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Abstract
Human defined concepts are inherently transferable, but it is not clear under what conditions they can be
modelled effectively by non-symbolic artificial learners. This paper argues that for a transferable concept
to be learned, the system of relations that define it must be coherent across domains and properties. That
is, they should be consistent with respect to relational constraints, and this consistency must extend
beyond the representations encountered in the source domain. Further, where relations are modelled
by differentiable functions, their gradients must conform – the functions must at times move together
to preserve consistency. We propose a Partial Relation Transfer (PRT) task which exposes how well
relation-decoders model these properties, and exemplify this with ordinality prediction transfer task,
including a new data set for the transfer domain. We evaluate this on existing relation-decoder models,
as well as a novel model designed around the principles of consistency and gradient conformity. Results
show that consistency across broad regions of input space indicates good transfer performance, and that
good gradient conformity facilitates consistency.
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1. Introduction

In many situations, concepts that pertain to one set of data can also be relevant to another
[1, 2]. Take, for instance, the general concept of ordinality, whose semantics are defined
by relations: isSuccessor, isPredecessor, isGreater, isLess and isEqual; together with their
constraints. Successfully capturing this concept involves learning the corresponding relations
such that they maintain data set and property independence, with no retraining. This is to say
that they have been abstracted from the specific property and act instead as a generic set of
characterizing relations for the semantics of ordinality. For this, we argue that the relations
must be consistent with their expected constraints and coherent across ordinal properties
spanning different data sets, which means their consistency is maintained regardless of data set
or particular ordinal property.

As a concrete example, suppose that we have successfully learned to order images of numbers
by their abstract digit identity, and are presented with a new data set containing images of
individual stacks of blocks. Suppose then that we wish to obtain an ordering over them, such
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that we can compare arbitrary data instances using the above relations. Provided that the
learned relations are consistent with their expected constraints, it should be possible to obtain
an encoding that establishes each successor, via our isSuccessor relation, and immediately be
able to compare data instance over the remaining relations. Following this logic, the primary
purpose of this paper is to evaluate under which conditions a relation-decoder model is able to
obtain the ordinality concept. We do this by taking a set of popular relation-decoder models,
including a proposed Dynamic Comparator (DC) model, and assess 1. their consistencies as
measured in the source data set, and 2. their ability to perform a Partial Relation Transfer
(PRT) task to a novel target data set, which measures the robustness of their consistencies
across domains. The evaluation takes place in two steps. In the first, we learn the above set of
ordinality relations by ordering MNIST images based on their abstract digit identity and report
each model’s consistency profile. In the next step, we take the now pretrained isSuccessor
relation-decoder and apply it to a proposed BlockStacks data set, which consists of images of
multicolored block stacks. Each stack contains a single red block at various heights, which we
use to test the degree to which ordering the encodings of each block stack image, subject to the
pretrained isSuccessor relation, leads to transferred prediction accuracy across the remaining
relations. In summary, the contributions of our work are:

• We devise an experimental setup that can expose the degree to which learning relations
leads to concept abstraction, together with a new BlockStacks data set that presents a
challenging ordering task based on a complex property.

• We introduce a set of data set agnostic characteristic measures for relation-decoders
which can help determine their ability to perform PRT.

• We present a Dynamic Comparator model that achieves excellent PRT.
• Finally, we present a comprehensive analysis of model characteristics against correspond-
ing PRT performance, for a set of popular relation-decoders.

The rest of the paper is presented as follows. Section 2 firstly positions our paper with respect
to related work. Section 3 formalises the PRT task and outlines the architecture we employ to
solve it, including the proposed DC relation-decoder model. We then define how we compute
model consistency and gradient-conformity in Section 4. Finally, we provide results and analysis
in Section 5, with concluding remarks in Section 6.

2. Related Work

Relational representations play a prominent role in Knowledge Graph Embedding (KGE),
wherein sets of relation-decoders are jointly learned, through triplet link prediction, in or-
der to obtain a semantic latent factor representation for entities [3, 4, 5, 6, 7, 8, 9, 10, 11]. In
principle any KGE link prediction model can be employed in this work, but we focus on those
that assume a Euclidean representation space and do not require any additional per-triplet
engineering. Although KGE methods typically do not use a shared auto-encoder as we do in
this paper, Schlichtkrull et al. [12] did adopt an auto-encoding framework, where a graph neural
network is used as the encoder, however they did not work with visual data and the model was
not applied to transfer. Disentanglement, which also aims to learn semantic representations



for data is of relevance to this work [13, 2], wherein multiple methods have been proposed, for
example using Generative Adversarial Networks [14] and VAEs [15, 1, 16, 17, 18, 19, 20]. Of
particular relevance to our work are investigations looking at the transferability of disentangled
representations [21, 22, 23], but these did not include relation learning. A bridge between
relation learning and disentanglement, wherein relation-decoders are employed as a semi-
supervision to VAEs, can be found in [24, 25, 26]. Lastly, we note that our experimental setup is
most remnant of domain adaptation [27]. To the best of our knowledge, no work has compared
relation-decoders in their ability to abstract concepts, as measured by their consistency and its
transfer across domains.

3. The Partial Relation Transfer Task and Model

Partial Relation Transfer (PRT) is at its core a domain adaptation task [27], wherein we have
a source and target data domain, consisting of a set of images, 𝑋𝑠 and 𝑋𝑡, respectively, and a
set of shared relation prediction tasks, ℛ = {𝑟1, … , 𝑟𝑛}. We approximate each relation using a
relation-decoder 𝜙𝑀𝑟 ∶ 𝑍 × 𝑍 → [0, 1], where 𝑍 denotes a latent space that contains all image
encodings 𝑧𝑖 ∈ 𝑍. The superscript 𝑀 denotes a specific relation-decoder model, as we test
multiple variants. To obtain embeddings we use a domain-specific auto-encoder, consisting of
an encoder 𝜓 𝑠/𝑡𝑒𝑛𝑐 ∶ 𝑋 → 𝑍 and decoder 𝜓 𝑠/𝑡𝑑𝑒𝑐 ∶ 𝑍 → 𝑋, which helps to minimise information loss
through reconstruction of the input image1.

The evaluation takes place as a two-step procedure. In the first, all relation decoders are
trained in the source domain, as a semi-supervision to the auto-encoder, using available labels,
𝑦 𝑠 ∈ ℝ|ℛ|×|𝑋𝑠|×|𝑋𝑠|, that specify whether a relation 𝑟 ∈ ℛ holds between image 𝑥𝑖, 𝑥𝑗 ∈ 𝑋𝑠. Here,
| ⋅ | denotes the cardinality of the operand set, but in practice we only use a small fraction
of the available labels. In the second evaluation step, we initialise a new auto-encoder to be
applied to the target dataset and use a subset of the pretrained relation-decoders, with labels
𝑦 𝑡 ∈ ℝ|ℛ|×|𝑋𝑡|×|𝑋𝑡|, to act as fixed-parameter ‘guides’ for the encoder.

To obtain informative data encodings, we use a Variational AutoEncoder (VAE), specifically
the 𝛽-VAE, given its simplicity and demonstrated ability to separate distinct factors in the latent
representation [1, 15, 28]. The 𝛽-VAE achieves this by optimising the ELBO objective, which for
the purposes of this paper we express as a loss over both encoder and decoder:

ℒ𝐸𝐿𝐵𝑂
𝛽-VAE = ℒ(𝜓 𝑠/𝑡𝑒𝑛𝑐 , 𝜓

𝑠/𝑡
𝑑𝑒𝑐) + 𝛽ℒ(𝜓 𝑠/𝑡𝑒𝑛𝑐 , 𝒩 (0, 𝟙)), (1)

where an additional 𝛽 scalar hyperparameter is used to influence disentanglement through
stronger distribution matching pressure to an isotropic zero-mean Gaussian prior, 𝒩 (0, 𝟙).
When 𝛽 = 1 we obtain the original VAE objective [28]. We provide the full ELBO loss, with
a detailed explanation, in Appendix B. Each experiment involves taking embeddings from a
corresponding encoder and passing them through to sets of relation-decoders (either the full
set in the case in the source domain, or only a subset in the target domain). We can treat
each relation-decoder as producing a prediction ̂𝑦𝑟 𝑖𝑗 for whether relation 𝑟 holds between data

1Further analysis on the performance of BlockStacks embeddings for domain-dependent task can be found in
Appendix E



Figure 1: Depiction of the architecture we use for PRT. In this diagram, we show how the initial relation
learning is performed on the source MNIST dataset. Moving to the target domain involves using 𝜓 𝑡

𝑒𝑛𝑐/𝑑𝑒𝑐
and fixing parameters for each included 𝜙𝑟 relation-decoder.

instances 𝑖 and 𝑗 [5]. Using the ground truth 𝑦𝑟 𝑖𝑗, we can then compute the loss over all relation-
decoders, ℒ𝑅𝑒𝑙𝐷𝑒𝑐, as the binary cross-entropy of prevision versus ground truth. This gives us
the final joint objective between VAE and relation-decoders:

ℒ 𝑗𝑜𝑖𝑛𝑡 = ℒ𝐸𝐿𝐵𝑂
𝛽-VAE − 𝜆𝔼𝑟 ,𝑦𝑟 𝑖𝑗,𝑧𝑖,𝑧𝑗[𝑦𝑟 𝑖𝑗 log( ̂𝑦𝑟 𝑖𝑗) + (1 − 𝑦𝑟 𝑖𝑗) log(1 − ̂𝑦𝑟 𝑖𝑗)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℒ𝑅𝑒𝑙𝐷𝑒𝑐

, (2)

where 𝜆 is a scalar weighting parameter.

3.1. Dynamic Comparator

In our analysis, we include a proposed low-complexity, but nonetheless expressive, “Dynamic
Comparator” (DC) model, which is designed to model systems of relations, whilst encouraging
desirable properties for PRT. The overall DC model is composed of two modes, a distance-based
measure, 𝜙†𝑟 , that can compute how close the vector difference between two inputs is to a
positive or negative valued reference vector, and a step-like function, 𝜙‡𝑟 , that determines the
sign of the difference between two points, optionally with an offset. The overall DC model is
given by2:

𝜙𝐷𝐶𝑟 (𝑧𝑖, 𝑧𝑗) = 𝑎0 ⋅ 𝜎0(𝜂0(‖𝑢 ⊙ (𝑧𝑖 − 𝑧𝑗 + 𝑏†)‖22))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙†𝑟

+𝑎1 ⋅ 𝜎1((𝜂1 ⋅ 𝑢⊤(𝑧𝑖 − 𝑧𝑗 + 𝑏‡)))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙‡𝑟

. (3)

2In the main text we report results for this DC model, but we can use any function that has the required
characteristics for 𝜙† and 𝜙‡. We include results for other versions in Appendix D.



where 𝑎 = Softmax(𝐴) ∈ ℝ2 is an attention weighting between the two modes, and ensures
that 𝜙𝐷𝐶 is bound to [0,1]. 𝜎0, 𝜎1 are an exponential and sigmoid function, respectively; 𝑢 =
Softmax(𝑈) ∈ ℝ𝑚 is an attention mask which is applied to 𝑚-dimensional latent embeddings;
𝑏†, 𝑏‡ ∈ ℝ𝑚 are learnable bias terms that enables an offset to each mode; and 𝜂0 ∈ ℝ+ are
non-negative and 𝜂1 ∈ ℝ any-valued scalar terms, respectively. Lastly, ⊙ denotes the Hadamard
product (elementwise multiplication) and ‖ ⋅ ‖2 is the 𝐿2-norm. Due to a convergence issue when
using a pretrained DC with fixed parameters, we needed to use a flexible fitting procedure in
which we enable the DC parameters to train in the target domain, but with the additional loss
term ‖𝜌∗ − 𝜌‖, between pretrained 𝜌∗ and untrained parameters 𝜌, respectively. In all cases we
evaluated the final parameter values in the target domain and found them to be approximately
equivalent to the 𝜌∗. We did not apply this method to the other models as they were all able to
fit the isSuccessor relation in the target domain.

4. Measuring relation-decoder characteristics

In this section we describe a series of measures that we use to understand more about the
intrinsic characteristics of each relation-decoder, which together help identify the behaviour of
each relation-decoder model and provide insight regarding their respective PRT performance.

For any system of relations, we can write down a truth-table that defines the valid truth-
states that they may collectively take, which we expect our relation-decoders to model. For
example, we know that any time isGreater is true, isLess must not be. By assuming that each
relation-decoder output is pairwise conditionally independent given 𝑧𝑖, 𝑧𝑗, for instance,

𝑝(isGreater, isLess|𝑧𝑖, 𝑧𝑗) = 𝑝(isGreater|𝑧𝑖, 𝑧𝑗)𝑝(isLess|𝑧𝑖, 𝑧𝑗),

we can produce a probability statement for whether the relations are consistent with valid
entries to the truth-table. Taking 𝑟1 = isGreater and 𝑟2 = isLess as our entire system of relations,
we can produce the following truth-table conversion, where invalid entries are omitted:

𝑟1(𝑥𝑖, 𝑥𝑗) 𝑟2(𝑥𝑖, 𝑥𝑗) ℱ (𝑟1, 𝑟2)
𝑇 𝐹 𝑇
𝐹 𝑇 𝑇
𝐹 𝐹 𝑇

⟹
ℱ (𝑟1, 𝑟2) = ∀𝑥𝑖, 𝑥𝑗((𝑟1(𝑥𝑖, 𝑥𝑗) ∧ 𝑟2(𝑥𝑖, 𝑥𝑗))

∨(¬𝑟1(𝑥𝑖, 𝑥𝑗) ∧ 𝑟2(𝑥𝑖, 𝑥𝑗))
∨(¬𝑟1(𝑥𝑖, 𝑥𝑗) ∧ ¬𝑟2(𝑥𝑖, 𝑥𝑗)))

(4)

which, using our relation-decoders for each relation and with 𝑧𝑖,𝑗 = 𝜓𝑒𝑛𝑐(𝑥𝑖,𝑗) and ¬𝜙𝑟(𝑧𝑖, 𝑧𝑗) =
1 − 𝜙𝑟(𝑧𝑖, 𝑧𝑗), we express the probability of ℱ being true as:

𝑝(ℱ |𝑧𝑖, 𝑧𝑗) = ((𝜙𝑟1(𝑧𝑖, 𝑧𝑗) ⋅ 𝜙𝑟2(𝑧𝑖, 𝑧𝑗))
+ ((1 − 𝜙𝑟1(𝑧𝑖, 𝑧𝑗)) ⋅ 𝜙𝑟2(𝑧𝑖, 𝑧𝑗))
+ ((1 − 𝜙𝑟1(𝑧𝑖, 𝑧𝑗)) ⋅ (1 − 𝜙𝑟2(𝑧𝑖, 𝑧𝑗))). (5)

Finally, since ℱ should hold for all input combinations, we heavily penalise violations by using
a binary cross-entropy loss between ℱ and the expected outcome:

𝐻𝑇 𝑟𝑢𝑒(𝑝(ℱ )) = − 1
𝑁

∑
𝑧𝑖,𝑧𝑗∈𝑍

1 ⋅ log 𝑝(ℱ |𝑧𝑖, 𝑧𝑗), (6)



where 𝑍 is the latent space, as we can compute this score for any samples from this space3 and 𝑁
is a normalising constant, equal to the number of 𝑧𝑖 and 𝑧𝑗 sample pairs used in the calculation.
We refer to this measure as Con-A referring to the fact that we use it to measure consistency
across multiple relations.

To provide a deeper understanding about how relation-decoders collectively interact with
their inputs, we use a gradient evaluation to see whether models respond similarly to changes in
their input. For a set of relations, we define the gradient-conformity (GC) of relation 𝑟𝑖 against
all others by the following cosine-similarity:

𝐺𝐶 = |
𝑑𝑇𝑖 𝑑𝑗

||𝑑𝑖||2 ||𝑑𝑗||2
| where 𝑑𝑖 =

𝑑𝜙𝑟𝑖
𝑑𝑧𝑐

|
𝑧𝑐=𝑧𝑐𝑠

and 𝑑𝑗 =
𝑑𝜙𝑟𝑗
𝑑𝑧𝑐

|
𝑧𝑐=𝑧𝑐𝑠

, ∀𝑖 ≠ 𝑗 (7)

where | ⋅ | denotes the absolute of the operand and 𝑧𝑐 is the concatenation of each relation-
decoder’s inputs, with gradients evaluated at reference inputs 𝑧𝑐𝑠 . GC will be 1 if gradients are
aligned and zero if orthogonal4.

5. Results

This section presents results for the PRT task on a range of relation-decoder models. In the
source domain, we learn a system of binary relations: ℛ ={isSuccessor (S), isPredecessor (P),
isGreater (G), isEqual (E), isLess (L)}, on digits represented in MNIST images, alongside a 𝛽-VAE.
In the target domain, we take the pretrained S relation as a fixed-parameter guide for a new
𝛽-VAE applied to BlockStacks images (see Appendix A for BlockStacks image examples), and
then evaluate PRT accuracy on the held-out G, E, L and P relations. Relation-decoder models
compared here are: TransR [29], HolE [30], NTN [3], our proposed DC and a basic neural-
network baseline, NN. NN is a simple four-layer (𝑙in, 𝑙1, 𝑙2, 𝑙out) neural-network with layer sizes
𝑙in = 2𝑑𝑧, 𝑙1 = 2𝑑𝑧 and 𝑙2 = 𝑑𝑧, with ReLU activations. The final output layer 𝑙out is a single value
passed through a sigmoid function, to bound the output to [0,1]. Further model details are
provided in Appendix C.

We vary 𝛽 only in the source domain, ranging across values {1, 4, 8, 12}, but fix it in the target
domain. 𝜆 is fixed in both domains (see Appendix C.3 for further details on hyperparameter
settings). For Con-A and GC measures, we produce encodings for three data splits: data-
embeddings, where all inputs are encodings of a domain’s test data; interpolation, where we
obtain an empirical mean and variance for the domain’s data-embeddings and sample from a
corresponding Gaussian distribution; and extrapolation, where we sample from regions strictly
outside the data-embeddings region.

Figure 2-top provides relation-decoder prediction accuracy in both the source MNIST (left),
and target BlockStacks (right), domains. Key observations are that DC produces excellent
PRT performance, whilst NN, NTN and HolE all see some degradation from their source
accuracies. TransR seems to maintain a similar accuracy profile. We include 𝛽’s impact on
these performances in Figure 2-bottom. Barring DC which has little discernible change in either

3in practice as we cannot include every encoding combination, we provide an estimate.
4We can evaluate against this measure for arbitrary samples from 𝑍.



Figure 2: [Top] Relation-decoder prediction accuracy per relation and model, in the source (left) and
target domains. Relations are abbreviated on the 𝑥-axis by { S: isSuccessor, P: isPredecessor, E: isEqual,
G: isGreater, L: isLess }, with a red highlight identifying which relation is included as a guide for 𝜓 𝑡

𝑒𝑛𝑐.
[Bottom] 𝛽 impact profiles for each relation-decoder model, aggregated across all relations in the
source (left) domain and aggregated only for held-out relations in the target (right) domain. In all cases,
higher values are better.

Figure 3: [Top] Con-A values for each relation-decoder model, referenced to source (left) and target
(right) domains (lower values better). [Bottom] GC values for each relation decoder (higher values
better). In all plots, darker color shades denote higher values of 𝛽, corresponding to greater disentangle-
ment pressure from the 𝛽-VAE. In top-left and bottom plots, blue, green and red groups show results for
data-embeddings, interpolation and extrapolation embeddings respectively (see main text for details).

domain, PRT performance is significantly impacted by 𝛽 in all models, but has little effect in
the source domain. Additionally, TransR has a strong positive correlation with 𝛽, whereas
NN, NTN and HolE produce the best PRT performance with intermediate disentanglement
pressure. To interrogate further how 𝛽 affects each model, we provide: (Figure 3-top) mean
relation Con-A referenced to both source (left) and target (right) domain embeddings; and
(Figure 3-bottom) source domain referenced GC measures for each model. In the left and
bottom plots, blue (left group), green (middle group) and red (right group) show results for
the data-embeddings, interpolation and extrapolation regions of latent space, in respective
order. From the source domain Con-A results, we note that DC shows excellent consistency
across relations in all regions. Most other models have worse interpolation and extrapolation



consistency. Increasing 𝛽 appears to give some improvement for all but HolE, but there are
indications that this trend does not persist into the largest 𝛽 = 12 value. Interestingly, Con-A
values for target data-embeddings (right) are notably worse than for source data-embeddings,
with values closer to those for interpolation or extrapolation in the source domain. For GC, DC
performance is close to 1 for all 𝛽 with no discernible change. All other models show a weaker
GC with positive correlation between GC and 𝛽. TransR and NN achieve significantly higher
GC than NTN and HolE.

5.1. Key Experimental Results

5.1.1. Does good source task accuracy lead to successful PRT?

Since we transfer pretrained models from source to target domain and ensure that the target
encoder, 𝜓 𝑡𝑒𝑛𝑐, fits its encodings to S, we might expect that relation-decoding performance will
be the same in both domains. However, despite DC, NN, NTN and HolE all performing close to
100% accuracy, and TransR achieving above 80%, across all relations, and with all relations able
to achieve similar prediction accuracy (or better in the case of DC) on the guide relation S, PRT
performance varies significantly across models. It is firstly evident that DC is successful at PRT,
sustaining approximately 100% accuracy across all held-out relations. NN achieves mostly good
performance, with greater degradation across P and E relations. Although HolE and NTN both
achieve good PRT for P, there is increasing degradation across E and G, L relations. TransR is
able to achieve strong relative performance where PRT accuracy per relation is comparable to
what was possible in the source domain. These results indicate that source accuracy alone is
not enough to determine whether models will be successful at PRT.

5.1.2. How does 𝛽 affect Con-A and GC and how does this impact model coherence?

To provide an overview of how increased disentanglement pressure affects each model we can
firstly compare how 𝛽 affects model performance in both source and target domain. Figure
2-bottom demonstrates that, although relation prediction accuracies for most models either do
not respond, or respond negatively, to increases in 𝛽 in the source domain, their PRT behaviour
differs significantly across models: DC shows no discernible change, whilst NN, NTN and HolE
all show a parabolic response with a maximum PRT around 𝛽 = 8; TransR shows a general
positive correlation but with diminishing returns above 𝛽 = 8. To gain further insight into the
role of disentanglement pressure, it is necessary to look at how each model’s intrinsic behaviour
responds to 𝛽 changes.

First, we attempt to expose the relationship between 𝛽 and consistency and whether this has
any effect on PRT performance. By Figure 3-top, DC clearly outperforms all other models on
Con-A and this coincides with better PRT performance. The next best performing model on
Con-A in the source domain is also the next best on PRT performance. In most cases Con-A
degrades for all models when moving from data-embeddings to interpolation and extrapolation,
but the degree of degradation changes depending on the model. Interestingly, across all models,
their target Con-A is notably close to that of interpolation or extrapolation in the source
domain analysis. This suggests that guiding 𝜓 𝑡𝑒𝑛𝑐 to fit relation S produces data embeddings
that lie in the interpolation or extrapolation regions with respect to MNIST embeddings. This



suggests that a relation-decoder model’s ability to retain consistency over regions of latent space
beyond where MNIST embeddings are found leads to improved PRT. These findings provide
compelling evidence in support of our claim that consistency across relations is important for
PRT performance.

Secondly, we examine how gradient-conformity affects PRT performance. To achieve suc-
cessful PRT, fitting the target encoder to a single pretrained relation should lead to embeddings
that are structured correctly with respect to the other pretrained relations. For this to be
possible there must be a degree of conformity between how each model computes its system of
relations. As an extreme case, suppose we have a two-dimensional latent representation, with
two relations that are each calculated using entirely different dimensions of latent space. By
fitting an encoder to one of these relations, there is no guarantee that the latent dimension, that
the other relation requires, receives the necessary guidance. DC shows excellent and stable
GC values (near 1) across all conditions. This is by design as the use of masks per relation
ensures that if masks match for any two relations, then their gradients will be either parallel
or anti-parallel. Excluding HolE, all remaining models show a positive correlation between
GC and 𝛽, and it appears that models with either higher GC values, or 𝛽 response, typically
perform better at PRT. Together this provides tentative evidence to suggest that GC is important
to model coherence, as measured by their PRT performance. It is possible that we do not see a
monotonic benefit of GC against PRT, due to no further extrapolation or interpolation Con-A
gains with 𝛽 > 8.

6. Conclusion

We provide a comprehensive analysis of relation-decoder characteristics when learning the
system of relations that together define the semantics of a concept. We then compare these
characteristics with a Partial Relation Transfer task setting, which determines whether, given
logical constraints between relations, fitting embeddings to one relation-decoder leads to
embeddings that satisfy all other relations in terms of their logical consistency and accuracy.
Our results demonstrate that model consistency, and possibly gradient-conformity, across
different regions of input space together determine whether a set of relation-decoders have
learned a consistent and coherent notion of a given concept, in this case ordinality. These
measures make it possible to check whether a set of relation-decoders have indeed learned a
transferable concept, or if they are limited to a single data domain and property.
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Figure 4: Example of two BlockStacks data set images.

maximising this lower bound, given by:

ℒ𝐸𝐿𝐵𝑂
𝛽-VAE = 𝔼𝑞𝛼(𝑍|𝑋)[log 𝑝𝜃(𝑋|𝑍)] − 𝛽𝐷𝐾𝐿(𝑞𝛼(𝑍|𝑋)‖𝑝𝜃(𝑍)), (8)

where 𝑞𝛼(𝑍|𝑋) is the approximate posterior, typically modelled as a neural network encoder with
parameters 𝛼. Similarly 𝑝𝜃(𝑋|𝑍) is modelled as a decoder with parameters 𝜃 and is calculated as a
Monte Carlo estimation. A reparameterization trick is used to enable differentiation through an
otherwise undifferentiable sampling from 𝑞𝛼(𝑍|𝑋) (see [28]). In the 𝛽-VAE [1, 15], an additional 𝛽
scalar hyperparameter was added as it was found to influence disentanglement through stronger
distribution matching pressure with respect to the prior 𝑝𝜃(𝑍), where this prior is typically set
to an isotropic zero-mean Gaussian𝒩 (0, 𝟙)). When 𝛽 = 1we obtain the standard VAE objective
[28].

C. Model Descriptions

In this section we provide model details for each relation-decoder that we use and the VAE
architecture that we employ for each data set.

C.1. Relation Decoder implementations

TransR:
𝜙TransR𝑟 (𝑧𝑖, 𝑧𝑗) = ‖ℎ𝑟 + 𝑟 − 𝑡𝑟‖2

with,
ℎ𝑟 = 𝑀𝑟𝑧𝑖 and 𝑡𝑟 = 𝑀𝑟𝑧𝑗.



As we want to obtain a [0,1] output, we modify TransR through 𝜙TransR
+

𝑟 = 𝜎(𝑐 − 𝜙TransR𝑟 ),
where 𝜎 is a sigmoid function and c is a scalar that ensures that at 𝜙TransR

+
𝑟 (𝑧𝑖, 𝑧𝑗) = 0, then

𝜙TransR
+

𝑟 (𝑧𝑖, 𝑧𝑗) ≈ 0. In all experiments we set 𝑐 = 10.
NTN (modified version from [32, 33]):

𝜙𝑟(𝑧0, … , 𝑧𝑛) = 𝜎(𝑢⊤𝑟 [tanh(𝑧𝑐⊤𝑀𝑟𝑧𝑐 + 𝑉𝑟𝑧𝑐 + 𝑏𝑟)])
(9)

where 𝑢𝑟 ∈ ℝ𝑘, 𝑀𝑟 ∈ ℝ(𝑛−1)⋅𝑑𝑧×(𝑛−1)⋅𝑑𝑧×𝑘, 𝑉𝑟 ∈ ℝ𝑘×(𝑛−1)⋅𝑑𝑧) and 𝑏𝑟 ∈ ℝ𝑘. The only hyperparameter to
consider is 𝑘, which controls the NTN’s capacity - in all experiments, we set this to 1. Here 𝑧𝑐 is
a concatenation of the inputs 𝑧0, … , 𝑧𝑛, which was introduced in [32, 33]. In contrast the original
NTN (see [3]) is only applicable to binary relations and does not include the outer sigmoid.
HolE:

𝜙HolE
𝑟 (𝑧𝑖, 𝑧𝑗) = 𝜎(𝑟⊤(𝑧𝑖 ⋆ 𝑧𝑗))

where ⋆ ∶ ℝ𝑑 × ℝ𝑑 → ℝ𝑑 denotes the circular correlation operator and is given by,

[𝑧𝑖 ⋆ 𝑧𝑗]𝑘 =
𝑑−1
∑
𝑚=0

𝑧𝑖,𝑚𝑧𝑗,𝑘+𝑚 mod 𝑑

NN: a simple four-layer neural-network with hidden layer sizes 𝑙in = 2𝑑𝑧, 𝑙1 = 2𝑑𝑧 and 𝑙2 = 𝑑𝑧,
with ReLu activations, for latent representations with size 𝑑𝑧. The final output layer, 𝑙out, is a
single value passed through a sigmoid function, to cap the output within [0,1].

C.2. VAE configuration

In all representation learning experiments, we use a 𝛽-VAE trained for 300,000 steps, following
accepted practice from [20, 22].

The encoder-decoder model parameters are given in Table 1 - we include the model configu-
rations used for both MNIST and BlockStacks datasets.

C.3. ℒ 𝑗𝑜𝑖𝑛𝑡 configuration

In the source domain, we vary 𝛽 values between {1, 4, 8, 12} and fix 𝜆 = 103. In the target domain,
we fix 𝛽 to 10−4 and 𝜆 = 10−2 and normalise the ℒ𝐸𝐿𝐵𝑂

𝛽-VAE reconstruction term by dividing by a

factor 1
√𝐻 ⋅𝑊⋅𝐶

, for height 𝐻, width 𝑊 and color channels 𝐶, and normalize ℒ(𝜓 𝑡𝑒𝑛𝑐, 𝒩 (0, 𝟙)) by a

factor 1
𝑑𝑧
, for latent representation size 𝑑𝑧.

D. Supplementary Results

Figure 5 and Figure 6 provide additional results for Con-I (individual consistency scores for
individual relation properties covering transitivity, asymmetry and reflexivity) and Con-A,
configured on the same data splits as described in the main text. These results cover variants of



Table 1
Specification of our 𝛽-VAE encoder and decoder model parameters, for both 28×28 (top) and 128×128
(bottom) size input data. I: Input channels, O: Output channels, K: Kernel size, S: Stride, P: Padding, A:
Activation

Encoder
Input: 28 × 28 × 𝑁𝐶 = 1

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; 𝑁𝐶 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 3 × 3 ; 2 ; 1 ; ReLU
Conv2d_4 ; 64 ; 64 ; 2 × 2 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 576 - 144 ; ReLU
FC_z_mu ; 144 - 10 ; None
FC_z_logvar ; 144 - 10 ; None

Decoder
Input: ℝ10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 144 ; ReLU
FC_z_mu ; 144 - 576 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 2 × 2 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 3 × 3 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; 𝑁𝐶 ; 4 × 4 ; 2 ; 1 ; Sigmoid

Encoder
Input: 128 × 128 × 𝑁𝐶 = 3

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; 𝑁𝐶 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 4 × 4 ; 2 ; 1 ; ReLU
Conv2d_4 ; 32 ; 64 ; 4 × 4 ; 2 ; 1 ; ReLU
Conv2d_5 ; 64 ; 64 ; 4 × 4 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 1024 - 256 ; ReLU
FC_z_mu ; 256 - 10 ; None
FC_z_logvar ; 256 - 10 ; None

Decoder
Input: ℝ10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 256 ; ReLU
FC_z_mu ; 256 - 1024 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 4 × 4 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; 32 ; 4 × 4 ; 2 ; 1 ; ReLU
UpConv2d_5 ; 32 ; 𝑁𝐶 ; 4 × 4 ; 2 ; 1 ; Sigmoid

the DC and NN models. DC variants include: DC-Basic, uses the same 𝜙‡𝑟 as DC, but uses a
similar 𝜙†𝑟 to that of [25] but includes the dynamic 𝑢 mask and 𝑏† offset; DC-Gaus, again same

𝜙‡𝑟 but uses a Gaussian function for 𝜙†𝑟 ; DC-Cauchy, uses a Cauchy distribution form for 𝜙†𝑟
and a Cauchy cumulative distribution function for 𝜙‡𝑟 ; and finally DC-CCS which employs a
modified Cauchy distribution for 𝜙†𝑟 , via

𝜎 (𝜂(2 ⋅ 𝜙DC-Cauchy,†
𝑟 − 1))

where 𝜎 is the sigmoid function and 𝜂 is a scalar value. This modification enables a cliff-like
shape for 𝜙†𝑟 , such that it can output close to 1 for a wider vector difference range. Note all
distribution forms are unnormalized so that they cover the interval [0,1].

The NN variants vary layer depth and size, but all use a common input layer of size 𝑙in = 2∗𝑑𝑧.
NN2 is a three-layer neural network with hidden layer size 𝑑𝑧 and NN3 is a four-layer neural
network which is the same as NN, but in contrast has a 𝑑𝑧 pre-final layer size, thereby omitting



Figure 5: Consistency values for individual relation properties (Con-I), covering: transitivity, reflexivity
and asymmetry. Values are for variants of DC and NN relation-decoder models, referenced to source
(MNIST) domain (lower values better). In all plots, darker color shades denote higher values of 𝛽 (in
range {1, 4, 8, 12}), corresponding to greater disentanglement pressure from the 𝛽-VAE. Blue, green and
red groups show results for data-embeddings, interpolation and extrapolation embeddings respectively
(see main text for details on these data splits).

Figure 6: Con-A values for variants of DC and NN relation-decoder models, referenced to source
(MNIST) domain (lower values better). In all plots, darker color shades denote higher values of 𝛽 (in
range {1, 4, 8, 12}), corresponding to greater disentanglement pressure from the 𝛽-VAE. Blue, green and
red groups show results for data-embeddings, interpolation and extrapolation embeddings respectively
(see main text for details on these data splits).

the bottleneck dimension reduction of NN. NN1-shallow includes only one hidden layer, like
NN2, of size 𝑑𝑧(𝑑𝑧−1)

2 which enables a pairwise comparison between each input dimension.
NN1-sig is the same as NN but employs sigmoid activations, instead of ReLUs. NN-DC is the
again same as the NN from the main text, but includes an additional 𝜙†𝑟 -type node that can
compute relative differences between inputs in the same way as DC.



Figure 7: Analysis of domain-specific information retention by the 𝛽-VAE when using different relation-
decoders for ordinality relation decoding. We attempt to predict the overall BlockStacks stack height on
the final fixed embeddings obtained after isSuccessor relation-decoder alignment.

E. How does each model impact the retention of
domain-dependent information

Figure 7 shows results for BlockStacks overall block height prediction accuracy when training
on fixed encodings of each block stack, after isSuccessor relation-decoder alignment as been
applied. Note 𝛽 is fixed in the target domain, so the only moving part are the pretrained models
which are trained with varied source 𝛽 values. Note also that dc has an unfair advantage here,
as the steered fitting approach allows more flexibility to the VAE learning phase - for this
reason the result is only included in the appendix. Since we are interested in capturing general
representations that encode both domain-dependent and -independent information, we use
each target encoder 𝜓 𝑡𝑒𝑛𝑐 obtained from each PRT experiment and produce encodings for the full
BlockStacks test set. The resulting encodings are then divided into a new train and test subset,
used to train both a Sci-Kit Learn Linear regressor and Support Vector Machine regressor with
a RBF ∘ kernel [34]. We present the resulting Mean Squared Errors (MSE) in Figure 7, with
Ordinary Least Squares (OLS) (a) and Support Vector Regression (SVR) (b).

There are a number of noteworthy details: firstly, DC shows no dependence on 𝛽 and leads
to a lower MSE across all settings; second, excluding DC, for all models we observe an optimum
MSE at 𝛽 = 8, with TransR reaching DC MSE performance for OLS and NN doing the same for
SVR. These results indicate that lower MSE can be obtained by using non-linear regression,
which indicates that to some degree, the block stack height factor is not encoded linearly,
regardless of selected model. Next, by contrasting with Figure 3-bottom, these results suggest
that models with higher GC lead to embeddings that are more amenable to domain-specific
factor prediction. However, the parabolic trend, where increasing 𝛽 to 12 leads to an increase
in error, is in agreement with Figure 2-bottom-right, which showed that most models do not
improve at PRT for the largest 𝛽.
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