
pix2rule: End-to-end Neuro-symbolic Rule Learning
Nuri Cingillioglu

1
, Alessandra Russo

1

1Imperial College London, United Kingdom

Abstract
Humans have the ability to seamlessly combine low-level visual input with high-level symbolic reason-

ing often in the form of recognising objects, learning relations between them and applying rules. Neuro-

symbolic systems aim to bring a unifying approach to connectionist and logic-based principles for visual

processing and abstract reasoning respectively. This paper presents a complete neuro-symbolic method

for processing images into objects, learning relations and logical rules in an end-to-end fashion. The

main contribution is a di�erentiable layer in a deep learning architecture from which symbolic relations

and rules can be extracted by pruning and thresholding. We evaluate our model using two datasets: sub-

graph isomorphism task for symbolic rule learning and an image classi�cation domain with compound

relations for learning objects, relations and rules. We demonstrate that our model scales beyond state-

of-the-art symbolic learners and outperforms deep relational neural network architectures.

Keywords
neuro-symbolic reasoning, end-to-end learning, relational representations

1. Introduction

Despite being surrounded by continuous input such as vision and sound, humans have evolved

to recognise, process and maintain symbolic thought that seem to have co-evolved with the use

of a symbolic natural language [70]. The result is a coherent information processing system

which can integrate low-level signals with high-level abstract reasoning so well that symbolic

cognitive models [40] suggest the human mind operates on formal symbols. Similarly, physical

symbol systems [52] characterise cognition as not only symbol recognition but also manipulation

and combination. This symbolic thought on top of signal processing within a connectionist

architecture is learnt at a young age with children building an understanding of objects, their

relations and rules in their environment [56]. Furthermore, neurobiological mechanisms in the

human brain have been proposed for handling triplets of symbols, e.g. in the form of subject,

verb and object [31]. Yet, this level of harmony between neural and symbolic domains remains

a mystery for machine learning.

There has been a lot of interest and work on this topic under the umbrella of neuro-symbolic

systems [12]. In this context, neural refers to connectionist based approaches, mainly neural

networks which have gained impressive achievements in image classi�cation and audio recog-

nition [26] that scale well with large amounts of data and computing power. The symbolic

part often refers to a logical formalism such as �rst-order logic [62] and its implementation

within a logic programming paradigm [3]. Although in the early days of Arti�cial Intelligence

symbolic approaches were prominent, particularly in the form of expert systems [32], more

recently they are used on top of neural networks in order to process non-symbolic sources of

15th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy)
" nuric@imperial.ac.uk (N. Cingillioglu); a.russo@imperial.ac.uk (A. Russo)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:nuric@imperial.ac.uk
mailto:a.russo@imperial.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Nuri Cingillioglu et al. 1–43

input such as images [21]. Our approach provides a new perspective on existing feed-forward

neural networks to build an end-to-end architecture that can not only handle low-level input

but also converge to symbolic relations and rules.

Hence, in this paper we focus on the question of whether an end-to-end neural network can

learn objects, relations and rule-based reasoning going from pixels in an image all the way to

logic-based rules. Inspired by the perceptron algorithm [61, 62], we de�ne an inductive bias to

an otherwise regular feed-forward neural network in order to enable end-to-end neuro-symbolic

learning. The main contribution of this paper is a novel way of constraining the bias of a linear

layer to obtain the semantics of AND and OR gates as well as pruning and thresholding to

extract symbolic rules from that layer. We evaluate our approach in a controlled environment

with two synthetic datasets and present the analysis of the learnt objects, relations and rules.

Our implementation using TensorFlow [1] is publicly available at https://github.com/nuric/pix2rule

with the accompanying data and analysis.

2. Semi-symbolic Layer

Our neuro-symbolic architecture makes use of a di�erentiable feed-forward layer that behaves

like conjunction or disjunction. Given continuous inputs 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ [⊥,⊤] in which

⊥,⊤ ∈ R denote some real-valued constants for false and true respectively, we would like

to model a layer that can act like conjunction 𝑦 =
⋀︀

𝑖 𝑥𝑖 or disjunction 𝑦 =
⋁︀

𝑖 𝑥𝑖 where

𝑦 ∈ [⊥,⊤] is the output. If we take ⊥ = 0, ⊤ = 1 and utilise t-norms [30] to implement fuzzy

logic, as the number of inputs 𝑛 increases, the operation su�ers from vanishing gradients and

becomes unviable for upstream layers such as convolutional neural networks (CNN) [26]. This

phenomenon occurs due to the 1 out of 𝑛 failure or success characteristic of conjunction and

disjunction respectively. Hence, we are interested in an operation that does not starve gradients

and eventually converges to the desired semantics.

Based on the single-layer perceptron [62], we propose the semi-symbolic layer (SL):

𝑦 = 𝑓(
∑︁
𝑖

𝑤𝑖𝑥𝑖 + 𝛽) (1) 𝛽 = 𝛿(max
𝑖

|𝑤𝑖| −
∑︁
𝑖

|𝑤𝑖|) (2)

where 𝑤𝑖 are the learnable layer weights, 𝑓 the non-linear activation function and 𝛿 ∈ [−1, 1]
the semantic gate selector. In this formulation we set ⊥ = −1, ⊤ = 1 and 𝑓 to be the hyperbolic

tangent function (tanh). While Eq. (1) is the standard feed-forward layer, by adjusting the bias 𝛽
we can obtain either conjunctive when 𝛿 = 1 or disjunctive when 𝛿 = −1 semantics. Intuitively,

in the conjunctive case, we are looking for a threshold that is at least as small as the sum of the

weights but not any bigger than the maximum weight such that if at least one input is false, the

output will be false too. For a more detailed derivation and an example implementation, please

refer to Appendix A.1. By gradually adjusting 𝛿 from 0 to either 1 or -1, we can now maintain a

feed-forward layer that does not starve gradients to upstream layers but eventually converges to

the con�gured semantics. The sign of the weights indicate whether the input or its negation is

contributing to the output. Thus, logical negation can be regarded as the multiplicative inverse

of the input ¬𝑥𝑖 = −𝑥𝑖 which naturally works with the weights of the layer. When there are

no input connections, i.e. ∀𝑖𝑤𝑖 = 0 the output becomes zero and when there is only one input

the bias becomes 𝛽 = 0 yielding a pass-through, identity gate.

Although for symbolic inputs 𝑥𝑖 ∈ {⊥,⊤} and 𝛿 = {1,−1}, we achieve the proper behaviour,

2

https://github.com/nuric/pix2rule

Nuri Cingillioglu et al. 1–43

X Y

t :- not nullary(1), unary(X,0),
 not binary(X,Y,0), binary(X,Y,1).

t :- nullary(1), unary(X,0), unary(Y,1),
 binary(X,Y,1), binary(Y,X,0).

not nullary(1)

binary(X,Y,1)

not binary(X,Y,0)

unary(X,0)

X Y

nullary(1)

binary(X,Y,1)

binary(Y,X,0)

unary(X,0) unary(Y,1)

(a) Sample target rules for the easy di�culty of

the graph dataset. For each predicate, the last

argument denotes the relation id.

(b) Example images from the relations game dataset

with the top and bottom rows showing correct

and incorrect cases respectively.

Figure 1: Samples from datasets. For further details and examples please refer to Appendix B.

the output of the semi-symbolic layer does not align with existing many-valued logics such

as Kleene or Lukasiewicz logics [46]. For example, in the conjunctive case when ∀𝑖𝑥𝑖 = 0 the

output will be negative, Eq. (2), implying that the conjunction of unknown inputs is false. In

practice, when the input is a vector of learnt features from an upstream layer, the model has the

chance to resolve unknown inputs if the task requires it. We leave further theoretic analyses of

this layer’s implied logics as future work.

Prune & Threshold In order to obtain symbolic formulas, we prune and then threshold the

weights after training. Similar to decision tree pruning methods [23], each weight is set to zero

𝑤𝑖 = 0 and pruned if the performance has not dropped by a �xed 𝜖. Then a threshold value

is picked by sweeping over potential values [min |𝑤𝑖|,max |𝑤𝑖|] with a similar performance

check to pruning. Each weight is then set to 𝑤′
𝑖 = 6 sign(𝑤𝑖) which gives su�cient saturation

tanh(6) ≈ 0.999. Finally, we repeat the pruning step to remove any wrongly ampli�ed weights.

We opt for this simple post-training regime rather than regularisation such as l-norms [26] to

limit the number of modi�cations required to train the semi-symbolic layer.

3. Datasets

Since low-level signals such as images can produce large noisy latent spaces, we need to

understand whether our approach can robustly learn symbolic rules in a scalable fashion.

Hence, we use two synthetic datasets: subgraph set isomorphism for testing the semi-symbolic

layer over symbolic inputs and image classi�cation for the full pipeline. For both datasets, the

model is required to predict a true or false label. Samples from each dataset are shown in Fig. 1

with further details and examples in Appendix B. We opt to use synthetic datasets with known

and controlled parameters to avoid any inherent biases that may arise in real-world datasets.

Subgraph set isomorphism requires a model to decide whether any subgraph of a given

graph is isomorphic to a set of other graphs. We choose graph isomorphism as it is combinatorial

in nature and known to be NP-complete [20] providing a means to gauge scalability with respect

to the search space of possible solutions. Formally, given a graph 𝒢 and a set of graphs

H = {ℋ1,ℋ2, . . . ,ℋ𝑛}, determine whether the target condition 𝑡 ⇐⇒ ∃ℒ,𝑖ℒ ⊆ 𝒢 ∧ ℒ ≃ ℋ𝑖

holds where ≃ is graph isomorphism. Given graphs that either satisfy or do not satisfy 𝑡, the

objective is to learn a H for a �xed 𝑛. This learning task can be rendered as an instance of

3

Nuri Cingillioglu et al. 1–43

Inductive Logic Programming (ILP) [51] where H is the hypothesis to learn with no background

knowledge. We encode the problem in Answer Set Programming (ASP) [43] using the generic

predicates nullary/1 for global graph properties, unary/2 and binary/3 for self-edges and directed

edges between nodes respectively with target condition 𝑡 as head of the rule, see Fig. 1a. Since

we are interested in learning H rather than just subgraph isomorphism, recent advancements in

deep graph neural networks [9, 41] are not suitable for extracting what H has been learnt, also

known as the black-box problem [2]. To adjust the di�culty, Table 1, we change the number of

nodes |𝑉 (𝒢)|, nullary, unary, binary relations, number of nodes in any ℋ𝑖 and the maximum

size of |H| ensuring |𝑉 (ℋ𝑖)| ≤ |𝑉 (𝒢)|. We focus on these parameters to alter the number of

edges to be learnt |𝐸(ℋ𝑖)| which in return corresponds to the length of the rules. The average

rule length in the medium di�culty is well beyond common datasets such as odd or even, family

tree and graph colouring used in existing neuro-symbolic research [24, 64, 53].

Table 1: Di�erent di�iculty parameters for the subgraph set isomorphism dataset.

Di�iculty |𝑉 (𝒢)| Nullary Unary Binary |𝑉 (ℋ𝑖)| Max. |H| Avg. |𝐸(ℋ𝑖)|

Easy 3 2 2 2 2 3 7.29
Medium 4 4 5 6 3 4 37.27

Hard 4 6 7 8 3 5 50.62

Relations Game dataset consists of an input image with di�erent shapes and colours ex-

hibiting compound relations between them. It has been introduced to evaluate object-based

relational learning in deep neural networks [65]. Existing methods fail to provide a coherent

object, relation and symbolic rule learning in an end-to-end fashion. Along with the four tasks

in Fig. 1b, we create an All multi-task setting and provide the task id as additional input. While

the training set contains pentominoes, shapes with 5 uniformly coloured pixels, the test sets

expand to hexominoes (shapes with 6 pixels) as well as striped shapes with unseen colours. To

ascertain if neuro-symbolic approaches could be more data e�cient, we take 100, 1k and 5k

for training and 1k for validation and test splits. We also apply standard data augmentation

during training with random horizontal or vertical �ips with an added input noise drawn from

𝒩 (0, 0.01). For further details and more examples, please refer to Appendix B.2.

4. Experiments

We evaluate our approach’s ability to learn symbolic rules in a di�erentiable manner, scalability

and performance in the presence of input noise. To learn full logic rules such as in Fig. 1a, we

stack two semi-symbolic layers, one conjunctive and one disjunctive, for a disjunctive normal

form (DNF) layer. While theoretically di�erent combinations of SL layers can extend the space

of possible logic programs to a larger language including constraints and predicates with arity

greater than two, we focus on learning �rst-order (recursive) normal logic programs without

function symbols and excluding constraints. We also work with the nullary/1, unary/2 and

binary/3 predicates since any logic program can be converted to a program using this signature.

The DNF layer is constructed with a maximum number of variables |𝑉 (ℋ𝑖)| and �xed |H| to

learn �rst-order rules rather than just propositional formula. When viewed as a fully-connected

graph with variable symbols as the nodes (similar to Fig. 1a), the maximum number of edges

4

Nuri Cingillioglu et al. 1–43

nullary(0).
nullary(3).
...
unary(,0).
…
binary(, ,0).

binary(, ,0).
...

DNF LayerInput Image

Objects Relations

Output

RulesCNN

P
erm

ute

C
onjunctive S

L

D
isjunctive S

L

R
educe E

xistential

Figure 2: Graphical overview of the full neuro-symbolic model used for the relations game dataset. The
image is processed as a 3x3 grid using a CNN to obtain representations for each patch. Then a subset of
those patches are recognised as relevant objects using an MLP, see Appendix A.3. All relations between
objects are computed using another MLP with shared weights. Every permutation is constructed to
handle variable binding before passed on to the DNF layer to learn rules and predict the final output.
Blue squares indicate distributional representations while the orange squares highlight fuzzy logic.

|𝐸(ℋ𝑖)| corresponds to the maximum length (number of body atoms) of the learnable rules. We

gather all combinations

(︀ |𝑉 (𝒢)|
|𝑉 (ℋ𝑖)|

)︀
to e�ectively curate every possible object to variable binding,

shown as Permute step in Fig. 2. This grounding step converts �rst-order normal rules in

question into their propositional instantiations over which SL layers from Section 2 are used.

Although this binding is combinatorial, the evaluation of the rule under every binding can be

computed in parallel which bene�ts from the increasing computing infrastructure available. In

cases where the desired rules require speci�c constants as literal arguments, the instantiations

could be restricted at the permutation step to adjust the hypothesis space accordingly. After the

conjunctive SL, we use the max operator over the instantiations of any existential variables

that may occur in the rules. The DNF layer is used as a standalone model for the subgraph set

isomorphism dataset or in tandem with upstream image processing layers for the relations game

as in Fig. 2. We train all deep models using Adam [36] with a �xed learning rate of 0.001 and

the negative log-likelihood loss on an Intel Core i7 CPU and report the median results to avoid

outliers. For all the hyper-parameters and further training details, please refer to Appendix A.6.

Table 2: Median test accuracy for subgraph set isomorphism dataset without input noise with median
absolute deviation. Although ILASP and FastLAS solve the easy set, they timeout at higher di�iculties.

Test Accuracy Training Time
Di�iculty Easy Medium Hard Easy Medium Hard

DNF 1.0±0.0 1.00±0.0 1.00±0.00 127.13± 4.17 136.90±10.00 129.56± 5.77
DNF+t 1.0±0.0 0.99±0.0 0.99±0.01 125.02± 6.53 135.67± 8.56 143.67±22.60
FastLASv3 1.0±0.0 29.85± 0.69
ILASP-2i 1.0±0.0 3336.00±994.45

Can the DNF layer learn symbolic rules in a scalable, di�erentiable manner? We

train a standalone DNF layer on the subgraph set isomorphism dataset for 10k batch updates with

a batch size of 128. The results with continuous weights (DNF) and with pruning, thresholding

(DNF+t) are compared against two state-of-the-art symbolic learners: ILASP [38] (2i as the

recommended version for non-noisy tasks) and the recent more scalable FastLAS [39]. We also

considered state-of-the-art rule mining system AMIE [37] but it does not support negated rules

5

Nuri Cingillioglu et al. 1–43

and uses breath-�rst search that does not scale well to long rules. We were only able to run the

symbolic learners for the easy size because they do not report progress or allow checkpointing

making them infeasible for distributed shared computing infrastructure. FastLAS on an isolated

machine did not terminate after 16 hours on the medium di�culty. In Table 2, we observe that

DNF layer scales better than symbolic learners to larger rule sizes and since it is trained for �xed

number of iterations maintains a steady training time. Since DNF+t is thresholded, we have

exact logic semantics which correspond to the symbolic rules learnt by the symbolic systems.

We can convert the thresholded weights into ASP rules and test them using clingo [25] to verify

that our approach has indeed learnt correct symbolic rules in a di�erentiable manner.

Table 3:Median test accuracy for the best out of 5 runs with input noise. The median absolute deviation
is less than 0.09 for all entries.

Di�iculty Easy Medium Hard
Noise 0.00 0.15 0.30 0.00 0.15 0.30 0.00 0.15 0.30

DNF 1.00 0.89 0.82 1.00 0.98 0.89 1.00 0.98 0.86
DNF+t 1.00 1.00 0.84 0.99 0.99 0.99 0.99 0.99 0.74

How does the DNF layer cope with input noise? We perturb the input since learnt latent

representations of low-level signals are likely to be noisy. Hence, we add input noise to the

subgraph set isomorphism dataset by randomly �ipping the truth values of 𝐸(𝒢) in the training

set with a �xed probability shown in Table 3. We observe that the DNF layer performs well up

to 0.3 where the median accuracy drops below 0.9. The pruning and thresholding steps seem

to improve the performance with lower levels of noise, likely because incorrect weights are

removed against a non-noisy validation set.

Table 4: Median test accuracy for relations game tasks. For full results, please refer to Appendix D.

Task All Between Occurs Same XOccurs
Set Model 100 1000 5000 100 1000 5000 100 1000 5000 100 1000 5000 100 1000 5000

Hex. DNF 0.94 0.97 0.98 0.90 0.99 0.99 0.56 0.99 0.99 0.94 1.00 1.00 0.49 0.80 0.93
DNF-h 0.98 0.99 0.99 0.95 1.00 0.99 0.62 0.99 0.99 0.97 1.00 1.00 0.50 0.98 0.96
DNF-h+t 0.51 0.55 0.92 0.91 0.97 0.98 0.50 0.79 0.96 0.53 1.00 0.98 0.48 0.51 0.51
DNF-hi 0.98 0.99 1.00 0.97 0.99 1.00 0.69 0.99 0.99 0.97 1.00 1.00 0.51 0.99 0.99
DNF-r 0.94 0.98 0.98 0.84 1.00 0.99 0.63 0.99 0.99 0.96 1.00 1.00 0.51 0.94 0.51
PrediNet 0.85 0.95 0.96 0.66 0.99 0.99 0.57 0.95 0.97 0.99 1.00 1.00 0.50 0.58 0.95

Pent. DNF 0.89 0.96 0.95 0.85 0.99 0.99 0.57 0.96 0.98 0.95 1.00 1.00 0.50 0.74 0.86
DNF-h 0.95 0.97 0.98 0.92 0.99 0.99 0.62 0.95 0.97 0.94 1.00 1.00 0.51 0.94 0.90
DNF-h+t 0.50 0.53 0.88 0.90 0.98 0.97 0.49 0.81 0.93 0.50 0.99 0.97 0.50 0.51 0.49
DNF-hi 0.96 0.99 0.99 0.95 0.99 1.00 0.69 0.98 0.98 0.96 1.00 1.00 0.50 0.96 0.99
DNF-r 0.93 0.96 0.97 0.81 0.99 0.99 0.65 0.96 0.96 0.95 1.00 1.00 0.52 0.88 0.49
PrediNet 0.85 0.96 0.95 0.65 0.99 0.98 0.60 0.95 0.97 0.99 1.00 1.00 0.50 0.58 0.95

Stripe DNF 0.91 0.97 0.95 0.81 0.98 0.99 0.57 0.97 0.99 0.93 0.99 1.00 0.49 0.88 0.94
DNF-h 0.93 0.98 0.99 0.89 0.99 0.99 0.57 0.97 0.99 0.96 1.00 1.00 0.51 0.98 0.97
DNF-h+t 0.52 0.53 0.93 0.92 0.97 0.95 0.49 0.84 0.86 0.49 0.99 0.97 0.48 0.50 0.51
DNF-hi 0.95 0.99 0.99 0.94 0.99 0.99 0.63 0.96 0.99 0.97 1.00 1.00 0.49 0.96 0.97
DNF-r 0.92 0.97 0.98 0.81 0.99 0.99 0.64 0.95 0.98 0.98 1.00 1.00 0.52 0.92 0.51
PrediNet 0.84 0.93 0.92 0.64 0.99 0.99 0.54 0.94 0.92 0.99 0.99 1.00 0.51 0.61 0.93

To perform neuro-symbolic reasoning with images, we now combine the DNF layer with

upstream convolutional neural networks (CNN) and object selection layers to construct the full

neuro-symbolic DNF model (DNF), Fig. 2. The image is processed in patches by the CNN to

obtain a set of 9 candidate objects. Since reasoning with 9 objects at the same time creates a

large grounding for the DNF layer, we use an attention based object selection layer. Attention

6

Nuri Cingillioglu et al. 1–43

models [8, 16] allow neural networks to focus on speci�c parts of the input, in this case

selecting relevant patches of the given input image. The attention map is used as the parameters

of a Gumbel-Softmax [33], also known as Concrete [45], distribution to gradually sharpen

the attention maps and have a clear correspondence between the selected objects and the

rules applied thereafter. We leave more complex, unsupervised scene object recognition and

decomposition methods [14, 44, 10] for future work. We then use a single feed-forward layer

with shared weights to compute all relations between the selected objects, and pass onto a DNF

layer. For further details please refer to Appendix A. We construct 2 additional variants: DNF-h

has extra hidden DNF layers, one for each 14 invented predicates, and DNF-r iterates the DNF

layer twice learning recursive rules with 7 invented predicates. The invented predicates are

evaluated in parallel using matrix operations similar to a feed-forward layer with many outputs.

Is the DNF model more data e�cient? We compare our approach against PrediNet [65],

an explicitly relational neural network and the current state-of-the-art in the relations game

dataset. Note that PrediNet already outperforms MLP baselines and Relation Networks [63].

Looking at columns with di�erent data sizes in Table 4, we observe that the DNF models

consistently match or outperform PrediNet, especially DNF-h with training size 100 for the

between task. This gap eventually narrows as the training size is increased. Despite failing

to recognise and reason with four objects in the Occurs and XOccurs tasks with 100 training

examples, all the models seem to tackle them better when mixed with other tasks, i.e. the All

task. This might suggest that a form a curriculum learning [11] is bene�cial to learn and reason

with 2 objects, then 3 and �nally 4 objects. The failure cases observed with 100 training data

points highlight how our approach is still prone to over-�tting due to its neural network based

formulation which may be further mitigated using standard techniques such as regularisation.

Can the DNF model generalise to unseen shapes and colours? After training on pen-

tominoes, the models are tested on unseen hexominoes and striped shapes, Appendix B.2. The

results for Hex. and Stripe in Table 4 are similar to that of pentominoes for all models. This lack

of change might be because of the tasks’ requirement to determine whether the shapes match

or not, which can encourage a simple subtraction based representation that would generalise to

unseen shapes and colours. Indeed, PrediNet uses subtraction as the main relational operator

while our model would need to learn that solely from examples.

Does image reconstruction improve DNF model performance? We try to reconstruct

the image from the selected objects using deconvolutional layers as an auxiliary loss (DNF-hi),

see Appendix A.5 for reconstruction details and Appendix D for examples. Comparing DNF-hi

and DNF-h rows, we do not observe any improvement above 5% despite the extra computation

required to reconstruct the images. Although the representations of objects would need to

accommodate both the reasoning and the reconstruction, we believe the simplicity of the shapes

might be why the auxiliary loss does not yield any advantage for the rule learning.

Can we extract symbolic rules in an image classi�cation task? Finally, the goal is to

obtain a coherent neuro-symbolic pipeline where objects, their relations and symbolic rules

are learnt. We take the best variant DNF-h and threshold its weights DNF-h+t to get symbolic

rules. Comparing DNF-h with DNF-h+t in Table 4, only if DNF-h achieves ≥ 0.99 accuracy

does DNF-h+t consistently yield better than random performance. This highlights the di�culty

of learning both the meaning of the predicates as well as the rules in tandem. Yet, there are

some successful outliers ignored by the median, please refer to Appendix D for the full results.

7

Nuri Cingillioglu et al. 1–43

Input

0 1 2

0

1

2

Object Scores

0 1 2

0

1

2

Object 1

0 1 2

0

1

2

Object 2

0 1 2

0

1

2

Object 3

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

(a) Attention maps learnt during the object se-

lection phase. Gumbel-Softmax with low

temperature approximates hard attention.

binary(X,Y,6) - 1.0 1.0 1.0 -1.0 -1.0 -1.0

(b) Object arguments (top and bottom rows) that make

binary(X,Y,6) true or false exhibit no common

pattern of the principal concepts of the dataset.

Figure 3: Analysis plots of a single run of the DNF model trained on between task with 1k training
examples and image reconstruction. Further analysis can be found in Appendix D.

5. Analysis

To understand what the model has learnt and how it is behaving, we take a single successful run

(≥ 0.95 accuracy) from the DNF model with image reconstruction on the between task with

1k training examples. We choose this task because it is smaller in size and the model achieves

0.99 and 0.97 test hexominoes accuracy prior to and after thresholding respectively. For further

examples and analysis, please refer to Appendix D.

What are the selected objects? To ensure whether the relations and rules actually work

with the desired objects, we plot the attention maps obtained from the object selection step. As

shown in Fig. 3a, the model learns to assign higher scores to patches with objects and iteratively

selects them. Due to the random sampling, the order of the selected objects may vary.

In a successful run, what are the rules learnt? Since the thresholded model has a one-

to-one correspondence with the desired logic semantics, we extract out the rule used to solve

the between task, e.g. input images shown in Fig. 3a:

between :- unary(X,4), not unary(Y,6), binary(Y,Z,6), not binary(Y,Z,9),

not binary(Z,Y,3), binary(Z,Y,5), not binary(Z,Y,9), binary(Z,Y,14).

which achieves 0.97 accuracy on the test hexominoes set. This is the �rst result we are aware

of that presents di�erentiable rule learning with learnt predicates on continuous representa-

tions of images in an end-to-end fashion. To further validate this rule, we threshold > 0 the

interpretation, relations box in Fig. 2, and pass them, along with the rule to clingo. Over a

sample test batch of 64 examples, clingo solves 91% of them verifying the correctness of the

learnt rules by the DNF layer. This seamless integration of symbolic relations and rules with

distributed representations of objects re�ect on how the human brain might be using symbolic

and sub-symbolic representations in tandem [35].

What do the learnt predicates mean? We iteratively remove one atom from the body

and check the drop in accuracy over the same sample test batch. Removing binary(X,Y,6)

yields the highest drop of 18%. Hence, we plot cases of binary(X,Y,6) in Fig. 3b but fail to

notice any alignment between the primary concepts of the dataset such as shape, colour or

position. Although at �rst this may seem odd, since there is no regularisation for any sort of

disentanglement, we would not expect or assume any correlation between the concepts and the

learnt relations. This is in contrast with explainable AI [2] and the promise of interpretability

8

Nuri Cingillioglu et al. 1–43

using neuro-symbolic methods which is fundamentally limited by our ability to decode learnt

representations. On the other hand, this phenomenon does not arise when the input predicates

are known and �xed such as in the graph isomorphism dataset where the learnt rules have

interpretable meanings in the form of graphs, see Fig. 1a.

6. Related Work

Neuro-symbolic [13] architectures and methods have a proli�c history. We can categorise related

work based on how neural or symbolic they are. On the far neural end of the spectrum, we

can consider deep neural networks designed to perform symbolic manipulation such as Neural

Turing Machines [28] and its successor the Di�erentiable Neural Computer [29]. They attempt

to create universal computers that can be trained and, in theory, perform symbol manipulation

for example by solving algorithmic tasks. However, how they perform symbolic representation

and manipulation is not clear. Studies of algorithmic tasks using recurrent neural network based

controllers suggest limitations in the extent of symbolic manipulation by continuous dense

representations [74]. This symbolic manipulation can also extend to program execution with

Neural-program interpreters [57] and Neural Symbolic Machines [42] which operate in discrete

steps but use reinforcement learning in doing so. Discrete data-structures such as stacks have

also been used in aid of this problem such as Stack-augmented Recurrent Nets [34].

Going one step closer to symbolic, architectural biases are often added to constrain and

re�ne the behaviour of neural networks. For example, Relation Networks [63] create a pairwise

object representation bottleneck and demonstrate improvements in visual question answering

tasks. This architectural inductive bias can be traced to many models all the way and including

PrediNet [65]. More recently, an application of rule based systems that also use Gumbel-

Softmax [33] to sharpen the rule selection was proposed with Neural Production Systems [27].

Unsupervised deep representation learning using auto-encoders were also shown to work in the

planning domain where the latent representation was converted to propositional atoms [5, 6]. In

relation to the subgraph isomorphism problem, one can also deploy graph neural networks [9]

that utilise message passing between nodes. In particular, Graph Matching Networks [41] are

designed to determine graph similarities but it remains unknown how the matched graphs

could be extracted from continuous weights.

Methods described so far do not consider logical formalisms or logic programs. DeepLogic [18]

provides a �rst insight into attempts of learning symbolic reasoning in an end-to-end fashion

using memory networks [71, 69] which has gated recurrent-units (GRU) [17] as the basis of

symbolic manipulation. Neural Logic Machines [22] use principles of forward-chaining [62]

with nullary, unary and binary predicates implemented as MLPs with input permutations to

tackle algorithmic tasks. However, due to the use of MLPs, the learnt rules or reasoning steps

cannot be symbolically extracted. Our approach falls in this section of the spectrum: constrain or

make neural networks exhibit behaviours of logical reasoning. That is, to build an architecture

with the right biases in order to learn and leverage structured logical reasoning in the form of

objects, relations and rules.

Going further away from deep neural networks, logic based architectures become more

prominent. For example, Lifted Relational Neural Networks [68] use rule sets as templates for

constructing neural networks, i.e. the connection paths. Logic Tensor Networks [64] use dense

9

Nuri Cingillioglu et al. 1–43

embeddings of constants while also constructing a deductive neural network. TensorLog [19]

similarly builds factor graphs which in return yield the neural network architecture. These

approaches have similarities to the more recent Logical Neural Networks [58] which assemble

neural networks from logical formulae and constrain the weights to achieve conjunction and

disjunction semantics. Our more �exible approach is not bound to a �xed logic program and

does not require any constraints on the weights whilst also handling negation.

One could also use distributed representations for constants or predicates. For example

similarity between vectors could provide basis for a logical calculus [60]. Neural Theorem

Provers [59] learn embeddings of predicates by unrolling given logic programs using backward-

chaining [4], e�ectively following the steps of symbolic reasoning prior to any learning. These

works have been inspired by word embeddings [50, 55, 15] that capture distributional semantics

of words. More recently, Neural Datalog [49] uses vector representations along with a datalog

program to improve performance of temporal modelling.

Closer to the symbolic end of the spectrum, one could also attempt to decompose or parse

continuous input completely into symbolic entities or concepts and then perform symbolic

reasoning. Neural scene parsing as done in Neuro-Symbolic VQA [73] and following works,

completely decompose images into objects, their properties before performing visual question

answering. For synthetic datasets where the decomposition is successful, it outperforms any

end-to-end approach. We consider scene parsing closer to symbolic approaches since the

reasoning about objects and their relations is not done by neural networks but by the manually

engineered reinforcement learning environment with pre-de�ned functions. Neuro-symbolic

Concept Learner [48] extends scene decomposition by learning concepts given in a parsed

question such as red in a joint fashion using reinforcement learning in which the environment

is a symbolic program executor.

Moving away from neural networks but attempting to harness gradient descent, we have

approaches such as 𝛿-ILP [24] and derivations [66] which implement t-norms to create di�eren-

tiable logic programs to �nd a suitable hypothesis in an ILP setting. More recently, by directly

modelling rule membership of atoms as learnable weights, Neural Logic Networks [54, 53]

provide a competitive di�erentiable ILP system that leverages gradient descent. The in�uence of

gradient descent can also be found in full symbolic reasoning systems like DeepProblog [47] and

NeurASP [72] which attempt to propagate gradients through logic programs in order to train

input neural networks such as CNNs that recognise hand-written digits and perform addition

of the recognised digits. This resembles continuous formulations of logic such as di�erentiable

stable and supported semantics that utilise matrix multiplications and non-linear activations to

realise logic operations [7].

7. Conclusion

We presented a uni�ed neuro-symbolic framework for learning objects, their relations and

symbolic rules in an end-to-end fashion using semi-symbolic layers. Evaluation on two datasets

portray competitive if not better results of our approach against symbolic learners and deep

neural networks. Since symbolic rules can be extracted and examined, we plan to apply this

technique to more decision making critical domains such as reinforcement learning.

10

Nuri Cingillioglu et al. 1–43

Acknowledgments

We would like to thank Murray Shanahan for his helpful comments. We would also like to

thank Mark Law for his support in running ILASP and FastLAS symbolic learners.

References

[1] Martin Abadi et al. “TensorFlow: A system for large-scale machine learning”. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016,

pp. 265–283. url: https://www.usenix.org/system/�les/conference/osdi16/osdi16-

abadi.pdf.

[2] Amina Adadi and Mohammed Berrada. “Peeking Inside the Black-Box: A Survey on

Explainable Arti�cial Intelligence (XAI)”. In: IEEE Access 6 (2018), pp. 52138–52160. doi:

10.1109/access.2018.2870052.

[3] Krzysztof R. Apt and Roland N. Bol. “Logic programming and negation: A survey”.

In: The Journal of Logic Programming 19-20 (May 1994), pp. 9–71. doi: 10.1016/0743-

1066(94)90024-8.

[4] Krzysztof R. Apt and M. H. van Emden. “Contributions to the Theory of Logic Program-

ming”. In: Journal of the ACM 29.3 (July 1982), pp. 841–862. doi: 10.1145/322326.322339.

[5] Masataro Asai. “Unsupervised Grounding of Plannable First-Order Logic Representation

from Images”. In: ICAPS (Feb. 2019). arXiv: 1902.08093 [cs.AI].

[6] Masataro Asai and Alex Fukunaga. “Classical Planning in Deep Latent Space: Bridging

the Subsymbolic-Symbolic Boundary”. In: (Apr. 29, 2017). arXiv: 1705.00154 [cs.AI].

[7] Yaniv Aspis et al. “Stable and Supported Semantics in Continuous Vector Spaces”. In:

Proceedings of the Seventeenth International Conference on Principles of Knowledge Repre-
sentation and Reasoning. International Joint Conferences on Arti�cial Intelligence Orga-

nization, 2020. doi: 10.24963/kr.2020/7.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Translation

by Jointly Learning to Align and Translate”. In: ICLR (Sept. 1, 2014). arXiv: 1409.0473

[cs.CL].

[9] Peter W. Battaglia et al. “Relational inductive biases, deep learning, and graph networks”.

In: (June 4, 2018). arXiv: 1806.01261 [cs.LG].

[10] Daniel M. Bear et al. “Learning Physical Graph Representations from Visual Scenes”. In:

NeurIPS (June 2020). arXiv: 2006.12373 [cs.CV].

[11] Yoshua Bengio et al. “Curriculum learning”. In: Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning - ICML ’09. ACM. ACM Press, 2009, pp. 41–48. doi:

10.1145/1553374.1553380.

[12] Tarek R. Besold et al. “Neural-Symbolic Learning and Reasoning: A Survey and Interpre-

tation”. In: (Nov. 10, 2017). arXiv: 1711.03902 [cs.AI].

11

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1109/access.2018.2870052
https://doi.org/10.1016/0743-1066(94)90024-8
https://doi.org/10.1016/0743-1066(94)90024-8
https://doi.org/10.1145/322326.322339
https://arxiv.org/abs/1902.08093
https://arxiv.org/abs/1705.00154
https://doi.org/10.24963/kr.2020/7
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2006.12373
https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/1711.03902

Nuri Cingillioglu et al. 1–43

[13] Krysia B. Broda, Artur S. D’Avila Garcez, and Dov M. Gabbay. Neural-Symbolic Learning
Systems. Springer London, Aug. 6, 2002. 288 pp. isbn: 1852335122. doi: 10.1007/978-1-

4471-0211-3.

[14] Christopher P. Burgess et al. “MONet: Unsupervised Scene Decomposition and Represen-

tation”. In: (Jan. 2019). arXiv: 1901.11390 [cs.CV].

[15] Jose Camacho-Collados and Mohammad Taher Pilehvar. “From Word To Sense Embed-

dings: A Survey on Vector Representations of Meaning”. In: Journal of Arti�cial Intel-
ligence Research 63 (2018), pp. 743–788. doi: 10.1613/jair.1 .11259. arXiv: 1805.04032

[cs.CL].

[16] Sneha Chaudhari et al. “An Attentive Survey of Attention Models”. In: IJCAI (Apr. 5,

2019). arXiv: 1904.02874 [cs.LG].

[17] Kyunghyun Cho et al. “On the Properties of Neural Machine Translation: Encoder–Decoder

Approaches”. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation. Association for Computational Linguistics, 2014. doi: 10.

3115/v1/w14-4012.

[18] Nuri Cingillioglu and Alessandra Russo. “DeepLogic: Towards End-to-End Di�erentiable

Logical Reasoning”. In: AAAI-MAKE (Mar. 20, 2019). arXiv: 1805.07433 [cs.NE].

[19] William W. Cohen. “TensorLog: A Di�erentiable Deductive Database”. In: arXiv:1605.06523
(May 20, 2016). arXiv: http://arxiv.org/abs/1605.06523v2 [cs.AI].

[20] Stephen A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings of
the third annual ACM symposium on Theory of computing - STOC ’71. ACM Press, 1971.

doi: 10.1145/800157.805047.

[21] Daniel Cunnington et al. “NSL: Hybrid Interpretable Learning From Noisy Raw Data”. In:

(Dec. 2020). arXiv: 2012.05023 [cs.LG].

[22] Honghua Dong et al. “Neural Logic Machines”. In: ICLR (Apr. 2019). arXiv: 1904.11694

[cs.AI].

[23] F. Esposito et al. “A comparative analysis of methods for pruning decision trees”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 19.5 (1997), pp. 476–493. doi:

10.1109/34.589207.

[24] Richard Evans and Edward Grefenstette. “Learning Explanatory Rules from Noisy Data”.

In: Journal of Arti�cial Intelligence Research 61 (2018), pp. 1–64. doi: 10.1613/jair.5714.

arXiv: 1711.04574 [cs.NE].

[25] Martin Gebser et al. “Theory Solving Made Easy with Clingo 5”. en. In: (2016). doi:

10.4230/OASICS.ICLP.2016.2.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,

Jan. 3, 2017. 800 pp. isbn: 0262035618. doi: 10.1016/b978-0-12-804291-5.00010-6.

[27] Anirudh Goyal et al. “Neural Production Systems”. In: (Mar. 2021). arXiv: 2103.01937

[cs.AI].

12

https://doi.org/10.1007/978-1-4471-0211-3
https://doi.org/10.1007/978-1-4471-0211-3
https://arxiv.org/abs/1901.11390
https://doi.org/10.1613/jair.1.11259
https://arxiv.org/abs/1805.04032
https://arxiv.org/abs/1805.04032
https://arxiv.org/abs/1904.02874
https://doi.org/10.3115/v1/w14-4012
https://doi.org/10.3115/v1/w14-4012
https://arxiv.org/abs/1805.07433
https://arxiv.org/abs/http://arxiv.org/abs/1605.06523v2
https://doi.org/10.1145/800157.805047
https://arxiv.org/abs/2012.05023
https://arxiv.org/abs/1904.11694
https://arxiv.org/abs/1904.11694
https://doi.org/10.1109/34.589207
https://doi.org/10.1613/jair.5714
https://arxiv.org/abs/1711.04574
https://doi.org/10.4230/OASICS.ICLP.2016.2
https://doi.org/10.1016/b978-0-12-804291-5.00010-6
https://arxiv.org/abs/2103.01937
https://arxiv.org/abs/2103.01937

Nuri Cingillioglu et al. 1–43

[28] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. In: arXiv:1410.5401
(Oct. 20, 2014). arXiv: http://arxiv.org/abs/1410.5401v2 [cs.NE].

[29] Alex Graves et al. “Hybrid computing using a neural network with dynamic external

memory”. In: Nature 538.7626 (Oct. 2016), pp. 471–476. doi: 10.1038/nature20101.

[30] M.M. Gupta and J. Qi. “Theory of T-norms and fuzzy inference methods”. In: Fuzzy Sets
and Systems 40.3 (Apr. 1991), pp. 431–450. doi: 10.1016/0165-0114(91)90171-l.

[31] Marco A. P. Idiart et al. “How the Brain Represents Language and Answers Questions?

Using an AI System to Understand the Underlying Neurobiological Mechanisms”. In:

Frontiers in Computational Neuroscience 13 (Mar. 2019). doi: 10.3389/fncom.2019.00012.

[32] Peter Jackson. Introduction to expert systems. Harlow, England Reading, Massachusetts:

Addison-Wesley, 1999. isbn: 9780201876864.

[33] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”. In: ICLR (Nov. 3, 2016). arXiv: 1611.01144 [stat.ML].

[34] Armand Joulin and Tomas Mikolov. “Inferring Algorithmic Patterns with Stack-Augmented

Recurrent Nets”. In: NIPS (Mar. 3, 2015), pp. 190–198. arXiv: http://arxiv.org/abs/1503.

01007v4 [cs.NE].

[35] Troy D. Kelley. “Symbolic and Sub-Symbolic Representations in Computational Models

of Human Cognition”. In: Theory & Psychology 13.6 (2003), pp. 847–860. doi: 10.1177/

0959354303136005.

[36] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:

ICLR (Dec. 22, 2014). arXiv: 1412.6980 [cs.LG].

[37] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. “Fast and Exact Rule Mining with

AMIE 3”. In: The Semantic Web. Springer International Publishing, 2020, pp. 36–52. doi:

10.1007/978-3-030-49461-2_3.

[38] Mark Law, Alessandra Russo, and Krysia Broda. “The ILASP system for Inductive Learning

of Answer Set Programs”. In: (May 2020). arXiv: 2005.00904 [cs.AI].

[39] Mark Law et al. “FastLAS: Scalable Inductive Logic Programming Incorporating Domain-

Speci�c Optimisation Criteria”. In: Proceedings of the AAAI Conference on Arti�cial Intel-
ligence 34.03 (Apr. 2020), pp. 2877–2885. doi: 10.1609/aaai.v34i03.5678.

[40] Richard L. Lewis. “Cognitive modeling, symbolic”. In: The MIT encyclopedia of the cogni-
tive sciences (1999), pp. 525–527. url: http://www-personal.umich.edu/~rickl/pubs/lewis-

1999-mitecs.pdf.

[41] Yujia Li et al. “Graph Matching Networks for Learning the Similarity of Graph Structured

Objects”. In: (Apr. 2019). arXiv: 1904.12787 [cs.LG].

[42] Chen Liang et al. “Neural Symbolic Machines: Learning Semantic Parsers on Freebase

with Weak Supervision”. In: ACL (Oct. 31, 2016). arXiv: http://arxiv.org/abs/1611.00020v4

[cs.CL].

[43] Vladimir Lifschitz. What is Answer Set Programming? AAAI’08. Menlo Park, Calif: AAAI

Press, 2008, pp. 1594–1597. isbn: 9781577353683.

13

https://arxiv.org/abs/http://arxiv.org/abs/1410.5401v2
https://doi.org/10.1038/nature20101
https://doi.org/10.1016/0165-0114(91)90171-l
https://doi.org/10.3389/fncom.2019.00012
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/http://arxiv.org/abs/1503.01007v4
https://arxiv.org/abs/http://arxiv.org/abs/1503.01007v4
https://doi.org/10.1177/0959354303136005
https://doi.org/10.1177/0959354303136005
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-49461-2_3
https://arxiv.org/abs/2005.00904
https://doi.org/10.1609/aaai.v34i03.5678
http://www-personal.umich.edu/~rickl/pubs/lewis-1999-mitecs.pdf
http://www-personal.umich.edu/~rickl/pubs/lewis-1999-mitecs.pdf
https://arxiv.org/abs/1904.12787
https://arxiv.org/abs/http://arxiv.org/abs/1611.00020v4
https://arxiv.org/abs/http://arxiv.org/abs/1611.00020v4

Nuri Cingillioglu et al. 1–43

[44] Francesco Locatello et al. “Object-Centric Learning with Slot Attention”. In: (June 2020).

arXiv: 2006.15055 [cs.LG].

[45] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. “The Concrete Distribution: A

Continuous Relaxation of Discrete Random Variables”. In: (Nov. 2016). arXiv: 1611.00712

[cs.LG].

[46] Grzegorz Malinowski. Many-valued logics. Oxford England New York: Clarendon Press

Oxford University Press, 1993. isbn: 9780198537878.

[47] Robin Manhaeve et al. “DeepProbLog: Neural Probabilistic Logic Programming”. In: (May

2018). arXiv: 1805.10872 [cs.AI].

[48] Jiayuan Mao et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words,

and Sentences From Natural Supervision”. In: ICLR (Apr. 26, 2019). arXiv: 1904.12584

[cs.CV].

[49] Hongyuan Mei et al. “Neural Datalog Through Time: Informed Temporal Modeling

via Logical Speci�cation”. In: Proceedings of the 37th International Conference on Machine
Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning

Research. PMLR, June 30, 2020, pp. 6808–6819. arXiv: 2006.16723 [cs.LG]. url: http:

//proceedings.mlr.press/v119/mei20a.html.

[50] Tomas Mikolov et al. “Distributed Representations of Words and Phrases and their

Compositionality”. In: NIPS. Oct. 16, 2013, pp. 3111–3119. arXiv: http://arxiv.org/abs/1310.

4546v1 [cs.CL].

[51] Stephen Muggleton and Luc de Raedt. “Inductive Logic Programming: Theory and

methods”. In: The Journal of Logic Programming 19-20 (May 1994), pp. 629–679. doi:

10.1016/0743-1066(94)90035-3.

[52] Allen Newell and Herbert A. Simon. “Computer science as empirical inquiry: symbols

and search”. In: Communications of the ACM 19.3 (Mar. 1976), pp. 113–126. doi: 10.1145/

360018.360022.

[53] Ali Payani and Faramarz Fekri. “Inductive Logic Programming via Di�erentiable Deep

Neural Logic Networks”. In: (June 2019). arXiv: 1906.03523 [cs.AI].

[54] Ali Payani and Faramarz Fekri. “Learning Algorithms via Neural Logic Networks”. In:

(Apr. 2019). arXiv: 1904.01554 [cs.LG].

[55] Je�rey Pennington, Richard Socher, and Christopher Manning. “Glove: Global Vectors

for Word Representation”. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational Linguistics, 2014,

pp. 1532–1543. doi: 10.3115/v1/d14-1162.

[56] Jean Piaget. The Psychology of Intelligence. London New York: Routledge, 2001. 216 pp.

isbn: 0415254019.

[57] Scott Reed and Nando de Freitas. “Neural Programmer-Interpreters”. In: ICLR (Nov. 19,

2015). arXiv: http://arxiv.org/abs/1511.06279v4 [cs.LG].

[58] Ryan Riegel et al. “Logical Neural Networks”. In: (June 2020). arXiv: 2006.13155 [cs.AI].

14

https://arxiv.org/abs/2006.15055
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1805.10872
https://arxiv.org/abs/1904.12584
https://arxiv.org/abs/1904.12584
https://arxiv.org/abs/2006.16723
http://proceedings.mlr.press/v119/mei20a.html
http://proceedings.mlr.press/v119/mei20a.html
https://arxiv.org/abs/http://arxiv.org/abs/1310.4546v1
https://arxiv.org/abs/http://arxiv.org/abs/1310.4546v1
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1145/360018.360022
https://doi.org/10.1145/360018.360022
https://arxiv.org/abs/1906.03523
https://arxiv.org/abs/1904.01554
https://doi.org/10.3115/v1/d14-1162
https://arxiv.org/abs/http://arxiv.org/abs/1511.06279v4
https://arxiv.org/abs/2006.13155

Nuri Cingillioglu et al. 1–43

[59] Tim Rocktäschel and Sebastian Riedel. “End-to-End Di�erentiable Proving”. In: NIPS
(May 31, 2017), pp. 3791–3803. arXiv: 1705.11040 [cs.NE].

[60] Tim Rocktäschel et al. “Low-Dimensional Embeddings of Logic”. In: Proceedings of the
ACL 2014 Workshop on Semantic Parsing. Association for Computational Linguistics, 2014,

pp. 45–49. doi: 10.3115/v1/w14-2409.

[61] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project Para. Report:

Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory, 1957.

[62] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach, Global Edition.

Addison Wesley, Nov. 28, 2018. isbn: 1292153962. url: https://www.ebook.de/de/product/

25939961/stuart_russell_peter_norvig_arti�cial_intelligence_a_modern_approach_

global_edition.html.

[63] Adam Santoro et al. “A simple neural network module for relational reasoning”. In:

NeurIPS. June 5, 2017, pp. 4974–4983. arXiv: 1706.01427 [cs.CL].

[64] Luciano Sera�ni and Artur d’Avila Garcez. “Logic Tensor Networks: Deep Learning and

Logical Reasoning from Data and Knowledge”. In: Proceedings of the 11th International
Workshop on Neural-Symbolic Learning and Reasoning (June 14, 2016). arXiv: http://arxiv.

org/abs/1606.04422v2 [cs.AI].

[65] Murray Shanahan et al. “An Explicitly Relational Neural Network Architecture”. In: (May

2019). arXiv: 1905.10307 [cs.LG].

[66] Hikaru Shindo, Masaaki Nishino, and Akihiro Yamamoto. “Di�erentiable Inductive Logic

Programming for Structured Examples”. In: AAAI 21 (Mar. 2021). arXiv: 2103 . 01719

[cs.AI].

[67] Richard Socher et al. “Reasoning with Neural Tensor Networks for Knowledge Base

Completion”. In: Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 1. NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc., 2013,

pp. 926–934. url: http://papers.nips.cc/paper/5028-reasoning-with-neural- tensor-

networks-for-knowledge-base-completion.pdf.

[68] Gustav Sourek et al. “Lifted Relational Neural Networks”. In: (Aug. 20, 2015). arXiv:

1508.05128 [cs.AI].

[69] Sainbayar Sukhbaatar et al. “End-To-End Memory Networks”. In: NIPS. Mar. 31, 2015,

pp. 2440–2448. arXiv: 1503.08895 [cs.NE].

[70] J. Marshall Unger and Terrence W. Deacon. The Symbolic Species: The Co-Evolution of
Language and the Brain. Vol. 82. Wiley, 1998, p. 437. doi: 10.2307/329984.

[71] Jason Weston, Sumit Chopra, and Antoine Bordes. “Memory Networks”. In: ICLR (2015).

arXiv: 1410.3916 [cs.AI].

[72] Zhun Yang, Adam Ishay, and Joohyung Lee. “NeurASP: Embracing Neural Networks into

Answer Set Programming”. In: Proceedings of the Twenty-Ninth International Joint Con-
ference on Arti�cial Intelligence. International Joint Conferences on Arti�cial Intelligence

Organization, 2020. doi: 10.24963/ijcai.2020/243.

15

https://arxiv.org/abs/1705.11040
https://doi.org/10.3115/v1/w14-2409
https://www.ebook.de/de/product/25939961/stuart_russell_peter_norvig_artificial_intelligence_a_modern_approach_global_edition.html
https://www.ebook.de/de/product/25939961/stuart_russell_peter_norvig_artificial_intelligence_a_modern_approach_global_edition.html
https://www.ebook.de/de/product/25939961/stuart_russell_peter_norvig_artificial_intelligence_a_modern_approach_global_edition.html
https://arxiv.org/abs/1706.01427
https://arxiv.org/abs/http://arxiv.org/abs/1606.04422v2
https://arxiv.org/abs/http://arxiv.org/abs/1606.04422v2
https://arxiv.org/abs/1905.10307
https://arxiv.org/abs/2103.01719
https://arxiv.org/abs/2103.01719
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
https://arxiv.org/abs/1508.05128
https://arxiv.org/abs/1503.08895
https://doi.org/10.2307/329984
https://arxiv.org/abs/1410.3916
https://doi.org/10.24963/ijcai.2020/243

Nuri Cingillioglu et al. 1–43

[73] Kexin Yi et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Lan-

guage Understanding”. In: NeurIPS (Oct. 4, 2018). arXiv: 1810.02338 [cs.AI].

[74] Wojciech Zaremba et al. “Learning Simple Algorithms from Examples”. In: ICML. Nov. 23,

2015, pp. 421–429. arXiv: http://arxiv.org/abs/1511.07275v2 [cs.AI].

16

https://arxiv.org/abs/1810.02338
https://arxiv.org/abs/http://arxiv.org/abs/1511.07275v2

Nuri Cingillioglu et al. 1–43

A. Model Details

We use two models in our experiments that share the common DNF layer described in Section 2

and Section 4. In this section, we provide details on the semi-symbolic layer as well as the larger

model used for the image classi�cation task.

A.1. Semi-symbolic Layer

The semi-symbolic layer builds on the semantics of how a regular single-layer perceptron [62]

behaves in order to achieve AND semantics. Let’s start with the formulation for the pre-

activation value for a single-layer perceptron:∑︁
𝑖

𝑤𝑖𝑥𝑖 + 𝛽 = 𝑧 (3)

Now, suppose we are interested in obtaining AND gate semantics with a pre-activation value

𝑧 if all inputs are true and −𝑧 if one of the inputs are false. To simplify the derivation, suppose

the magnitudes of the weights are equal ∀𝑖𝑗𝑤𝑖 = 𝑤𝑗 :

∑︁
𝑖

|𝑤𝑖|+ 𝛽 = 𝑧 (4)∑︁
𝑖

|𝑤𝑖| − |𝑤𝑖|+ 𝛽 = −𝑧 (5)

where a true input means 𝑥𝑖 = 1.0 if the weight is positive or 𝑥𝑖 = −1.0 otherwise. We use

the absolute value of the weights since the sum of the weights multiplied by matching inputs

would yield the sum of the absolute value of the weights. Solving the above system of equations

for 𝛽, we obtain:

2𝛽 = |𝑤𝑖| − 2
∑︁
𝑖

|𝑤𝑖| (6)

𝛽 =
|𝑤𝑖|
2

−
∑︁
𝑖

|𝑤𝑖| (7)

Since the weights would not be equal during training, we replace the �rst term to obtain the

�nal equation Eq. (2) presented in Section 2:

𝛽 = max
𝑖

|𝑤𝑖| −
∑︁
𝑖

|𝑤𝑖| (8)

which preserves the desired AND gate semantics. The derivation for the disjunctive case is

identical and leads to the bias terms �ipped, i.e. sum - max. A fully functional implementation

of the semi-symbolic layer in TensorFlow can be found in Listing 1.

17

Nuri Cingillioglu et al. 1–43

Table 5: Example continuous representations of objects that are selected. The last 4 entries are the
location coordinates appended based on the object’s 3x3 grid location.

Obj 1 0. 3.356 0.728 0. 0.871 1.170 1.726 1.528 1.174 0.117 1.586 0.478
2.527 0.286 0.724 1.723 0.580 0. 3.770 0.943 0.517 3.114 3.456 0.
0.710 0.975 2.030 1.570 1.251 1.971 1.830 2.688 0.5 0.5 0.5 0.5

Obj 2 2.624 0.304 0.244 0. 0. 2.959 0.589 3.234 2.745 2.195 0. 2.967
0.510 2.248 2.414 1.953 2.047 1.409 1.645 2.542 0. 2.825 1.280 0.
2.709 2.844 0.293 0.349 3.549 0. 0. 0. 1. 1. 0. 0.

Obj 3 2.624 0.304 0.244 0. 0. 2.959 0.589 3.234 2.745 2.195 0. 2.967
0.510 2.248 2.414 1.953 2.047 1.409 1.645 2.542 0. 2.825 1.280 0.
2.709 2.844 0.293 0.349 3.549 0. 0. 0. 0. 0. 1. 1.

Listing 1: Implementation of semi-symbolic layer in Tensor�ow.

import t e n s o r f l o w as t f

def s e mi _ s y mb o l i c (i n _ t e n s o r : t f . Tensor , k e r n e l : t f . Tensor , d e l t a : f l o a t) :

" " " Compute semi − s y m b o l i c l a y e r o u t p u t s o f a g i v e n i n p u t t e n s o r . " " "
i n _ t e n s o r (. . . , H) , k e r n e l (H ,) , d e l t a [1 , − 1]
a b s _ k e r n e l = t f . math . abs (k e r n e l) # (H ,)
b i a s = t f . reduce_max (a b s _ k e r n e l) − t f . reduce_sum (a b s _ k e r n e l) # ()
c o n j u n c t s = t f . reduce_sum (i n _ t e n s o r ∗ k e r n e l , −1) + d e l t a ∗ b i a s

return t f . nn . tanh (c o n j u n c t s)

A.2. Input Image CNN

To process the input images in the relations game dataset, Section 3, we use a single layer

convolutional neural network (CNN) with a kernel size of 4x4, stride 4, relu activation and 32

�lters. We use these options to keep the image processing layer simple and less computationally

intensive. The input to the layer is a single relations game image, 12x12x3 and the output is

3x3x32. Note that, with this con�guration the CNN is aligned to the grid cells of the image in

which the objects are contained.

For each output of the CNN, 3x3x32, we also append the location information yielding a

�nal result of 3x3x36. The coordinates are computed on a linear scale from 0 to 1 based on the

location of the patch in the 3x3 grid. The representations are �attened into 9x36 and passed

onto the selection layer. Example representations learnt by this layer are shown in Table 5.

A.3. Object Selection

Given a set of objects with continuous representations in the form of a matrix 𝑂 ∈ R𝑛×𝑑
where

𝑛 is the number of objects and 𝑑 is the number of dimensions, the object selection layer selects

𝑚 many relevant objects. The number of objects 𝑚 is �xed and determined by the task. We use

2 for Same, 3 for Between and 4 for the rest of the tasks including All. The relevance, or score,

is learnt using single feed-forward layer. Concretely, the 9x36 object matrix obtained from the

CNN layer, is mapped to a vector 𝑠 ∈ R9
. Then these unnormalised scores are used as logits for

a Gumbel-Softmax [33] or Concrete [45] distribution, from which we sample once to obtain an

18

Nuri Cingillioglu et al. 1–43

attention map 𝑎 ∈ R𝑚
. We then use an iterative score inversion principle:

𝑠𝑡+1 = 𝑎(𝑠− 𝑐) + (1− 𝑎)𝑠 (9)

where 𝑐 = 100 is the inversion constant. We iterate for 𝑚 times selecting one object at each

iteration and by inverting its score, the layer learns to select 𝑚 distinct objects.

Similar to previous work that use Gumbel-Softmax as a means of di�erentiable categorical

distribution [5], we anneal the temperature of the distribution starting from 0.5, down to 0.01

with an exponential rate of 0.9 every step after 20 epochs. That allows the model to gradually

learn and then sharpen the object selection process. At a temperature of 0.01, the attention

maps become one-hot vectors allowing a clear correspondence between the selected objects and

the applied rules. This is in contrast with soft attention [8] mechanisms such as the dot-product

attention used in PrediNet which allow continuous selection of image patches as a single object.

A.4. Object Relations

Once the objects are selected, we compute all unary and binary relations between them using

their continuous representations. We use a single feed-forward layer for unary and another for

binary relations:

unary(𝑋, 𝑖) = tanh(𝑊𝑖𝑋 + 𝑏𝑖) (10)

binary(𝑋,𝑌, 𝑗) = tanh(𝑊𝑗 [𝑋,𝑌,𝑋 − 𝑌] + 𝑏𝑗) (11)

where [] is the concatenation operator and 𝑊 , 𝑏 are di�erent weights for each equation. The

result can be considered a fully connected graph with the selected objects as nodes, and the

computed unary and binary relations as edges. We opt for this single-layer formulation to

keep it computationally less intensive and focus on rule learning. We leave more complex and

expressive relational layers that compute interactions between dense entity vectors such as

Neural Tensor Networks [67] as future work.

A.5. Image Reconstruction

To test the hypothesis whether image reconstruction can help with di�erentiable rule learning,

we provide an auxiliary loss by reconstructing the full input image from the selected objects.

Starting from a matrix of selected objects 𝑂 ∈ R𝑚×𝑑
, we spatially broadcast them into a 3x3

grid. In the speci�c case of relations game dataset, the selected objects are broadcast into a

tensor of shape mx3x3x36. We then use 2 deconvolution layers, also known as transposed

convolution, with 32 �lters, kernel size 5, relu activation and stride 2 to expand the tensor to

shape mx12x12x32. For the �nal layer, we apply another deconvolution with 4 �lters, kernel

size 5 and a stride of 1 yielding mx12x12x4. The �rst three colour channels are combined with

the last masking channel to obtain the �nal output. The reconstructed image is trained using

mean squared error and example reconstructions can be seen in Fig. 19 and in Fig. 22.

19

Nuri Cingillioglu et al. 1–43

Table 6: All hyperparameters used for training the models.

Key Value Comment

batch updates Rels. Game 300k Number of training batch updates used.
batch updates Graph 100k

batch updates per eval 200 How o�en to evaluate model on test dataset, number of
batch updates divided by this quantity gives the number
of epochs.

learning rate 0.001 Optimiser learning rate, fixed throughout training.
batch size Rels. Game 64 Batch size used for training.

batch size Graph 128
of repeated runs 5 Every deep learning model on both datasets are trained 5

times with the same configuration.
Input noise stddev Rels. Game 0.01 Noise added to input image in the relations game dataset.

rng seed Rels. Game 42 Random number generator seed used in relations game
data augmentation.

rng seeds Graph . We use the 7 winning numbers of EuroMillions 25 Decem-
ber 2020.

A.6. Hyper-parameters

There are three main categories of hyperparameters used in this work: model, dataset and

training. We cover all of them in Table 6 and Table 7. The magnitude of the semantic gate

selector |𝛿| presented in Section 2 is gradually adjusted during training according to a �xed

exponential schedule. For the image classi�er model, we start with 0.01 and increase to 1.0 with

an exponential rate of 1.1 while for the subgraph set isomorphism dataset we start higher 0.1

and use the same rate of 1.1. We start the gate at a higher value for the graph isomorphism

dataset since the input is already symbolic, i.e. ∀𝑖𝑥𝑖 ∈ {−1, 1}. The sign of 𝛿 is pre-determined

by the layer type, conjunctive or disjunctive within a DNF layer, see Sections 2 and 4.

B. Dataset Details

We use two synthetic datasets to create a controlled environment in which we can evaluate

our approach. The �rst dataset is based on the subgraph isomorphism problem and is used

as the basis for an unbiased Inductive Logic Programming (ILP) [51] task. The second dataset

is an image classi�cation task which involves objects of di�erent shapes and colour in some

compound relation such as between two identical objects.

B.1. Subgraph Set Isomorphism

The subgraph set isomorphism task is designed to create an unbiased combinatorial search

space for rule learning. To generate data points, we uniformly sample unique graphs for H
and then sample 𝒢 of which subgraphs are isomorphic. The resulting examples are checked

using the answer set solver clingo [25]. In total we sample 10k graphs and take only the unique

ones to ensure any partitions of the data are disjoint. We then split into training, validation and

test with sizes 2k, 1k and 1k respectively. Since each relation could be positively, negatively or

20

Nuri Cingillioglu et al. 1–43

Table 7: All hyperparameters used for constructing the models.

Key Value Comment

selected objects Same 2 Number of objects selected in the Same task in the relations
game dataset.

variables Same 2 Number of variables used in the final DNF layer used to learn
rules in the relations game dataset.

selected objects Between 3
variables Between 3

selected objects Occurs 4
variables Occurs 2

selected objects XOccurs 4
variables XOccurs 4

selected objects All 4
variables All 4

unary relations 8 Number of unary relations computed for the selected objects
prior to DNF layer, the relations box in Fig. 2.

binary relations 16
relations PrediNet 16 Number of relations computed by the shared weights of each

head.
heads PrediNet . The number of heads is adjusted to match the output size of the

relations computed prior to the DNF layer for fair comparison.
Let 𝑠, 𝑢, 𝑏 be the number of selected objects, unary and binary
relations used in the DNF models, then the number of heads
is ℎ = 𝑠𝑢 + 𝑠(𝑠 − 1)𝑏. We adjust this so that the relation
representation sizes are equal for a fairer comparison.

PrediNet key size 32 The key size used for computing dot-product attention maps.
PrediNet output hidden size 64 Size of the hidden layer of the output MLP used in PrediNet

model.
input CNN hidden size 32 The number of filters used by the input CNN for both DNF and

PrediNet models.
input CNN activation relu

variables hidden DNF 2 Number of variables that can appear in the rules learnt by the
hidden DNF layer of the DNF-h models.

rule definitions hidden DNF 4 Maximum number of rule definitions per predicate in the hidden
layer.

invented predicates hidden DNF 14 The number of predicates learnt by the hidden DNF layer. Specif-
ically, 2 nullary, 4 unary and 8 binary predicates.

rule definitions DNF Rels. Game 8 The target label can be defined at most by 8 di�erent rules.
invented predicates recursive DNF 7 The number of extra predicates learnt by the DNF layer in the

recursive configuration DNF-r. Specifically, 1 nullary, 2 unary
and 4 binary predicates.

iterations recursive DNF 2
rule definitions recursive DNF 2 Maximum number of rule definitions per predicate including the

label in the recursive DNF layer, DNF-r.

be absent in the rule, the upper bound on the search space for possible rules is 3|𝐸(ℋ𝑖)|
. This

ensures there is no bias in the rules or heuristics that can be used to prune the search space. As

a result, any atom can appear in the rule equally likely.

An example set of rules H from the medium dataset size is shown in Table 8. The head of

the rules 𝑡 corresponds to the desired target label for a given set of context facts, i.e. whether

the given graph is subgraph isomorphic to the set of graphs represented by the rules. The

symbolic learners timeout on this size due to the long rules. Rules of this length are uncommon

in many standard ILP datasets [24] used to evaluate a learner. In order for the rules to be safe in

ASP, that is every variable appears in at least one positive atom, we add obj(...) predicate for

every variable that is true for every grounded object. We also add the uniqueness of variables

21

Nuri Cingillioglu et al. 1–43

Table 8: Example target rule generated for the medium dataset size. This is the task that FastLAS does
not terminate a�er 16 hours. Note that obj() predicate as well as the uniqueness of variables are added
for ASP safe representation.

t :- nullary(0), nullary(2), not nullary(3), unary(V0,0), unary(V0,1), not unary(V0,2),
not unary(V0,3), not unary(V1,0), not unary(V1,1), not unary(V1,2), not unary(V1,3),
unary(V2,0), unary(V2,2), binary(V0,V1,0), binary(V0,V1,1), binary(V0,V1,2),
binary(V0,V1,3), not binary(V0,V1,4), not binary(V0,V1,5), not binary(V0,V2,0),
binary(V0,V2,2), not binary(V0,V2,3), not binary(V0,V2,5), binary(V1,V0,1),
not binary(V1,V0,2), not binary(V1,V0,3), not binary(V1,V0,4), not binary(V1,V0,5),
binary(V1,V2,0), binary(V1,V2,3), not binary(V1,V2,4), binary(V2,V0,0),
not binary(V2,V0,2), binary(V2,V0,3), not binary(V2,V0,4), not binary(V2,V1,1),
not binary(V2,V1,3), not binary(V2,V1,4), not binary(V2,V1,5), obj(V2), V2 != V0,
V2 != V1, obj(V0), V0 != V1, obj(V1).

t :- nullary(0), not nullary(1), not nullary(2), unary(V0,0), unary(V0,1), unary(V0,3),
unary(V0,4), not unary(V1,0), not unary(V1,2), not unary(V1,4), not unary(V2,0),
not unary(V2,1), unary(V2,2), not unary(V2,3), not unary(V2,4), not binary(V0,V1,2),
binary(V0,V1,3), binary(V0,V1,4), binary(V0,V1,5), not binary(V0,V2,1), binary(V0,V2,2),
binary(V0,V2,3), not binary(V0,V2,4), binary(V0,V2,5), not binary(V1,V0,2),
binary(V1,V0,3), not binary(V1,V0,4), not binary(V1,V0,5), not binary(V1,V2,4),
not binary(V1,V2,5), not binary(V2,V0,0), not binary(V2,V0,1), not binary(V2,V0,2),
binary(V2,V0,4), not binary(V2,V1,0), not binary(V2,V1,1), not binary(V2,V1,4),
obj(V2), V2 != V0, V2 != V1, obj(V0), V0 != V1, obj(V1).

constraint by encoding 𝑉𝑖 ̸= 𝑉𝑗 if 𝑖 ̸= 𝑗 since in graph isomorphism every node can at most

be mapped to one other node, i.e. a one-to-one mapping is required. This is only done when

evaluating with clingo [25] or using symbolic learners.

B.2. Relations Game

The relations game dataset consists of an input image with a desired binary label. There are

3 sets: pentominoes, hexominoes and stripes, examples of which are shown in Fig. 4. The

original dataset presented in PrediNet [65] comes with 250k examples per set and with a higher

resolution of 36x36x3. At the high resolution, each block of a shape consists of 3x3 pixels and

since this is redundant, we convert each block to a single pixel reducing the image without any

loss of information to 12x12x3. This conversion reduces the computational power required to

run the experiments without changing the tasks.

During training we apply standard data augmentation: (i) random horizontal or vertical �ips,

(ii) random 90 degrees counter-clockwise rotation and (iii) added input noise drawn from a

normal distribution with 0.01 as the standard deviation. This augmentation is applied to every

batch and the randomness is drawn from a random number generator with a �xed seed of 42.

C. Training Details

We train all deep models using the Adam [36] optimiser with a learning rate of 0.001. The

models are trained for a �xed number of batch updates and evaluated every 200 batch updates.

We use the negative log-likelihood as the loss function for the binary predictions. For all the

22

Nuri Cingillioglu et al. 1–43

Table 9: Full results of the best runs of the DNF layer on the subgraph set isomorphism task.

median mad
test acc validation acc test acc validation acc

model DNF DNF+t DNF DNF+t DNF DNF+t DNF DNF+t
di�iculty noise

easy 0.00 1.000 1.000 1.000 1.000 0.000 0.003 0.000 0.002
0.15 0.895 1.000 0.909 1.000 0.025 0.009 0.022 0.010
0.30 0.823 0.838 0.809 0.827 0.036 0.089 0.030 0.085

hard 0.00 1.000 0.991 1.000 1.000 0.000 0.006 0.000 0.000
0.15 0.979 0.992 0.981 0.995 0.008 0.036 0.008 0.034
0.30 0.865 0.743 0.877 0.769 0.019 0.056 0.012 0.044

medium 0.00 1.000 0.993 1.000 1.000 0.000 0.003 0.000 0.000
0.15 0.977 0.997 0.983 1.000 0.006 0.004 0.005 0.002
0.30 0.892 0.990 0.902 0.997 0.014 0.075 0.017 0.074

hyperparameters used in training, please refer to Table 6. The models are trained on a shared

pool of computers all having Intel Core i7 CPUs. Note that the run times of the deep models

may vary depending on the shared workload on the worker machine. Once the training is

complete for the DNF models, we prune and threshold the weights to obtain DNF+t variants, as

described in Section 2.

The training curves for every deep model trained on every dataset and hyperparameter

con�guration, can be found in Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12. For

relations game training curves, the slight dip in accuracy around epoch 70 when trained with

only 100 examples corresponds to the point at which the semantic gate |𝛿| becomes close to 1.

This indicates that if the model is over�tting, it almost has to relearn the task with the desired

semantics since this phenomenon is less pronounced with more training examples and almost

absent in the graph dataset. We also observe mode collapses in the recursive con�guration

of the DNF model (DNF-r) in which the accuracy suddenly drops when the semantic gate |𝛿|
becomes closer to 1 around epoch 70. We believe this is due to the recursion in the model

making a recovery to the desired disjunctive normal form semantics more di�cult. The DNF-r

either performs well with some runs surviving the saturation |𝛿| = 1.0 and some collapsing.

D. Further Results

This section includes further tables and �gures to complement and extend the main content

presented in the paper. The description for each �gure is provided in the caption.

23

Nuri Cingillioglu et al. 1–43

Table 10: Median of test accuracy for all DNF configurations across all relations game setups with
mean absolute deviation. Here we observe that the hidden layer version DNF-h has a slight advantage.

Model Hexominoes Pentominoes Stripes

DNF 0.953±0.186 0.932±0.183 0.926±0.182
DNF-h 0.964±0.176 0.943±0.172 0.949±0.177
DNF-r 0.868±0.214 0.863±0.212 0.819±0.212

Table 11: Median of test accuracy for all models across all relations game setups from Table 4.

task all between occurs same xoccurs
train_size 100 1000 5000 100 1000 5000 100 1000 5000 100 1000 5000 100 1000 5000
model

Hex. DNF 0.94 0.97 0.98 0.90 0.99 0.99 0.56 0.99 0.99 0.94 1.00 1.00 0.49 0.80 0.93
DNF+t 0.60 0.63 0.51 0.50 0.71 0.96 0.50 0.94 0.97 0.92 0.98 0.99 0.48 0.51 0.61
DNF-h 0.98 0.99 0.99 0.95 1.00 0.99 0.62 0.99 0.99 0.97 1.00 1.00 0.50 0.98 0.96
DNF-h+t 0.51 0.55 0.92 0.91 0.97 0.98 0.50 0.79 0.96 0.53 1.00 0.98 0.48 0.51 0.51
DNF-hi 0.98 0.99 1.00 0.97 0.99 1.00 0.69 0.99 0.99 0.97 1.00 1.00 0.51 0.99 0.99
DNF-hi+t 0.86 0.90 0.77 0.95 0.97 0.95 0.50 0.95 0.65 0.53 0.99 1.00 0.48 0.51 0.76
DNF-i 0.93 0.99 0.98 0.93 1.00 1.00 0.58 0.99 0.99 0.94 1.00 1.00 0.49 0.99 0.98
DNF-i+t 0.51 0.51 0.51 0.50 0.99 0.99 0.50 0.97 0.97 0.53 0.97 0.99 0.48 0.94 0.51
DNF-r 0.94 0.98 0.98 0.84 1.00 0.99 0.63 0.99 0.99 0.96 1.00 1.00 0.51 0.94 0.51
DNF-r+t 0.51 0.51 0.51 0.50 0.65 0.50 0.50 0.51 0.90 0.53 0.95 0.99 0.48 0.51 0.51
DNF-ri 0.96 0.98 0.99 0.88 0.99 1.00 0.60 0.99 0.99 0.98 1.00 1.00 0.52 0.98 0.96
DNF-ri+t 0.51 0.51 0.51 0.50 0.90 0.75 0.50 0.71 0.52 0.53 0.97 0.99 0.48 0.51 0.51
PrediNet 0.85 0.95 0.96 0.66 0.99 0.99 0.57 0.95 0.97 0.99 1.00 1.00 0.50 0.58 0.95

Pent. DNF 0.89 0.96 0.95 0.85 0.99 0.99 0.57 0.96 0.98 0.95 1.00 1.00 0.50 0.74 0.86
DNF+t 0.59 0.62 0.50 0.51 0.67 0.92 0.49 0.93 0.96 0.91 0.98 0.99 0.50 0.51 0.68
DNF-h 0.95 0.97 0.98 0.92 0.99 0.99 0.62 0.95 0.97 0.94 1.00 1.00 0.51 0.94 0.90
DNF-h+t 0.50 0.53 0.88 0.90 0.98 0.97 0.49 0.81 0.93 0.50 0.99 0.97 0.50 0.51 0.49
DNF-hi 0.96 0.99 0.99 0.95 0.99 1.00 0.69 0.98 0.98 0.96 1.00 1.00 0.50 0.96 0.99
DNF-hi+t 0.86 0.85 0.78 0.95 0.96 0.94 0.49 0.94 0.63 0.50 0.99 0.99 0.50 0.51 0.72
DNF-i 0.89 0.99 0.98 0.88 0.99 0.99 0.59 0.98 0.99 0.93 1.00 1.00 0.51 0.97 0.96
DNF-i+t 0.50 0.50 0.50 0.51 0.99 0.99 0.49 0.97 0.95 0.50 0.98 0.99 0.50 0.93 0.49
DNF-r 0.93 0.96 0.97 0.81 0.99 0.99 0.65 0.96 0.96 0.95 1.00 1.00 0.52 0.88 0.49
DNF-r+t 0.50 0.50 0.50 0.51 0.62 0.52 0.49 0.51 0.88 0.50 0.96 0.98 0.50 0.51 0.49
DNF-ri 0.95 0.96 0.99 0.86 0.99 1.00 0.63 0.98 0.99 0.97 1.00 1.00 0.52 0.97 0.96
DNF-ri+t 0.50 0.50 0.50 0.51 0.89 0.74 0.49 0.80 0.50 0.50 0.98 0.99 0.50 0.51 0.49
PrediNet 0.85 0.96 0.95 0.65 0.99 0.98 0.60 0.95 0.97 0.99 1.00 1.00 0.50 0.58 0.95

Stripes DNF 0.91 0.97 0.95 0.81 0.98 0.99 0.57 0.97 0.99 0.93 0.99 1.00 0.49 0.88 0.94
DNF+t 0.60 0.62 0.50 0.51 0.78 0.95 0.49 0.88 0.95 0.93 0.98 0.97 0.48 0.50 0.57
DNF-h 0.93 0.98 0.99 0.89 0.99 0.99 0.57 0.97 0.99 0.96 1.00 1.00 0.51 0.98 0.97
DNF-h+t 0.52 0.53 0.93 0.92 0.97 0.95 0.49 0.84 0.86 0.49 0.99 0.97 0.48 0.50 0.51
DNF-hi 0.95 0.99 0.99 0.94 0.99 0.99 0.63 0.96 0.99 0.97 1.00 1.00 0.49 0.96 0.97
DNF-hi+t 0.89 0.87 0.73 0.70 0.96 0.90 0.49 0.81 0.66 0.49 0.99 0.99 0.48 0.50 0.79
DNF-i 0.89 0.96 0.97 0.87 0.99 0.99 0.55 0.98 0.99 0.96 1.00 1.00 0.50 0.98 0.96
DNF-i+t 0.52 0.50 0.50 0.51 0.96 0.97 0.49 0.87 0.93 0.49 0.97 0.97 0.48 0.89 0.51
DNF-r 0.92 0.97 0.98 0.81 0.99 0.99 0.64 0.95 0.98 0.98 1.00 1.00 0.52 0.92 0.51
DNF-r+t 0.52 0.50 0.50 0.51 0.58 0.52 0.49 0.50 0.83 0.49 0.94 0.99 0.48 0.50 0.51
DNF-ri 0.94 0.97 0.99 0.84 0.99 0.99 0.58 0.95 0.99 0.98 1.00 1.00 0.52 0.98 0.95
DNF-ri+t 0.52 0.50 0.50 0.51 0.87 0.75 0.49 0.50 0.51 0.49 0.97 0.98 0.48 0.50 0.51
PrediNet 0.84 0.93 0.92 0.64 0.99 0.99 0.54 0.94 0.92 0.99 0.99 1.00 0.51 0.61 0.93

24

Nuri Cingillioglu et al. 1–43

Same Between Occurs XOccurs

Same Between Occurs XOccurs

(a) Example pentominoes where each shape consists of 5 pixels organised in a 3x3 grid.

Same Between Occurs XOccurs

Same Between Occurs XOccurs

(b) Example hexominoes where each shape consists of 6 pixels with unseen colours to pentominoes.

Same Between Occurs XOccurs

Same Between Occurs XOccurs

(c) Example striped shapes where each object has 9 pixels with a striped colour pattern.

Figure 4: Further samples from the relations game dataset. The top and bottom rows are for true and
false cases respectively.

25

Nuri Cingillioglu et al. 1–43

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

noise = 0.0 | difficulty = medium noise = 0.0 | difficulty = easy noise = 0.0 | difficulty = hard

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

noise = 0.15 | difficulty = medium noise = 0.15 | difficulty = easy noise = 0.15 | difficulty = hard

0 10 20 30 40 50
epoch

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

noise = 0.3 | difficulty = medium

0 10 20 30 40 50
epoch

noise = 0.3 | difficulty = easy

0 10 20 30 40 50
epoch

noise = 0.3 | difficulty = hard

variable
train_acc
validation_acc
test_acc

Figure 5: Training curves for DNF layer on the subgraph set isomorphism task. The model is training
for 100k batch updates logging every 200 steps. This gives a total of 50 epochs shown on the x axis.

26

Nuri Cingillioglu et al. 1–43

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = all | train_size = 100 task = all | train_size = 1000 task = all | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = xoccurs | train_size = 100 task = xoccurs | train_size = 1000 task = xoccurs | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = occurs | train_size = 100 task = occurs | train_size = 1000 task = occurs | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = same | train_size = 100 task = same | train_size = 1000 task = same | train_size = 5000

0 20 40 60 80 100 120 140
epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = between | train_size = 100

0 20 40 60 80 100 120 140
epoch

task = between | train_size = 1000

0 20 40 60 80 100 120 140
epoch

task = between | train_size = 5000

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 6: Training curves for the DNF model relations game task.

27

Nuri Cingillioglu et al. 1–43

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = all | train_size = 100 task = all | train_size = 1000 task = all | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = between | train_size = 100 task = between | train_size = 1000 task = between | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = occurs | train_size = 100 task = occurs | train_size = 1000 task = occurs | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = same | train_size = 100 task = same | train_size = 1000 task = same | train_size = 5000

0 20 40 60 80 100 120 140
epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = xoccurs | train_size = 100

0 20 40 60 80 100 120 140
epoch

task = xoccurs | train_size = 1000

0 20 40 60 80 100 120 140
epoch

task = xoccurs | train_size = 5000

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 7: Training curves for the DNF model with a hidden layer (DNF-h) on the relations game tasks.

28

Nuri Cingillioglu et al. 1–43

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = between | train_size = 100 task = between | train_size = 1000 task = between | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = xoccurs | train_size = 100 task = xoccurs | train_size = 1000 task = xoccurs | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = same | train_size = 100 task = same | train_size = 1000 task = same | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = all | train_size = 100 task = all | train_size = 1000 task = all | train_size = 5000

0 20 40 60 80 100 120 140
epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = occurs | train_size = 100

0 20 40 60 80 100 120 140
epoch

task = occurs | train_size = 1000

0 20 40 60 80 100 120 140
epoch

task = occurs | train_size = 5000

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 8: Training curves for the recursive DNF model (DNF-r) on the relations game tasks.

29

Nuri Cingillioglu et al. 1–43

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = xoccurs | train_size = 100 task = xoccurs | train_size = 1000 task = xoccurs | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = between | train_size = 100 task = between | train_size = 1000 task = between | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = all | train_size = 100 task = all | train_size = 1000 task = all | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = occurs | train_size = 100 task = occurs | train_size = 1000 task = occurs | train_size = 5000

0 20 40 60 80 100 120 140
epoch

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = same | train_size = 100

0 20 40 60 80 100 120 140
epoch

task = same | train_size = 1000

0 20 40 60 80 100 120 140
epoch

task = same | train_size = 5000

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 9: Training curves for the DNF model with image reconstruction loss (DNF-i).

30

Nuri Cingillioglu et al. 1–43

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = between | train_size = 100 task = between | train_size = 1000 task = between | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = same | train_size = 100 task = same | train_size = 1000 task = same | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = all | train_size = 100 task = all | train_size = 1000 task = all | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = xoccurs | train_size = 100 task = xoccurs | train_size = 1000 task = xoccurs | train_size = 5000

0 20 40 60 80 100 120 140
epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = occurs | train_size = 100

0 20 40 60 80 100 120 140
epoch

task = occurs | train_size = 1000

0 20 40 60 80 100 120 140
epoch

task = occurs | train_size = 5000

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 10: Training curves for the DNF model with a hidden layer (DNF-hi) with image reconstruction
loss.

31

Nuri Cingillioglu et al. 1–43

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = between | train_size = 100 task = between | train_size = 1000 task = between | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = same | train_size = 100 task = same | train_size = 1000 task = same | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = xoccurs | train_size = 100 task = xoccurs | train_size = 1000 task = xoccurs | train_size = 5000

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = occurs | train_size = 100 task = occurs | train_size = 1000 task = occurs | train_size = 5000

0 20 40 60 80 100 120 140
epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

va
lu

e

task = all | train_size = 100

0 20 40 60 80 100 120 140
epoch

task = all | train_size = 1000

0 20 40 60 80 100 120 140
epoch

task = all | train_size = 5000

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 11: Training curves for the recursive DNF model with reconstruction loss (DNF-ri).

32

Nuri Cingillioglu et al. 1–43

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = xoccurs | train_size = 100 task = xoccurs | train_size = 1000 task = xoccurs | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = between | train_size = 100 task = between | train_size = 1000 task = between | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = same | train_size = 100 task = same | train_size = 1000 task = same | train_size = 5000

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = all | train_size = 100 task = all | train_size = 1000 task = all | train_size = 5000

0 20 40 60 80 100 120 140
epoch

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

task = occurs | train_size = 100

0 20 40 60 80 100 120 140
epoch

task = occurs | train_size = 1000

0 20 40 60 80 100 120 140
epoch

task = occurs | train_size = 5000

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 12: Training curves for PrediNet on relations game tasks.

33

Nuri Cingillioglu et al. 1–43

0.5

0.6

0.7

0.8

0.9

1.0

te
st

_a
cc

noise = 0.0 | difficulty = hard noise = 0.0 | difficulty = medium noise = 0.0 | difficulty = easy

0.5

0.6

0.7

0.8

0.9

1.0

te
st

_a
cc

noise = 0.15 | difficulty = hard noise = 0.15 | difficulty = medium noise = 0.15 | difficulty = easy

DNF DNF+t
model

0.5

0.6

0.7

0.8

0.9

1.0

te
st

_a
cc

noise = 0.3 | difficulty = hard

DNF DNF+t
model

noise = 0.3 | difficulty = medium

DNF DNF+t
model

noise = 0.3 | difficulty = easy

Figure 13: All the results for DNF layer on the subgraph set isomorphism task. There 315 unique runs:
5 runs for each 7 seeds for every di�iculty (3) with 3 levels of noise. For each run, the thresholded results
are shown as DNF+t.

34

Nuri Cingillioglu et al. 1–43

0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

_a
cc

noise = 0.0 | difficulty = easy noise = 0.0 | difficulty = hard noise = 0.0 | difficulty = medium

0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

_a
cc

noise = 0.15 | difficulty = easy noise = 0.15 | difficulty = hard noise = 0.15 | difficulty = medium

DNF DNF+t
model

0.70

0.75

0.80

0.85

0.90

0.95

1.00

te
st

_a
cc

noise = 0.3 | difficulty = easy

DNF DNF+t
model

noise = 0.3 | difficulty = hard

DNF DNF+t
model

noise = 0.3 | difficulty = medium

Figure 14: Best results filtered out of 5 runs from Fig. 13. There is one point for every random seed
used, 7 in total. These are all the data points used in Table 9.

35

Nuri Cingillioglu et al. 1–43

fastlas ilasp DNF DNF+t
model

0.5

0.6

0.7

0.8

0.9

1.0

te
st

_a
cc

difficulty = easy

fastlas ilasp DNF DNF+t
model

difficulty = hard

fastlas ilasp DNF DNF+t
model

difficulty = medium

Figure 15: All the data points used in the aggregation of Table 2. There is one point for each random
seed used (7).

t :- unary(X,0), not binary(Y,X,0), binary(Y,X,1).
t :- not nullary(0), not unary(X,0), not unary(X,1), not binary(X,Y,0),

not binary(X,Y,1), binary(Y,X,0), binary(Y,X,1).
t :- nullary(0), not nullary(1), not unary(X,0), not unary(X,1), not unary(Y,0),

unary(Y,1), binary(X,Y,0), not binary(Y,X,0), not binary(Y,X,1).

Figure 16: Sample rules learnt on the easy set for subgraph set isomorphism dataset. These are thresh-
olded results, i.e. DNF+t model. Random seed used is 3. These rules can be passed onto clingo to solve
the unseen examples.

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

train_size = 100 | task = xoccurs train_size = 100 | task = same train_size = 100 | task = between train_size = 100 | task = all train_size = 100 | task = occurs

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

train_size = 1000 | task = xoccurs train_size = 1000 | task = same train_size = 1000 | task = between train_size = 1000 | task = all train_size = 1000 | task = occurs

DNF-h
DNF-hi

DNF
DNF-i

DNF-ri
DNF-r

PrediNet
DNF-h+t

DNF-r+t
DNF+t

DNF-hi+t
DNF-ri+

t
DNF-i+t

model

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

train_size = 5000 | task = xoccurs

DNF-h
DNF-hi

DNF
DNF-i

DNF-ri
DNF-r

PrediNet
DNF-h+t

DNF-r+t
DNF+t

DNF-hi+t
DNF-ri+

t
DNF-i+t

model

train_size = 5000 | task = same

DNF-h
DNF-hi

DNF
DNF-i

DNF-ri
DNF-r

PrediNet
DNF-h+t

DNF-r+t
DNF+t

DNF-hi+t
DNF-ri+

t
DNF-i+t

model

train_size = 5000 | task = between

DNF-h
DNF-hi

DNF
DNF-i

DNF-ri
DNF-r

PrediNet
DNF-h+t

DNF-r+t
DNF+t

DNF-hi+t
DNF-ri+

t
DNF-i+t

model

train_size = 5000 | task = all

DNF-h
DNF-hi

DNF
DNF-i

DNF-ri
DNF-r

PrediNet
DNF-h+t

DNF-r+t
DNF+t

DNF-hi+t
DNF-ri+

t
DNF-i+t

model

train_size = 5000 | task = occurs

variable
train_acc
test_hexos_acc
test_pentos_acc
validation_acc
test_stripes_acc

Figure 17: All of the runs on the relations game dataset results, there are 75 PrediNet, 225 DNF and
225 DNF with image reconstruction configurations trained in total. For each DNF configuration there
is also the thresholded results noted with su�ix +t in the model name.

36

Nuri Cingillioglu et al. 1–43

Table 12: Median absolute deviation of test accuracy for all models across all relations game setups,
complements Table 11.

task all between occurs same xoccurs
train_size 100 1000 5000 100 1000 5000 100 1000 5000 100 1000 5000 100 1000 5000
model

Hex. DNF 0.05 0.01 0.09 0.03 0.00 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.02 0.08 0.05
DNF+t 0.17 0.17 0.08 0.00 0.18 0.06 0.00 0.01 0.00 0.03 0.01 0.01 0.00 0.12 0.16
DNF-h 0.05 0.01 0.00 0.01 0.00 0.00 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.05
DNF-h+t 0.14 0.11 0.06 0.21 0.01 0.05 0.00 0.20 0.14 0.18 0.03 0.15 0.00 0.21 0.13
DNF-hi 0.01 0.00 0.00 0.03 0.00 0.00 0.08 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.00
DNF-hi+t 0.07 0.04 0.18 0.19 0.01 0.15 0.00 0.21 0.18 0.18 0.01 0.02 0.00 0.12 0.16
DNF-i 0.03 0.01 0.01 0.06 0.00 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.01
DNF-i+t 0.08 0.17 0.17 0.00 0.01 0.02 0.00 0.01 0.01 0.13 0.14 0.01 0.00 0.05 0.14
DNF-r 0.08 0.03 0.01 0.07 0.01 0.00 0.09 0.02 0.01 0.03 0.00 0.00 0.01 0.08 0.04
DNF-r+t 0.00 0.13 0.00 0.00 0.17 0.00 0.00 0.16 0.21 0.18 0.14 0.16 0.00 0.04 0.00
DNF-ri 0.10 0.00 0.01 0.09 0.00 0.00 0.08 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.06
DNF-ri+t 0.00 0.00 0.23 0.00 0.16 0.17 0.00 0.17 0.00 0.19 0.01 0.03 0.00 0.16 0.00
PrediNet 0.04 0.00 0.00 0.09 0.00 0.01 0.01 0.01 0.01 0.04 0.00 0.00 0.01 0.02 0.03

Pent. DNF 0.05 0.02 0.07 0.02 0.00 0.00 0.05 0.02 0.01 0.02 0.00 0.00 0.02 0.08 0.06
DNF+t 0.15 0.16 0.10 0.00 0.19 0.07 0.00 0.03 0.02 0.03 0.01 0.01 0.00 0.11 0.14
DNF-h 0.05 0.02 0.00 0.01 0.00 0.00 0.03 0.02 0.02 0.01 0.00 0.00 0.01 0.02 0.06
DNF-h+t 0.13 0.10 0.05 0.20 0.01 0.04 0.00 0.18 0.14 0.19 0.03 0.15 0.00 0.19 0.11
DNF-hi 0.01 0.00 0.00 0.04 0.00 0.00 0.07 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.00
DNF-hi+t 0.04 0.05 0.19 0.18 0.01 0.13 0.00 0.22 0.18 0.18 0.00 0.04 0.00 0.11 0.17
DNF-i 0.04 0.01 0.01 0.06 0.00 0.00 0.04 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.02
DNF-i+t 0.08 0.18 0.16 0.00 0.01 0.03 0.00 0.01 0.02 0.15 0.15 0.01 0.00 0.04 0.13
DNF-r 0.09 0.04 0.02 0.07 0.03 0.01 0.07 0.02 0.01 0.02 0.00 0.00 0.01 0.08 0.04
DNF-r+t 0.00 0.13 0.00 0.00 0.18 0.00 0.00 0.18 0.20 0.19 0.15 0.16 0.00 0.04 0.00
DNF-ri 0.09 0.01 0.01 0.09 0.00 0.00 0.08 0.00 0.01 0.02 0.00 0.00 0.02 0.02 0.06
DNF-ri+t 0.00 0.00 0.22 0.00 0.17 0.16 0.00 0.19 0.00 0.21 0.01 0.03 0.00 0.16 0.00
PrediNet 0.04 0.00 0.00 0.08 0.00 0.01 0.01 0.01 0.00 0.04 0.00 0.00 0.01 0.01 0.04

Stripes DNF 0.06 0.01 0.11 0.08 0.01 0.01 0.04 0.01 0.00 0.01 0.00 0.00 0.01 0.09 0.03
DNF+t 0.19 0.17 0.08 0.00 0.18 0.06 0.00 0.04 0.02 0.03 0.01 0.01 0.00 0.10 0.18
DNF-h 0.06 0.01 0.00 0.03 0.01 0.00 0.03 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.02
DNF-h+t 0.14 0.12 0.06 0.20 0.00 0.04 0.00 0.20 0.16 0.17 0.07 0.15 0.00 0.20 0.14
DNF-hi 0.02 0.02 0.01 0.08 0.00 0.00 0.06 0.02 0.00 0.02 0.00 0.00 0.03 0.01 0.01
DNF-hi+t 0.10 0.03 0.17 0.16 0.02 0.12 0.00 0.19 0.19 0.20 0.02 0.01 0.00 0.11 0.15
DNF-i 0.08 0.02 0.01 0.06 0.00 0.00 0.07 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.02
DNF-i+t 0.06 0.17 0.16 0.01 0.03 0.07 0.00 0.05 0.04 0.15 0.15 0.01 0.00 0.04 0.15
DNF-r 0.11 0.03 0.01 0.09 0.01 0.01 0.08 0.05 0.00 0.02 0.00 0.00 0.02 0.06 0.04
DNF-r+t 0.00 0.14 0.00 0.00 0.17 0.00 0.00 0.10 0.19 0.21 0.15 0.15 0.00 0.06 0.00
DNF-ri 0.11 0.01 0.02 0.08 0.01 0.01 0.08 0.04 0.04 0.02 0.00 0.00 0.01 0.01 0.05
DNF-ri+t 0.00 0.00 0.23 0.00 0.19 0.15 0.00 0.13 0.00 0.19 0.01 0.04 0.00 0.16 0.00
PrediNet 0.04 0.03 0.02 0.08 0.00 0.00 0.03 0.03 0.02 0.02 0.00 0.00 0.02 0.02 0.03

Table 13: Aggregate median test accuracy for all DNF models with and without image reconstruction
loss along with median absolute deviation. Only for XOccurs task do we see an improvement.

Hexos Pentos Stripes
Image Reconsturction False True False True False True

all 100 0.94±0.06 0.96±0.05 0.93±0.06 0.94±0.06 0.92±0.07 0.94±0.08
1000 0.98±0.02 0.99±0.01 0.96±0.03 0.98±0.01 0.98±0.02 0.97±0.01
5000 0.99±0.04 0.99±0.01 0.97±0.04 0.98±0.01 0.98±0.04 0.98±0.01

between 100 0.91±0.05 0.93±0.07 0.87±0.05 0.89±0.07 0.86±0.08 0.84±0.07
1000 0.99±0.01 1.00±0.00 0.99±0.01 0.99±0.00 0.99±0.01 0.99±0.01
5000 0.99±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.01 0.99±0.01

occurs 100 0.62±0.06 0.63±0.09 0.61±0.06 0.63±0.08 0.57±0.06 0.59±0.08
1000 0.99±0.01 0.99±0.00 0.96±0.02 0.98±0.01 0.97±0.03 0.97±0.02
5000 0.99±0.01 0.99±0.00 0.97±0.02 0.98±0.01 0.99±0.01 0.99±0.02

same 100 0.96±0.02 0.96±0.02 0.94±0.02 0.94±0.02 0.96±0.03 0.96±0.02
1000 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
5000 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

xoccurs 100 0.50±0.01 0.51±0.02 0.51±0.01 0.51±0.02 0.50±0.01 0.50±0.02
1000 0.96±0.10 0.98±0.00 0.88±0.10 0.97±0.01 0.94±0.07 0.98±0.01
5000 0.89±0.17 0.98±0.03 0.82±0.16 0.97±0.03 0.94±0.18 0.96±0.03

37

Nuri Cingillioglu et al. 1–43

Input

0 1 2

0

1

2

Object Scores

0 1 2

0

1

2

Object 1

0 1 2

0

1

2

Object 2

0 1 2

0

1

2

Object 3

0 1 2

0

1

2

Object 4

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

Figure 18: Attention maps with the DNF model trained on all the tasks with 1k training size per task.
When there are extra slots, the model is forced to select an empty black patch as an object.

Table 14: Example pruning steps of the disjunctive SL weights for DNF model with image reconstruc-
tion trained on 1k examples on the relations game dataset. This is the last set of weights that predict
the output. We report the test pentominoes accuracy a�er each step. Thresholding the weights o�en
causes the biggest drop as a small weight can be amplified increasing any errors. The single weight 6.0
in the last row correspond to the rule shown in Section 5 for the between task. The accuracy might
vary due to stochastic object selection despite having fixed weights, e.g. in the last two rows.

Stage Weights Test Pent. Acc

Preprune [1.56 -1.72 7.45 -2.22 -2.27 2.76 -1.46 1.75] 0.996
Pruned [1.56 -1.72 7.45 -0.00 0.00 0.00 -1.46 1.75] 0.991

Threshold [0.00 -0.00 6.00 0.00 0.00 0.00 -0.00 0.00] 0.942
Threshold + Pruned [0.00 -0.00 6.00 0.00 0.00 0.00 -0.00 0.00] 0.938

38

Nuri Cingillioglu et al. 1–43

Input Object 1 Object 2 Object 3

Reconstruction Mask 1 Mask 2 Mask 3

Input

Reconstruction

Figure 19: Example image reconstructions of the analysed DNF model with image reconstruction. The
model seems to paint a colour and then use the mask like a cookie-cutter to extract out the shape.

39

Nuri Cingillioglu et al. 1–43

Input

0 1 2

0

1

2

Object Scores

0 1 2

0

1

2

Object 1

0 1 2

0

1

2

Object 2

0 1 2

0

1

2

Object 3

0 1 2

0

1

2

Object 4

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

0 1 2

0

1

2

Figure 20: Further attention maps learnt by DNF-hi on all tasks with 1k training size per task.

binary(X,Y,23) - 1.0 1.0 1.0 -1.0 -1.0 -1.0

Figure 21: Example truth values for binary(X,Y,23) predicate from the logic program in Table 15. Re-
moving ‘not binary(V3,V2,23)’ from the logic program results in the most accuracy loss, 0.39 .

40

Nuri Cingillioglu et al. 1–43

Table 15: Learnt logic program of a successful run with DNF-hi on all tasks with a training size of 1k.
The following logic program can be passed to clingo, along with a thresholded interpretation from the
neural network to predict the answer. Note, that nullary(0), ..., nullary(3) corresponds to the task ids
for Same, Between, Occurs and XOccurs respectively. Since this is a multi-task setting, we observe that
the model is utilising the nullary predicates in the logic program. The obj predicate is added during
post-processing to ensure all rules are safe.

unary(V0,10) :- not c3unary(V0,10), obj(V0).
c3unary(V0,10) :- not nullary(3), unary(V0,3), binary(V0,V1,6), not binary(V1,V0,1),

binary(V1,V0,3), binary(V1,V0,10), binary(V1,V0,14),
obj(V1), V1 != V0, obj(V0).

unary(V0,11) :- not c1unary(V0,11), obj(V0).
c1unary(V0,11) :- not nullary(3), not binary(V0,V1,1), not binary(V0,V1,9),

not binary(V0,V1,11), binary(V1,V0,10), not binary(V1,V0,11),
binary(V1,V0,13), binary(V1,V0,14), obj(V1), V1 != V0, obj(V0).

binary(V0,V1,23) :- not binary(V1,V0,13), obj(V1), V1 != V0, obj(V0).
binary(V0,V1,23) :- not c3binary(V0,V1,23), obj(V0), obj(V1), V0 != V1.

c3binary(V0,V1,23) :- not nullary(0), not binary(V0,V1,1), binary(V0,V1,3), binary(V0,V1,15),
not binary(V1,V0,1), binary(V1,V0,10), not binary(V1,V0,11),
binary(V1,V0,13), binary(V1,V0,14), obj(V1), V1 != V0, obj(V0).

t :- not c4t.
c4t :- unary(V2,10), unary(V2,11), obj(V2).

t :- binary(V0,V1,23), not binary(V3,V2,23), obj(V2), V2 != V1, V2 != V3,
V2 != V0, obj(V1), V1 != V3, V1 != V0, obj(V3), V3 != V0, obj(V0).

41

Nuri Cingillioglu et al. 1–43

Input Object 1 Object 2 Object 3 Object 4

Reconstruction Mask 1 Mask 2 Mask 3 Mask 4

Input

Reconstruction

Input

Reconstruction

Figure 22: Further image reconstruction examples obtained from DNF-hi trained on all tasks with 1k
examples per task.

42

	1 Introduction
	2 Semi-symbolic Layer
	3 Datasets
	4 Experiments
	5 Analysis
	6 Related Work
	7 Conclusion
	A Model Details
	A.1 Semi-symbolic Layer
	A.2 Input Image CNN
	A.3 Object Selection
	A.4 Object Relations
	A.5 Image Reconstruction
	A.6 Hyper-parameters

	B Dataset Details
	B.1 Subgraph Set Isomorphism
	B.2 Relations Game

	C Training Details
	D Further Results

