
Ontology-based Validation of Enterprise
Architecture Principles in Enterprise Models

Devid Montecchiari[0000−0002−8969−1973]

FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of
Business, Switzerland

UNICAM University of Camerino, School of Advanced Studies, Italy
devid.montecchiari@fhnw.ch

Abstract. Enterprises use Enterprise Architecture Principles as a guid-
ing set of rules to provide a basis for decision making. These principles are
described using natural language and are not machine-interpretable. The
validation of these principles in models is a complex and time-consuming
task. The goal of this research is to help humans in this review. Annotat-
ing enterprise architecture models with an enterprise ontology and rep-
resenting architecture principles as rules, it is possible to automatically
check architecture principles. The proposed approach is to combine both
the domain knowledge and the modeling language knowledge to reason
about models, allowing the automatic check of architecture principles.

Keywords: Enterprise Ontology · Enterprise Architecture · Enterprise
Architecture Principle · Business Rule · Shacl.

1 Introduction

The Open Group Architecture Framework (TOGAF) [5] lists a variety of ways in
which companies use Enterprise Architecture Principles(EAPs) e.g. ”As drivers
for defining the functional requirements of the architecture”. It also proposes
a recommendation for their template and a definition of their characteristics,
classifications. The declaration and validation of EAP is a complex manual task.
EAPs affect each other and may have hierarchies and ramifications, leading to
conflicts and inconsistencies also with the modeled enterprise architecture.

ArchiMate [11] is the OpenGroup standard, adopted by several modeling
tools and consulting firms, for the representation of an enterprise architecture.
ArchiMate models can be semantically annotated, enriching them with machine-
interpretable knowledge [8,10]. Instead, EAPs are defined in statements using
natural language. Thus, currently, it is not possible to automatically validate
whether the enterprise models of a company are compliant with a specific set of
principles.

The proposal is to decompose EAPs into a set of machine-interpretable rules
(in an enterprise ontology) that are reusable, verifiable, and measurable. The
rules should combine both the domain knowledge (e.g. derived from enterprise
architects and literature) and the modeling language knowledge (i.e. syntax and

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License 
Attribution 4.0 International (CC BY 4.0)

197



semantics of ArchiMate [11]). Using this set of rules in the ArchiMEO ontol-
ogy, it can be possible to recognize EAPs inconsistencies in enterprise models.
Further, having the EAPs in the ontology would foster their re-usability and
interoperability.

2 Research Methodology

The Design Science Research (DSR) framework [7,24] was chosen as it supports
the development of artefacts with the aim of better understanding or improving a
theory. The artefact is a set of rules representing EAPs in the enterprise ontology
ArchiMEO [9] - that is currently being developed - combining both the domain
knowledge and the modelling language knowledge.

The DSR consists of five research phases: awareness of the problem, sugges-
tion, development, evaluation, and conclusion. Given the main research question,
“How can we create a set of rules based on EAPs to check the alignment of enter-
prise models?” different sub-research questions were identified and are provided
in the following chapters according to different DSR phases.

3 State of the Art

There exist different studies on models machine interpretability, usually focusing
on the Business Process Management Notation like in [3]. Hence, the state of the
art was investigated to answer the following research question in the awareness
phase of the DSR.

RQ1: What knowledge is currently machine-interpretable from enterprise archi-
tecture models and architecture principles?

The Enterprise Engineering Knowledge Space [12] was coined for Knowledge
Engineering in Business Process and presented with its four dimensions form,
content, interpretation, and use. It is possible to apply this framework also to
ArchiMate models.

Form: Syntax and semantic of the ArchiMate modeling language. Content:
Domain in which knowledge engineering is applied. Use: Stakeholders and their
concerns determine the relevant subset of the knowledge and reasoning Inter-
pretation: Graphical models typically are cognitively more adequate for human
interpretation and ontologies can be interpreted by machines.

ArchiMEO [9] is a standardized enterprise ontology based on the ArchiMate
[11] conceptual model for the creation of Intelligent Information Systems. It is
based on a semantically enriched Enterprise Architecture Description (seEAD)
composed of four parts: a top-level ontology containing generic concepts as time,
location and space; application-specific ontologies; a meta enterprise ontology
according to the ArchiMate standard and an enterprise upper ontology, enriching
the standard. Using ArchiMEO [9] as knowledge base, the Agile Ontology Aided

198



Modeling Environment (AOAME) [15] can model different modeling languages
among which ArchiMate.

Answering the RQ1, a model in ArchiMEO can be semantically annotated
with domain knowledge while keeping its syntax in a machine-interpretable form.
In AOAME, a modeler can manually associate a modeled element to concepts
available in the seEAD or outside ArchiMEO.

3.1 Semantic annotation of EAP and enterprise models

Following the awareness phase of the DSR, the outcome of the suggestion phase
is a tentative design on how the EAPs can be made machine-interpretable. My
proposal is to integrate the EAPs in ArchiMEO, decomposing them in a set of
rules. In this phase, I address and describe the following two research questions.

RQ2: How can enterprise architecture models be semantically annotated?

The Open Group also defines an ArchiMate Model Exchange File Format Stan-
dard ”XML Schema Files (.xsd) [6] for ArchiMate 3.1” that ”can be used to
exchange data between tools and/or systems that wish to import, and export
ArchiMate models”. Following this schema specification, I created a JAVA parser
that automatically generates .ttl files according to the ArchiMEO ontology based
on the Archimate .xml files.

The Open Group provides interoperability testing snipped used to validate
import and the export functionalities among different modeling tools1. I used
these interoperability snippets to validate the ArchiMate ontology contained in
ArchiMEO and the parser results. During the development of the parser, I also
updated the ArchiMate ontology (ca. 350 triples were updated/added) according
to the 3.1 specifications of the standard. New ArchiMate layers were added by
the Open Group since the previous version of the standard and consequently,
several concepts and relationships were updated, made deprecated, and added.
Each of the .ttl files generated by the parser was then also tested on the Apache
Jena Fuseki server.

Answering the RQ2, the knowledge contained in ArchiMate models can be
made available at least in the following two ways: manually-semantically anno-
tated in AOAME, allowing the modeler to associate a meaning contained in the
ArchiMEO ontology with the drawback of time-effort; automatically with the
risk of imprecision e.g. due to the technical limitations of the parser.

RQ3: How can enterprise architecture models be semantically annotated?

There is a wide literature about natural language processing and understanding,
however, the goal of this research is not to automatically create rules from natural
language. Instead, the research goal is to formalize the principles in form of a
set of rules allowing an automatic reasoning process.

1 https://www.opengroup.org//xsd/archimate/3.1/examples/_Snippets/

199

https://www.opengroup.org//xsd/archimate/3.1/examples/_Snippets/


A recent survey [1] on 27 years of EAPs literature, strengthened the defini-
tion, characteristics, and ”key role in guiding the design and the implementation
of information system requirement”. They state “An architecture principle is a
declarative statement, based on, at least, business and IT strategy. It normatively
describes a property of the design of an information system, which is necessary
to ensure that the information system meets its essential requirements.”

Essentially, EAPs are statements and an association to business rules [21]
can be made, answering the RQ3. The automation of business rules is widely
covered in the literature and different authors have created machine-interpretable
business rules. Notably, in [19], it is proposed an ”ontology-based approach for
detecting the potential semantic error of business process and business rules”.
In other cases, business rules were written in Semantics of Business Vocabulary
and Business Rules(SBVR) [23] and mapped to the Web Ontology Language
(OWL) [17] with an automatable and structural-rooted approach [13,20].

4 Creation of machine interpretable EAPs

Different semantic web languages can be used to model ontologies. In the devel-
opment phase, the following (technical) research questions is tackled.

RQ4: which semantic web language is the most appropriate to model princi-
ples as rules in ArchiMEO?

In [16], we have described how AOAME can be used to support innovation pro-
cesses, specifically for Design Thinking via Sap Scenes, and introduced a proof
of concept to use the Shapes constraint language (SHACL) [14] for plausibility
and constraint checking. In a different domain, SHACL NodeShapes and rules
(sh:rule) were used to constrain the ontology and infer new knowledge utilized
in the dialog management [2]. The use of SHACL has proven to allow: gener-
ation of validation reports; embedding of rule/constraints written in SPARQL
[18] and/or JavaScript [4]; closed world assumption on demand [22].

4.1 Proof of concept implementation

The proof of concept implementations uses a fictional ArchiMate model and
check if it has a Master Data Management System (MDMS) in place. A snippet
of the model is shown below in fig. 1 (simplified for clarity).

The EAP “For all data, there is exactly one application that stores and man-
ages the master version of the data.” is a good candidate to explain the need to
understand modeling element ”content” (according to the definition in [12]). As
humans, we can recognize that the Customer Data and Customer Phone Number
data objects may represent duplicated information. A rule, checking if every data
object in an ArchiMate model is written by exactly one application, would fail to
recognize the potential inconsistency with the EAP. This, because the Customer
Phone Number may be contained also in the Customer data within the CRM.

200



Fig. 1. Example snippet of an ArchiMate model

The system needs to know if there are at least two data object containing/about
the same data and more precisely if these data are the master version.

First, the ArchiMate models are parsed using the developed Java ArchiMate
parser, and every modeled element are instantiated in a turtle file according to
concepts described in the ArchiMEO ontology. Based on the label, in this case,
the parser recognizes the keyword ”customer” and automatically annotates that
this data object is concerning customers.

mod:Customer_Data

rdf:type archi:DataObject ;

do:dataObjectConcerning do:Customer ;

rdfs:label "Customer Data" ;

.

Hence, the ArchiMate diagram .xml file gets transformed into a turtle file
(.ttl) containing the list of elements, the relationships. This step can also be
avoided using AOAME [15] as it allows the semantic annotation of enterprise
models.

Second, the created turtle file is loaded in an Apache Jena Fuseki server with
the ArchiMEO ontology and the dedicated set of rules representing the MDM
EAP. Finally, executing the SHACL reasoner in the triple-store, we can get a
validation report containing the list of infringements. Aside from the validation
report, we can also get the result of rules that inference new knowledge and
perform automatic classifications.

5 Conclusion

The proof of concept implementation integrates an EAP in the ArchiMEO en-
terprise ontology using rules and extending the ontology answering the main
research question. The use of SHACL allowed the automated validation of the
principle on a fictional ArchiMate model. Further, having the EAPs knowledge
in a formalized way allows their re-usability and categorization.

201



Before the next design cycle, more principles (already available in the liter-
ature) are going to be formalized in a set of rules in the ArchiMEO ontology.

In the next iteration of the design cycle of the DSR, a real use case sce-
nario will be introduced, evaluating the approach’s applicability and relevance.
A possible future extension of the approach is to validate EAP also among new
modeling languages (e.g. BPMN [3]) together with ArchiMate.

References

1. Borgers, M., Harmsen, F.: Strengthen the architecture principle definition and its
characteristics-a survey encompassing 27 years of architecture principle literature.
In: ICEIS (2). pp. 607–622 (2018)

2. Charuta Pande, Hans Friedrich Witschel, A.M., Montecchiari, D.: Hybrid conver-
sational ai for intelligent tutoring systems. In: AAAI 2021 Spring Symposium on
Combining Machine Learning and Knowledge Engineering (2021)

3. Fischer, L.: BPMN 2.0 Handbook First Edition: Foreword by Bruce Silver, vol. 1.
Future Strategies Inc. (2010)

4. Goodman, D.: JavaScript bible. John Wiley & Sons (2001)

5. Group, O.: The TOGAF Standard, Version 9.2. Van Haren Publishing (2018)

6. Group, T.O.: Archimate® model exchange file format for the archimate 3.1 mod-
eling language (2019), https://www.opengroup.org/xsd/archimate/, accessed on
10.1.2021

7. Hevner, A., Chatterjee, S.: Design Research in Information Systems:
Theory and Practice. Springer Science+Business Media, LLC (2010).
https://doi.org/10.1007/978-1-4419-5653-8

8. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van der Merwe, A.,
Woitsch, R.: A new paradigm for the continuous alignment of business and it:
Combining enterprise architecture modelling and enterprise ontology. Computers
in Industry 79, 77–86 (2016)

9. Hinkelmann., K., Laurenzi., E., Martin., A., Montecchiari., D., Spahic.,
M., Thönssen., B.: Archimeo: A standardized enterprise ontology based
on the archimate conceptual model. In: Proceedings of the 8th Interna-
tional Conference on Model-Driven Engineering and Software Development
- Volume 1: MODELSWARD,. pp. 417–424. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0009000204170424

10. Hinkelmann, K., Laurenzi, E., Martin, A., Thönssen, B.: Ontology-based metamod-
eling. In: Business Information Systems and Technology 4.0, pp. 177–194. Springer
(2018)

11. Josey, A.: A Pocket Guide to the ArchiMate® 3.1 Specification. Van Haren (2019)

12. Karagiannis, D., Woitsch, R.: Knowledge Engineering in Business Process Man-
agement. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Pro-
cess Management 2, pp. 623–648. International Handbooks on Information Sys-
tems, Springer (October 2015). https://doi.org/10.1007/978-3-642-45103-4, https:
//ideas.repec.org/h/spr/ihichp/978-3-642-45103-4_26.html

13. Karpovic, J., Nemuraite, L.: Transforming sbvr business semantics into web ontol-
ogy language owl2: main concepts. Information Technologies pp. 27–29 (2011)

14. Knublauch, H., Kontokostas, D.: Shapes constraint language (shacl). W3C Candi-
date Recommendation 11(8) (2017)

202

https://www.opengroup.org/xsd/archimate/
https://doi.org/10.1007/978-1-4419-5653-8
https://doi.org/10.5220/0009000204170424
https://doi.org/10.1007/978-3-642-45103-4
https://ideas.repec.org/h/spr/ihichp/978-3-642-45103-4_26.html
https://ideas.repec.org/h/spr/ihichp/978-3-642-45103-4_26.html


15. Laurenzi, E., Hinkelmann, K., Van der Merwe, A.: An agile and ontology-aided
modeling environment. In: IFIP Working Conference on The Practice of Enterprise
Modeling. pp. 221–237. Springer (2018)

16. Laurenzi, E., Hinkelmann, K., Montecchiari, D., Goel, M.: Agile visualization in
design thinking. In: New Trends in Business Information Systems and Technology,
pp. 31–47. Springer (2020)

17. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview.
W3C recommendation 10(10), 2004 (2004)

18. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS) 34(3), 1–45 (2009)

19. Pham, T.A., Thanh, N.L.: An ontology-based approach for business process compli-
ance checking. In: Proceedings of the 10th International Conference on Ubiquitous
Information Management and Communication. pp. 1–6 (2016)

20. Reynares, E., Caliusco, M., Galli, M., et al.: Sbvr to owl 2 mappings: An automat-
able and structural-rooted approach. CLEI Electronic Journal 17(3), 3–3 (2014)

21. Ross, R.G.: Principles of the business rule approach. Addison-Wesley Professional
(2003)

22. Savković, O., Kharlamov, E., Lamparter, S.: Validation of shacl constraints over
kgs with owl 2 ql ontologies via rewriting. In: European Semantic Web Conference.
pp. 314–329. Springer (2019)

23. Specifications, O.: Semantics of business vocabulary and business rules. Tech. rep.,
Tech. rep., Object Management Group (2015)

24. Vaishnavi, V., Kuechler, W.: Design Science Research methods and Patterns: Inno-
vating Information and Communication Technology. Auerbach Publications, Tay-
lor & Francis Group, Boca Raton, FL, New York (2007)

203


	Ontology-based Validation of Enterprise Architecture Principles in Enterprise Models

