-step addition/subtraction (be-
tween 3 and 6 operators)

RecT_Small 99.875% 98.890%

RecT_Medium 100% 100%
RecT_Large 99.998% 99.980%

Extrapolation: Multi-step addition/subtraction
(between 9 and 11 operators) RecT_Small 88.153% 37.350%

RecT_Medium 96.426% 66.260%
RecT_Large 88.372% 23.110%

Figure 2: Accuracy comparisons between the three RecT variants and the baseline single-shot model at
different problem complexities. Note that the baseline single-shot model does not produce intermediate
values as it is not recursive. For this reason, it is not included in the single step accuracy analysis.

6. Analysis

6.1. Generalization

Our results show that all three RecT models significantly outperform than the baseline single-
shot model. Though the baseline model performs slightly worse than expected on interpolation
due to slow convergence, it performs poorly on extrapolation, which we find consistent with
results in prior work. This is contrasted with RecT_Medium which achieves 90% end to end
accuracy on 9-operator problems despite not having seen problems with more than 6 operators
during training. We infer that this is because the recursive pattern inherently builds in general-
ization capability. Our analysis also shows that RecT_Large performs worse than Rect_Small on
extrapolation across the board, despite the fact that it has ∼ 60x more parameters. We believe
this phenomenon is a result of over-fitting, which is known to be more likely for larger models.
Despite the general success from RecT models, we see a significant drop-off in accuracy for

11-operator problems. Perhaps increasing diversity in problem complexity during training –



e.g. training on data with 3 to 10 operators and extrapolating on data with 13 to 16 operators –
while holding the number of parameters fixed would reinforce the model’s need to generalize
and in turn yield better results.

6.2. Common Mistakes Made

One of the advantages of our recursive architecture is the model’s increased interpretability.
Unlike prior work which acts more like a black-box by taking an input question and returning
a final answer, our model is able to “show its work” by providing the intermediate steps.
Table 3 in the appendix shows an example proof of work that was produced by RecT_Medium
in the extrapolate set. It demonstrates the model’s ability to solve an 9 operator problem
recursively by marking the appropriate sub-problem with the $ and # symbols, reduce the
marked problem while gracefully handling double negatives and parentheses, and correctly
output loop continue/stop tokens. The baseline model, on the other hand, incorrectly produces
the answer -100 in a single shot, with no indication of what caused the error.
Through the models’ proof of work, we notice that some of the most common mistakes the

model makes include:

• Carrying mistakes leading to off-by-one errors in a couple digits
• Dropping parentheses that are unrelated to the current sub-problem
• Double negatives sometimes causing the model to subtract rather than add

While we expected the models to have trouble with carrying and double negatives, the paren-
theses issue was more surprising. One possible root cause could have been that we did not
consider removing parentheses to be a separate step from the reduction inside the parenthe-
ses – for example, having 1 + (2 + 3) → 1 + (5) → 1 + 5 instead of skipping straight from
1 + (2 + 3) → 1 + 5 . This may have caused the model to learn that parentheses, though neces-
sary for determining the next sub-problem to mark, are not useful for the reduction themselves,
leading to the issues we see.

6.3. Comparing marking and non-marking RecT

When we train a model without sub-problem marking and evaluate on the extrapolation test
set, we find that the model is generally able to make the expected reduction at the beginning of
the problem but fails to copy the rest of the expression, especially towards the end of longer
problems. Past a certain point, the model tends to either end the output early or repeat the same
few characters until it reaches the maximum output length. We find that training the model
with the additional supervision of sub-problem marking significantly mitigate these issues.

One explanation, supported by the attention visualizations in Figure 3, may be that the
presence of the sub-problem markers helps the model refine the multi-headed attention weights.
We can see that for a RecT model trained without marking, the first encoder layer has each
operator attend to the relevant numbers, and the second layer shows each sub-problem attending
within itself. However, attention begins to degenerate in the rest of the layers, which are less
distinctly interpretable. On the other hand, RecT trained with marking maintains a clear
attention pattern throughout all layers on marking steps, such that each number attends only



(a) RecT encoder attention for 1+1+1+1+1+1 without subproblem marking

(b) RecT encoder attention onmarking (first row) and reduction (second row) 1+1+1+1+1+1 . The rectangles
in the reduction step denote the ”marks” that the model places.

Figure 3: Encoder self-attention heatmaps for RecT without (a) and with (b) subproblem marking. The
images in each row represent the attentions for each encoding layer of the model.

to the relevant operators and vice versa. In the reduction step, we can see that the marking
characters help partition the problem into sections that attend within themselves, and in the
second-to-last layer, we even see that the two operands of the reduction attend very highly to
each other.

6.4. Embeddings

Figure 4: Embedding visualizations of two RecT models with circular representations of digits.



Aside from measuring quantitative performance, we also study the learned embedding
vectors to see if the representations learned by the models may demonstrate that that they
have developed an interpretable intuition for the language of arithmetic. The digit embeddings,
especially, would provide insight into the internal representation of numbers by each model.
We apply principal component analysis in order to visualize the embedding space in three
dimensions. All the models learn to cluster numerical characters, operators, and special tokens
into distinct groups. Furthermore, two of the models produce noteworthy representations.
The number line is a common representation of numbers by human understanding, but

we could also close the ends of the number line at 0 and 9 to form a circular representation
such that the one’s digit wraps around (this is equivalent to base 10 modulo arithmetic). As
shown in Figure 4, two of the models seem to have developed similar intuitions in their digit
embeddings, with the digits even appearing in the correct order along the circumference of the
circle. Although we did not consistently observe the same phenomenon in other variants, these
results show that it is indeed possible for neural models to develop a human-like understanding
of numbers when trained on arithmetic.

7. Future work

Although we have shown that the RecT approach has significant benefits, the method relies
on strong supervision. The ability to generate ground truth for the intermediate steps may be
a limiting factor preventing this method from being applied to other problems and domains.
As a result, approaches where intermediate steps are weakly supervised or unsupervised may
be desirable. Currently, the RecT framework determines whether to recurse or stop based on
a special token in the output. An alternative approach involves making a continuous valued
prediction on whether to recurse or not via a classifier (rather than outputting a discrete token).
This enables the ability to train the model using a Markovian approach: each time the model
recurses, it computes the stopping probability and loss if it were to stop at the current step.
The total loss would be the sum of the individual losses weighted by the stopping probabilities.
Unlike the strongly supervised method, however, this method would likely suffer from unstable
training and slower computation speeds.

8. Conclusion

We have developed and validated a strongly supervised recursive transformer model which
performs mathematical reasoning on arithmetic problems of varying complexity. This recursive
approach leads to high accuracies while maintaining a relatively low number of parameters. We
find that providing additional supervision by teaching the RecTmodel to mark sub-problems and
applying randomized padding granted the model greater capability to logically proceed through
a problem. With an accuracy of 100% on interpolation and 66.26% on extrapolation, our method
significantly outperforms current work, which fails on extrapolation. In addition, RecT provides
increased interpretability by outputting a proof of work, allowing a better understanding of its
inner workings to serve as a basis for future improvements.
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