
Rule-based Shield Synthesis for Partially Observable
Monte Carlo Planning
Giulio Mazzi1, Alberto Castellini1 and Alessandro Farinelli1

1Università degli Studi di Verona, Italy

Abstract
Partially Observable Monte-Carlo Planning (POMCP) is a powerful online algorithm able to generate
approximate policies for large Partially Observable Markov Decision Processes. The online nature of
this method supports scalability by avoiding complete policy representation. The lack of an explicit rep-
resentation however hinders policy interpretability and makes policy verification very complex. In this
work, we propose two contributions. The first is a method for identifying unexpected actions selected
by POMCP with respect to expert prior knowledge of the task. The second is a shielding approach that
prevents POMCP from selecting unexpected actions. The first method is based on Maximum Satisfiabil-
ity Modulo Theory (MAX-SMT). It inspects traces (i.e., sequences of belief-action-observation triplets)
generated by POMCP to compute the parameters of logical formulas about policy properties defined
by the expert. The second contribution is a module that uses online the logical formulas to identify
anomalous actions selected by POMCP and substitutes those actions with actions that satisfy the logi-
cal formulas fulfilling expert knowledge. We evaluate our approach in two domains. Results show that
the shielded POMCP outperforms the standard POMCP in a case study in which a wrong parameter of
POMCP makes it select wrong actions from time to time.

Keywords
POMCP, SMT, Shielding

1. Introduction

Planning in partially observable environments while satisfying safety guarantees is a challenging
problem. Partially Observable Markov Decision Processes (POMDPs) [1] is a popular framework
to model systems with uncertainty. Computing an optimal solution for POMDPs is hard [2].
However, it is possible to compute an approximate solution, and state-of-the-art algorithms
achieve great performance in real-world instances of POMDPs. A pioneering algorithm for this
purpose is Partially Observable Monte-Carlo Planning (POMCP) [3] which uses a particle filter
to represent the belief and a Monte-Carlo Tree Search based strategy to compute the policy
online. The online nature of the policy, however, makes the task of analyzing the decisions
taken by POMCP very difficult [4, 5, 6]. In general, with a high number of particles POMCP
yields great performance, but sometimes the simulation does not properly assess the risk of
certain actions, especially if the number of particles used in the simulation is limited due to
engineering constraints. Moreover, in POMCP the policy is never fully computed or stored,

OVERLAY 2021: 3rd Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
September 22, 2021, Padova, Italy
" giulio.mazzi@univr.it (G. Mazzi); alberto.castellini@univr.it (A. Castellini); alessandro.farinelli@univr.it
(A. Farinelli)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:giulio.mazzi@univr.it
mailto:alberto.castellini@univr.it
mailto:alessandro.farinelli@univr.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: Methodology overview.

𝑟𝐿 : 𝐿𝑖𝑠𝑡𝑒𝑛 when (𝑝𝑟𝑖𝑔ℎ𝑡 ≤ x1 ∧ 𝑝𝑙𝑒𝑓𝑡 ≤ x2);
𝑟𝑂𝑅 : 𝑂𝑝𝑒𝑛𝑅 when 𝑝𝑟𝑖𝑔ℎ𝑡 ≥ x3;
𝑟𝑂𝐿 : 𝑂𝑝𝑒𝑛𝐿 when 𝑝𝑙𝑒𝑓𝑡 ≥ x4;
where (x1 = x2) ∧ (x3 = x4) ∧ (x3 > 0.9);

Figure 2: Tiger rule template

hence it is very difficult to identify the reasons for possible unexpected decisions of the system.
However, Explainability [7, 8, 9] is becoming a key feature of artificial intelligence systems since
in these contexts humans need to understand why specific decisions are taken by the agent.

In this work, we present a methodology for generating a safety mechanism from high-level
descriptions of the desired behavior of a POMCP-generated policy. In this approach, a human
expert provides qualitative information on a property of the system, enriched with an indication
of the expected behavior that the system should have in specific situations (e.g., “the robot
should move fast if it is highly confident that the path is not cluttered”). With this information,
our methodology analyzes a set of execution traces of the system and provides quantitative
details of these statements by analyzing the execution of the system (e.g., “the robot moves fast
if its confidence of being in an uncluttered segment is at least 93.4%). The proposed approach
formalizes the problem of parameters computation as a MAX-SMT problem which allows to
express complex logical formulas and to compute optimal assignments when the template is not
fully satisfiable (which happens in the majority of cases in real policy analysis). This quantitative
answer is then used to synthesize a shield, namely a safety mechanism that forces the POMCP
to satisfy the constraints expressed by the expert. The shield works alongside the Monte Carlo
Tree Search (MCTS) by preemptively blocking actions that violate the rules.

In summary, we propose an SMT-based methodology that combines a logic-based description
of a system with the real execution traces of a POMCP policy to create a set of rules describing
the behaviors of an agent. This description can be used to synthesize a shield. we empirically
evaluate the shielding mechanism in two domains, namely, the well-known Tiger problem and
a robotic navigation problem, showing that it can exploit the knowledge provided by the expert
to achieve higher performance than standard POMCP when its parameters are imprecise.

2. Methodology Overview

The proposed methodology is summarized in Figure 1. It leverages the expressiveness of
logical formulas to represent specific properties of the system under investigation, and this
representation is used to automatically generate a shield, a security mechanism that forces the
POMCP system to satisfy a set of high-level requirements. As a first step, a logical formula
with free variables is defined (see box 2 in Figure 1) to describe a property of interest of the



No Shield Shield
c return time (s) return RI time (s) #SA

110 3.702(±0.623) 0.066(±0.027) 3.702(±0.623) 0.00% 0.065(±0.029) 0
80 3.593(±0.632) 0.067(±0.030) 3.702 (± 0.623) 3.03% 0.061(±0.027) 4
60 3.088(±0.673) 0.060(±0.025) 3.702 (± 0.623) 19.88% 0.061(±0.027) 121
40 −4.173(±1.101) 0.035(±0.017) 3.702 (± 0.623) 188.71% 0.052(±0.023) 647

a) Tiger
No Shield Shield

c return time (s) return RI time (s) #SA
103 24.716(±3.497) 10.166(±0.682) 26.045 (± 3.640) 5.38% 10.118(±0.238) 7
90 18.030(±3.794) 10.173(±0.234) 22.680 (± 3.524) 25.79% 10.166(±0.241) 12
70 4.943(±5.260) 10.278(±0.234) 8.970 (± 4.556) 81.46% 10.377(±0.230) 51
50 0.692(±5.051) 10.374(±0.230) 1.638(±4.525) 136.53% 10.435(±0.336) 171

b) Velocity Regulation

Table 1
Experimental Results. The first column shows the different values of the RewardRange c. The second
(third) column shows the average return (time) achieved by the original POMCP and the relative stan-
dard deviation. The Shield section shows the average return and time achieved by POMCP using a
shield (column four and six), values in bold show a statistically significant difference with respect to
the shield counterpart (according to a paired t-test with 95% confidence level). Column RI shows the
relative increase in performance between the two original and shielded POMCP. Finally, column #SA
shows how many times the shield alters the decision during the execution

policy under investigation. This formula, called rule template, defines a relationship between
some properties of the belief (e.g., the probability to be in a specific state) and an action. Free
variables in the formula allow the expert to avoid quantifying the limits of this relationship.
These limits are then computed by analyzing a set of observed traces (see box 1). For Instance,
to describe the behavior of the Tiger problem we can use the rule template presented in Figure 2.
The first template (𝑟𝐿) says that we must listen when the confidence in finding a treasure is
below a certain threshold for both doors (i.e., left or right). The other two (𝑟𝑂𝑅, 𝑟𝑂𝐿) say that
we must open the proper door when the confidence of finding the treasure is above a certain
threshold. By defining a rule template the expert provides useful prior knowledge about the
structure of the investigated property. This is combined with the real execution of a POMCP
system collected into a trace. The methodology computes a rule (i.e., a rule template with all the
free variables instantiated) using a MAX-SMT based algorithm. This algorithm finds a model
for the free variables that explain as many of the decisions taken by POMCP as possible while
satisfying the requirement defined in the template (box 3 of Figure 1). A set of rules is then used
to create a shield, a safety mechanism that we integrate into POMCP to preemptively block
actions that do not respect the details defined by the expert with the template (box 4).

3. Results

We test our methodology in two domains, namely, the standard POMDP domain Tiger [10]
and a robotic-inspired problem (velocity regulation) in which a robot travels a pre-specified
path divided into segments with a (hidden) difficulty. The goal is to travel as fast as possible



while avoiding collisions. The higher the speed, the higher the reward, but a higher speed
suffers a greater risk of collision. A full description of the problem is presented in [11]. To
test the robustness of the shield in different scenarios, we injected an error in the POMCP
implementation of the two domains. We modify the RewardRange parameter (called 𝑐 in the
following) in POMCP. This parameter is used by UCT to balance exploration and exploitation.
If this value is lower than the correct one the algorithm could find a reward that exceeds
the maximum expected value leading to a wrong state, namely, the agent believes to have
identified the best possible action and it stops exploring new actions. This is an interesting
error because it is hard to detect, it randomly affects the exploration-exploitation trade-off
without introducing any systematic mistakes. The code of the shielding mechanism is available
at https://github.com/GiuMaz/XPOMCP.

In Tiger, the average return achieved using the shield is the same in all four cases, and this
is also identical to the return achieved by the correct policy. This is because in tiger we can
write a shield that perfectly recreates the behavior of the correct policy, a goal that is difficult to
achieve in real-world problems. This is particularly interesting because the shields in the cases
of 𝑐 ∈ {80, 60, 40} are obtained by using traces generated with a POMCP implementation that
does make some mistakes. As a consequence, the Execution traces contain wrong decisions.
However, the combination of insight provided by the expert with the MAX-SMT-based analysis
of the traces results in a shield with extremely good performances.

In velocity regulation, the first row shows that the usage of a shield can improve the perfor-
mance even when c is correct (i.e., 𝑐 = 103). In this case, the shield intervenes only 7 times
(over the 3500 analyzed steps), yielding a 5.38% increment in the return. This happens because
the shield blocks the rare cases in which the POMCP simulations are not enough to properly
assess the risk of moving at high speed. When c decreases, the shield intervenes more often
(see column #SA) since the error due to the limited number of simulations is combined with
the errors generated by an incorrect value of c. Table 1.b also shows that a higher number of
interventions leads to a bigger relative increase in the performance (column RI ). The difference
is statistically significant in the case of 𝑐 ∈ {103, 90, 70}, and show that the introduction of the
shield improves the performance up to the 81%, even in cases in which the shield is trained
using traces generated by a POMCP process that makes some mistakes. In the case of 𝑐 = 50
the return increase but the difference is not statistically significant. The shield intervenes 171
times by blocking risky high-speed moves, but unlike Tiger, in which we use a rule for every
possible action, here POMCP made many wrong decisions when it moves at low or medium
speed (for example, by moving slowly when the path is clear).

4. Conclusions and Future Work

In this work, we present a methodology that generates a shielding mechanism for POMCP
exploiting a high-level representation of expected policy behavior provided by human experts.
The shielding mechanism preemptively blocks unexpected actions. We aim to further improve
the integration between POMCP and the shielding mechanism (e.g., by considering the effect of
shielding on other actions besides the first one of the simulation) and at developing an approach
for synthesizing logical rules online, i.e., while the POMCP algorithm is running.



References

[1] A. Cassandra, M. L. Littman, N. L. Zhang, Incremental Pruning: A Simple, Fast, Exact
Method for Partially Observable Markov Decision Processes, in: In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, 1997, pp. 54–61.

[2] C. H. Papadimitriou, J. N. Tsitsiklis, The Complexity of Markov Decision Processes, Math.
Oper. Res. 12 (1987) 441–450.

[3] D. Silver, J. Veness, Monte-Carlo Planning in large POMDPs, in: J. D. Lafferty, C. K. I.
Williams, J. Shawe Taylor, R. S. Zemel, A. Culotta (Eds.), Advances in Neural Information
Processing Systems 23, Curran Associates, Inc., 2010, pp. 2164–2172.

[4] A. Castellini, E. Marchesini, G. Mazzi, A. Farinelli, Explaining the influence of prior
knowledge on POMCP policies, in: Proceedings of the 17th European Conference on
Multi-Agents Systems, volume 12520 of Lecture Notes in Artificial Intelligence, 2020.

[5] A. Castellini, E. Marchesini, A. Farinelli, Online monte carlo planning for autonomous
robots: Exploiting prior knowledge on task similarities, in: Proceedings of the 6th Italian
Workshop on Artificial Intelligence and Robotics (AIRO 2019@AI*IA2019), volume 2594 of
CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 25–32.

[6] A. Castellini, G. Chalkiadakis, A. Farinelli, Influence of State-Variable Constraints on
Partially Observable Monte Carlo Planning, in: Proc. 28-th International Joint Conference
on Artificial Intelligence, IJCAI-19, 2019, pp. 5540–5546.

[7] D. Gunning, DARPA’s Explainable Artificial Intelligence (XAI) Program, 2019, pp. ii–ii.
[8] M. Fox, D. Long, D. Magazzeni, Explainable Planning, CoRR abs/1709.10256 (2017).
[9] M. Cashmore, A. Collins, B. Krarup, S. Krivic, D. Magazzeni, D. Smith, Towards Explainable

AI Planning as a Service, 2019. 2nd ICAPS Workshop on Explainable Planning, XAIP 2019.
[10] L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and Acting in Partially Observable

Stochastic Domains, Artif. Intell. 101 (1998) 99–134.
[11] G. Mazzi, A. Castellini, A. Farinelli, Identification of Unexpected Decisions in Partially

Observable Monte Carlo Planning: A Rule-Based Approach, in: accepted at the 21th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21,
2021.


	1 Introduction
	2 Methodology Overview
	3 Results
	4 Conclusions and Future Work

