
A Two-Step Network Intrusion Detection System for
Multi-Class Classification
(Discussion Paper)

Giuseppina Andresini1, Annalisa Appice1,2 and Donato Malerba1,2

1Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro via Orabona, 4 - 70126 Bari - Italy
2Consorzio Interuniversitario Nazionale per l’Informatica - CINI

Abstract
A network intrusion detection system aims to discover any unauthorised access to computer networks
by analysing the network traffic for signs of malicious activity. In this paper, we present a two-step
system for network intrusion detection. The first step comprises a Triplet network that processes the
flow-based characteristics of the historical network traffic data to learn an embedding space, where
distances between samples labelled with opposite classes are greater than distances between samples
labelled with the same class. We take adavantage of this embedding space to separate the normal samples
from the malicious ones. The second step uses a multi-class eXtreme Gradient Boosting classifier to
recognize the attack family of the detected malicious flows. The experiments prove the effectiveness of
the proposed system as it leads to higher accuracy when compared to several, recent competitors.
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1. Introduction

Network intrusion detection is a crucial cyber-security problem, where deep learning is recog-
nised as a relevant approach to learn signs of malicious activity [1, 2, 3, 4, 5]. In this study, we
illustrate a two-step network intrusion detection system that first recognises signs of malicious
activities in the network traffic and then classifies the malicious type of these activities.

In the first step, we resort to deep learning to analyse the flow-based characteristics of the
network traffic data. In particular, we resort to an intrusion detection model that is trained
through a Triplet network [6]. This is an emerging deep learning network that combines deep
learning and metric learning. A Triplet network is commonly trained taking triplet samples
as input. Every triplet is commonly composed of a training sample selected as an anchor, a
training sample labelled in the same class as the anchor and a training sample labelled in the
opposite class. Then, the Triplet network learns an embedding space, where distances between
samples labelled with opposite classes are greater than distances between samples labelled with
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the same class. Although, the Triplet network is emerging as a relevant approach to separate
samples belonging to opposite classes, existing approaches based on Triplet networks commonly
suffer from poor convergence. In particular, the Triplet network convergence problem is mainly
caused by a random selection of samples for the triplet construction in the training set [7]. In
fact, the traditional Triplet network implementations randomly select a single training sample
labelled in the same class as the anchor and a single training sample labelled in the opposite
class.

To overcome the convergence affecting traditional Triplet networks, we resort to an innovative
triplet construction strategy. The original contribution of this work is reported in [8]. This
strategy uses autoencoders [9] instead of traditional sampling to derive both the positive
and negative information for the triplet construction. Specifically, we train two separate
autoencoders on historical normal network flows and attacks, respectively. We construct
every triplet by considering the positive and negative pseudo-samples that are the unique
reconstructions of the considered anchor restored through the two autoencoders. We note
that, basing the triplet construction, and consequently the triplet-learned embedding, on the
pseudo-samples reconstructed through these two autoencoders, we are able to exploit possible
patterns existing among the normal and attack classes, given the class of the anchor sample of
the triplet.

As the learned embedding moves each flow close to its reconstruction, restored with the
autoencoder associated with the same class as the flow, and away from its reconstruction,
restored with the autoencoder of the opposite class, we are able to perform a predictive stage
assigning each new flow to the binary class (normal or attack) associated with the autoencoder
that restores the closest reconstruction of the flow in the embedding space.

In the second step, we use a multi-class classifier to perform the task of attack type classi-
fication, in addition to attack detection. To this aim, we use a multi-class eXtreme Gradient
Boosting classifier trained on attack samples only, in order to recognize the attack family of the
detected malicious flows.

This paper is organised as follows. The formulated two-step network intrusion detection
system is described in Section 2, while the implementation details are illustrated in Section 3.
The NSL-KDD dataset considered for the empirical validation and the findings in the evaluation
of the proposed network intrusion detection system are discussed in Section 4. Finally, Section
5 refocuses on the purpose of the research and draws conclusions.

2. The two-step system

The detailed description of the training and predictive stage are reported in Sections 2.1 and 2.2,
respectively. The block diagram of the proposed system is reported in Figure 1

2.1. Training stage

Let us consider 𝒟 = {(x𝑖, 𝑦𝑖)}𝑁𝑖=1 as a set of 𝑁 training samples, where each x𝑖 ∈ R𝐷 is
a row vector corresponding to an input network flow defined over 𝐷 features, and 𝑦𝑖 is the
corresponding binary label denoting a normal or an attack sample.



Figure 1: Architecture of the two-step system (Triplet network + XGBoost).

In the first step, we train a Triplet network using autoencoders to built triplets. Let X =
[x1, . . . ,x𝑁 ]⊤ ∈ R𝑁×𝐷 denote the data matrix of 𝑁 𝐷-dimensional random variables x ∈ R𝐷 ,
so that X𝑛 = X|𝑦𝑖=𝑛𝑜𝑟𝑚𝑎𝑙, resp. X𝑎 = X|𝑦𝑖=𝑎𝑡𝑡𝑎𝑐𝑘, represent the subset of samples in X,
whose label is normal, resp. attack. We process X𝑛 and X𝑎 separately to learn two independent
autoencoders, denoted as normal autoencoder 𝑧𝑛 and attack autoencoder 𝑧𝑎, respectively. We
use both autoencoders to construct the two triplet counterparts of each anchor.

In principle, the normal autoencoder 𝑧𝑛 should aid in recovering a denoised representation
of X, which highlights attacks as anomalies. Based upon this consideration, normal flows can
be considered as positive samples, while attacks can be seen as negative samples from the
normal autoencoder 𝑧𝑛. Vice-versa, the attack autoencoder 𝑧𝑎 aids in recovering a denoised
representation of X, which highlights normal flows as anomalies. Therefore, the autoencoder
𝑧𝑎 can see normal flows as negative samples and attacks as positive samples from its point of
view. This conjecture inspires the idea of using the representations of X reconstructed through
both 𝑧𝑛 and 𝑧𝑎 to derive the unique positive and negative component of each triplet. Following
this idea, let us consider a training sample x assigned to the label y = 𝑛𝑜𝑟𝑚𝑎𝑙 as the anchor.
We build x⊕ = 𝑧𝑛(x) as the positive triplet counterpart of x, and x⊖ = 𝑧𝑎(x) as the negative
triplet counterpart of x, respectively. Vice-versa, let us consider a training sample x assigned to
the label y = 𝑎𝑡𝑡𝑎𝑐𝑘 as the anchor. We build x⊕ = 𝑧𝑎(x) as the positive triplet counterpart of
x, and x⊖ = 𝑧𝑛(x) as the negative triplet counterpart of x, respectively.

By leveraging the collection of sample triplets constructed from X, we train a Triplet network
that embeds every triplet component into a 𝑑-dimensional Euclidean space 𝜑 : R𝐷 ↦→ R𝑑

learned to better quantify the similarity between sample components within each triplet. This



Triplet network processes x, x⊕ and x⊖ across three base feed-forward networks with shared
parameters. The network learns the embedding 𝜑 : R𝐷 ↦→ R𝑑 by optimising a triplet loss
function. This loss function minimises the distance between the embedding vectors of both
the anchor x and its positive triplet counterpart x⊕, while it maximises the distance between
the anchor x and its negative triplet counterpart x⊖. We compute the soft-margin triplet loss
proposed in [10].

In the second step, we train a multi-class eXtreme Gradient Boosting (XGBoost) classifier to
classify the attacks into specific categories. This type of disentanglement into different attack
types is important for the network administrator who can take appropriate responsive steps
depending on the type of the intrusion detected. Based upon the analysis conducted in [11], we
select XGBoost as an appropriate multi-class classifier for this scope. It is trained on the feature
space X on the attack samples labelled with the specific attack category.

2.2. Testing stage

Let us consider a query sample x ∈ R𝐷 . First the sample reconstructions 𝑧𝑛(x) and 𝑧𝑎(x) are
restored through both the normal autoencoder 𝑧𝑛 and the attack autoencoder 𝑧𝑎, respectively.
Then the Euclidean distance is computed to compare x to both 𝑧𝑛(x) and 𝑧𝑎(x), respectively.
The Euclidean distance is computed within the embedding space 𝜑, so that:

𝑑𝜑𝑛(x) = ‖𝜑(x)− 𝜑(𝑧𝑛(x))‖2, (1)

𝑑𝜑𝑎(x) = ‖𝜑(x)− 𝜑(𝑧𝑎(x))‖2. (2)

If 𝑑𝜑𝑎(x) < 𝑑𝜑𝑛(x), then x is classified as an attack, while the attack type is predicted with the
classification model trained with XGBoost. Otherwise x is classified as a normal network flow.
Finally, if x is classified as an attack.

3. Implementation details

The triplet network is implemented in Python 2.7. The source code is available online.1 The
deep neural network architectures are developed in Keras 2.32 – a high-level neural network
API with TensorFlow3 as the back-end. The pre-processing step includes the operation to scale
the input numeric features, using the Min-Max scale (as implemented in the Scikit-learn 0.22.2
library4). In addition, the pre-processing includes the implementation of the one-hot-encoder
mapping of the categoric attributes. We conduct an automatic hyper-parameter optimization
using the tree-structured Parzen estimator algorithm, as implemented in the Hyperopt library
[12]. This hyper-parameter optimization is performed by using 20% of the entire training as a
validation set. In particular, we randomly select the validation set with the stratified sampling
procedure. We automatically choose the configuration of the parameters, which achieves the

1https://github.com/gsndr/RENOIR
2https://keras.io/
3https://www.tensorflow.org/
4https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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Table 1
Hyper-parameter search space.

Autoencoders Triplet network
batch size {25, 26, 27, 28, 29 } {25,26, 27, 28, 29 }
learning rate [0.0001, 0.01] [0.0001, 0.01]
dropout [0,1] [0,1]
#neurons for hidden layer - {27, 28, 29 }

best validation loss. The values of the hyper-parameters, automatically explored with the
tree-structured Parzen estimator, are reported in Table 1.

Each autoencoder architecture comprises 3 fully-connected (FC) layers of 32×16×32 neurons
and one dropout layer, in order to prevent the overfitting phenomenon. The mean squared error
(mse) is used as the loss function. The classical rectified linear unit (ReLu) is selected as the
activation function for each hidden layer, while for the last layer the Linear activation function
is used. The Triplet network is implemented with three base feed-forward networks with shared
weights. Each base network is a deep neural network with three intermediate layers (with the
number of neurons chosen with the hyper-parameter optimization), an embedding layer with
512 neurons and two dropout layers. The (ReLu) function is selected as the activation function
for each hidden layer, while for the embedding layer the Sigmoid activation function is used.
The Sigmoid activation function is commonly used for the embedding layer [13] instead of a
Linear, in order to guarantee that each dimension will be between 0 and 1. This architecture
assigns samples to the binary normal or attack classes by returning the Euclidean distance
returned by the embedding layers.

The multi-class classifier XGBoost is integrated from xgboost.XGBoostClassifier,5 by adopting
the default parameter set-up reported in the documentation.6

4. Empirical evaluation

We analyse the effectiveness of the proposed methodology also in a multi-class scenario of
network intrusion detection. To this purpose, we consider the multi-class version of the dataset
NSL-KDD.7 This dataset is introduced in [14] as a revised version of KDDCUP99, which is
obtained by removing the duplicate samples from KDDCUP99. The multi-class NSL-KDD
comprises normal flows and four categories of attack: Denial of Service Attack (DoS), User to
Root Attack (U2R), Remote to Local Attack (R2L) and Probing Attack. For this experiment we
adopt the original data setting described in [14], that includes KDDTrain+ as the training set and
KDDTest+ as the testing set. The number of samples collected in both the training and testing
sets for each category is reported in Table 2. We note that both U2R and R2L are rare attacks.
We select this dataset as it include zero-days attacks in the testing set, and despite it is an old
dataset, it has been recently used in the evaluation of various multi-class intrusion detection
methods. Table 3 reports Precision, Recall and F-score achieved by the proposed method on
each class.

5https://xgboost.readthedocs.io/en/latest/index.html
6https://xgboost.readthedocs.io/en/latest/parameter.html
7https://www.unb.ca/cic/datasets/nsl.html
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Table 2
Number of samples per category in both KDDTrain+ and KDDTest+.

Dataset Total DoS Probe R2L U2R Normal

KDDTrain+ 125973 45927 11656 995 52 6734
(37%) (9.11%) (0.85%) (0.04%) (53%)

KDDTest+ 22544 7458 2421 2754 200 9711
(33%) (11%) (12.1%) (0.9%) (43%)

Table 3
Triplet network + XGBoost: Precision, Recall and F-score per class in NLS-KDD

Class Precision Recall F-score
DoS 96.1 82.5 88.8
Probe 76.4 85.8 80.8
R2L 95.2 48.0 63.8
U2R 62.5 7.5 13.4

Normal 77.8 96.3 86.1

For the comparative study, we consider the performance of several recent competitors that han-
dle the same multi-class problem addressed here, by integrating various techniques to deal with
multi-class attacks. In particular, we consider: (1) Deep learning multi-class competitors with
Siamese networks [15] 8 and XGBoost: SIAM-IDS[16][11] and I-SiamIDS [11]. (2) Deep learning
multi-class competitors with rare data augmentation: DSSTE+AlexNet[17], IGAN-IDS[18] and
ID-CAVE[19]. (3) Deep Reinforcement Learning competitors: AESMOTE[20] and AE-RL[21].
The results of Macro-Average F1, Micro-Average F1 and Weighted F1 of both the multi-class con-
figurations of Triplet network + XGBoost and its competitors are reported in Table 4. No values
of the Macro-Average F1 are reported in the reference papers for DSSTE+AlexNet, IGAN-IDS,
AESMOTE and AE-RL.

We note that SIAM-IDS and I-SiamIDS are the nearest-related competitors to our method.
This is an expected outcome, as both algorithms use a deep learning methodology based on a
deep metric architecture for the binary classification and resort to a multi-class XGBoost-based
re-classification of the attacks. So, this experiment contributes to assess the effectiveness of
our Triplet network-based method in separating normal samples from attacks. In addition, it
highlights that resorting to XGBoost for the attack classification can achieve good performance.
On the other hand, our method also outperforms the remaining competitors, that have been
defined in the recent literature to deal with the multi-class problem in the imbalanced scenario
of NSL-KDD. The only exception is IGAN-IDS, that uses a deep Generative Adversarial Network
process to generate new samples for the minority classes. Therefore, this improvement is
achieved at the cost of a complex process of augmentation of the training set. In any case,
this result suggests that new milestones may be reached in the future by injecting Generative
Adversarial Learning mechanisms into multi-class network intrusion detection.

8Siamese networks learn a contrastive loss to quantify similarity between sample pairs.



Table 4
Results of the Macro-average F1, the Micro-Average (OA) and the weighted F1 obtained by our method
compared with several competitors that perform multi-class classification in NSL-KDD. The best results
are in bold. The results of the competitors are collected from the reference papers. “-" denotes that no
value is reported in the reference paper.

Algorithm Macro-Average F1 Micro-Average (OA) Weighted F1
Triplet+XGBoost 66.58 83.91 83.05
SIAM-IDS[16][11] 56.14 76.96 75.28
I-SiamIDS[11] 66.54 79.90 78.49
DSSTE+AlexNet[17] - 82.84 81.66
IGAN-IDS[18] - 84.45 84.17
AESMOTE[20] - 82.09 82.43
AE-RL[21] - 80.16 79.40
ID-CAVE[19] 59.27 80.10 79.08

5. Conclusion

In this paper we present an innovative Triplet network approach that takes advantage of
autoencoder information for effective network intrusion detection. In addition, the attack
samples identified with the first step through the Triplet network are input to the second step
composed of the multiclass eXtreme Gradient Boosting for the classification of the detected
malicious activity into attack categories. In general, this study provides the evidence that the
Triplet network, originally formulated for a binary task, may also be combined with multi-class
attack classifiers to have potential in the multi-class scenario. In any case, this conclusion paves
the way for a systematic investigation of the topic in the future.
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