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Abstract
Finding entity matches in large datasets is currently one of the most attractive research challenges. The

recent interest of the research community towards Machine and Deep Learning techniques has led to

the development of many and reliable approaches. Nevertheless, these are conceived as black-box tools

that identify the matches between the entities provided as input. The lack of explainability of the process

hampers its application to real-world scenarios where domain experts need to know and understand the

reasons why entities can be considered as match, i.e., they represent the same real-world entity. In this

paper, we show how data descriptions—a set of compact, readable and insightful formulas of boolean

predicates—can be used to guide domain experts in understanding and evaluating the results of entity

matching processes.
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1. Introduction

Entity Matching (EM) is a long-lasting problem in the database research community. Recently,

approaches based on Machine Learning (ML) and Deep Learning (DL) have been proposed.

They conceive EM as a binary classification problem [1] applied on datasets whose records

describe pairs of entities. Since the first proposals (see related work in Section 4), they have

proved to be very effective. Nevertheless, the application of ML and DL approaches in real

scenarios is hampered not only by the need for a significant amount of labeled data for their

configuration and training, but also for the lack of explainability of the results they provide.

We have already introduced and showcased (data) descriptions, i.e. compact, readable and

insightful structures formed by predicates expressed on the attribute values and able to effec-

tively explain the content of large and complex datasets, in [2, 3]. We have experimentally
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Entity ID Song Name Artist Name Album Name Genre

1 I Ai n’t Livin ’ Long Like This Chris Janson Take It to the Bank - EP Country 𝑒1
2 I Ai n’t Livin ’ Long Like This Chris Janson Take It to the Bank (EP) Country 𝑒1
3 I Ai n’t Livin ’ Long Like This Chris Janson Take It to the Bank - EP Country 𝑒1
4 Billy Keith Urban Keith Urban In The Ranch Country 𝑒2

5
I Ca n’t Go There
(Acoustic Version)

Kenny Chesney
No Shoes, No Shirt,

No Problems
Country 𝑒3

6
I Ca n’t Go There
(Acoustic Version)

Kenny Chesney
No Shoes, No Shirt,

No Problems
Country 𝑒3

7
I Ca n’t Go There
(Acoustic Version)

Kenny Chesney
No Shoes, No Shirt,

No Problems
Urban Cowboy 𝑒3

8 Afire Love Ed Sheeran x Pop 𝑒4
9 Afire Love Ed Sheeran x Pop 𝑒4
10 Afire Love Ed Sheeran x Pop 𝑒4

Table 1
The Entity Matches from the iTunes-Amazon Dataset

demonstrated the effectiveness of descriptions in performing many tasks of data exploration.

The aim of this paper is to show how they can be useful in another field, making a (large) dataset

describing the result of an EM task understandable at a glance by domain expert users.

Running Example. Let us introduce Table 1 containing a sample of entity matches obtained

by applying a generic EM approach to a sample of the iTunes-Amazon dataset published in the

Magellan library
1

and by transitively extending the results through a connected components

algorithm (i.e., according to the literature [4], we consider entities as referring to the same real-

world entity when the matching elements form a clique). Each record represents a song with

a list of characteristics (Entity Id, Song Name, Artist name, Album Name, and Genre).

The extra-column on the right shows the result of the application of the EM process, which is

able to recognize four distinct songs from the nine in the Table. A domain expert who needs to

validate the result of the EM task has to manually inspect the dataset to figure out the reasons

for the computed matches. Data descriptions can support the process since they are able to

concisely represent any arbitrary set of data tuples.

Example 1. 𝐷1 is a description of the dataset represented in Table 1 obtained conjoining a list
of predicates, each characterizing the same attribute of the dataset with the related values. We
called M_E the extra-column recording the identifier of the resulting entity from the matching
task. In this example, the description covers the entire dataset (all the tuples are represented by
𝐷1) and is built upon only an attribute of the original dataset (i.e., Song_Name). Moreover, 𝐷1

partitions the dataset into four clusters, each one representing a unique entity resulting from the
EM process. The description based on the Song_Name attribute is then useful to understand if
the EM Model is able to perform a correct identification of entities: for each entity a different
song name is displayed thus confirming the correct subdivision into distinct entities of the dataset
entries. Other descriptions for the same dataset are possible, built upon other attributes, dividing
the datasets into other partitions and using more attributes for each partition (e.g., the dataset can
be grouped by Genre and described with the Album Name).

𝐷1 :(M_E ∈ {𝑒1})
⋀︀

Song Name ∈ {I Ai n’t Livin ’ Long Like This})
⋁︀

(M_E ∈{𝑒2}
⋀︀

Song Name ∈ {Billy})
⋁︀

1
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(M_E ∈ {𝑒3}
⋀︀

Song Name ∈ {I Ca n’t Go There (Acoustic Version)})
⋁︀

(M_E ∈ {𝑒4}
⋀︀

Song Name ∈ {Afire Love})

Building the Descriptions: A principled approach. The data descriptions are generated

according to three main principles. The first states that it is more explicative to think of a dataset
as the composition of different groups of related tuples. Attributes of a dataset carry different

degrees of relevance for users who want to understand the content of datasets and glean insight

from their data. Some attributes have intrinsic value because, for example, they can identify

entities in a domain (e.g., the attribute EntityID in the dataset of Table 1) or because they allow

identifying specific features of the entities (e.g., the attributes Album Name, Artist Name in the

dataset). On the other hand, the importance of certain attributes may depend on the users: on

their specific interests motivating the dataset exploration and on their knowledge of the domain.

Nevertheless, in this case study the idea is to generate data descriptions representing entity

matches, and it is therefore natural to partition the dataset around clusters of matching entities.

We call d-formula the conjunction of predicates describing a partition. A description is formally

a non-empty disjunctive-normal formula of d-formulas (one for each partition).

The exploration of a dataset as well as the analysis of entity matches can be conducted for

different purposes. In some cases, users want an accurate and complete, yet readable, represen-

tation of the whole dataset, able to precisely explain the reasons that led to the generation of

those clusters of matching entities. In other cases, a general profile of the dataset is enough

for the user, who needs only to broadly know why entity possible match in that domain. The

description represents, in these latter cases, an overview that ignores infrequent values. Often,

instead, there are users who are interested in finding possible mistakes, i.e., entities in the same

clusters with values which are not consistent with the ones of other entities in the same cluster.

These values can be infrequent values, or outliers, but can also represent possible mistakes. The

second driving principle is that we can accommodate the multi-faceted goals of data explanation
by relaxing the concept of coverage in the descriptions. Our approach allows users to interactively

change the coverage of the expected descriptions (intended as the percentage of the total number

of tuples that are true for the description), thus making them able to satisfy all possible needs.

Finally, the quality of a description is influenced by the subjectivity of the users and the tasks

where the description has to be applied. A prolix description can be suitable for a user who

wants to interpret a matching model, but, at the same time, be poor for another one who only

needs to know the main features of a type of entity. The third driving principle is to consider
user preferences for qualifying descriptions. We follow this principle by: (1) defining a series of

dimensions that characterize the descriptions; (2) we let the users indicate their preferential

value for these dimensions. Specifically, we identified three dimensions for characterizing

a description from a user perspective: coverage , degree, and diversity. The coverage is the

percentage of items covered by a description in each partition where the dataset is divided.

Through the coverage, the users select from one extreme (i.e., low coverage) if they want to

find the peculiarities for each cluster of matching items (i.e.. possible mistakes); from the

other (i.e. high coverage), if they want to describe the common features for all the entities in a

matching group. The degree refers to the number of predicates used to describe each cluster

of entities. Intuitively, a description with lower degree tends to be much easier to read. The

diversity measures how often attributes are shared in describing different clusters of matching
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Figure 1: The process for generating descriptions.

entities. While repetitions of a set of attributes in different partitions increase readability, they

could reduce the fine-grained representation of partitions.

The rest of the paper is organized as follows. Section 2 summarizes the approach for building

the descriptions, Section 3 shows the application to the entity matching task, Section 4 provides

some related work, and finally Section 5 sketches out some conclusion.

2. The Approach
The description generation process is interactive: users can specify their preference parameters—

namely coverage, degree and diversity—and the system generates the best description accord-

ing to these preferences. The user can repeatedly vary the preferences and generate further

descriptions until the explanation need is fulfilled.

Figure 1 illustrates the 5 steps driving the user in the generation process of descriptions.

First of all, the user starts the process by uploading a new dataset (➊). Once the dataset is

selected, the user can specify the attributes of interest that must be considered by the system

when generating the descriptions (➋, by default all attributes are used). Next, the user is guided

through the UI into the 3 major phases in which the actual descriptions are generated.

In the first phase (➌), the input dataset is partitioned such that the tuples that are expected to

be described together reside in the same group. The user is in charge to select how to partition

the dataset. If the dataset describes the results of an EM task, the partition should be defined on

an extra value identifying the clusters of matching entities.

The generation of the d-formulas (conjunction of predicates) happens during the second

phase (➍). For each partition, the number of possible d-formulas is exponential over the number

of attributes’ values. Generating all possible d-formulas is, therefore, prohibitively expensive.

As explained in Section 2.1, we adopt a heuristic procedure that allows us to prune d-formulas

that are less relevant for the task at hand. In the last phase (➎), the actual descriptions are

computed by combining d-formulas over different partitions. Intuitively, we assemble the top-𝑘
descriptions that maximize a scoring function computed on the generated d-formulas that

takes into account the user preferences of degree, and diversity. This problem can be solved

with a dynamic programming approach: in Section 2.2 we will employ a variant of the Viterbi

Algorithm called LVA [5] (a.k.a. List Viterbi), although any other algorithm can be used.



2.1. Building d-formulas

The approach starts building all feasible and relevant d-formulas for each partition. The number

of candidate predicates for each partition depends on the size of the active domain of the

attributes in the partition. Therefore, the complexity of this phase is 𝒪
(︂
𝜌×

∏︀
𝑎∈𝐴

(2|adom𝑝(𝑎)|)

)︂
,

where 𝐴 is the set of the attributes, 𝜌 is the number of partitions and |adom𝑝(𝑎)| is the afore-

mentioned size. Given the complexity for generating all possible d-formulas, we follow a

heuristic process that generates the most relevant candidate d-formulas only. We adopt two

heuristics, one for pruning prolix d-formulas, and one for pruning d-formulas and predicates

with undesirable selectivity.

2.1.1. Heuristic 1 - pruning prolix d-formulas

A low degree is specified when the user prefers a small number of predicates and, conversely,

a high degree is for users who prefer descriptions with wide d-formulas. We push the degree

intent of the users into the process of building d-formulas in order to early-prune d-formulas

that do not meet such a requirement. This limits the number of predicates to evaluate, and it

improves the efficiency of the process.

2.1.2. Heuristic 2 - pruning d-formulas with undesirable selectivity.

The coverage parameter (cov) indicates the desired percentage of tuples that make a d-formula

true. Heuristic 2 transforms the coverage value indicated by the user input parameter value into

an interval [cov𝑙, cov𝑢] of admissible coverage values. The width of the interval is proportional

to the coverage itself given that cov𝑙 = cov − offset(cov), cov𝑢 = cov + offset(cov) and

offset(cov) = 0.14 * cov2. As for Heuristic 1, we push the coverage interval into the process of

generating d-formulas for early pruning.

2.1.3. Generating d-formulas.

The approach adopted for generating all possible and relevant d-formulas takes in input the list

of partitions, the list of dataset attributes, the desired coverage, and degree. The d-formulas of

each partition are computed separately. First, we generate the atomic predicates (i.e., predicates

with only one value). Atomic predicates are generated only if they are within the expected

coverage as defined by Heuristic 2. Then the atomic predicates are combined together to

generate conjunctions of predicates. The resulting d-formulas, for each partition, are then

returned as output.

When combining the predicates together, an internal routine makes sure that only those valid

combinations (i.e., d-formulas) for Heuristic 2 are actually returned. The combination of the

input predicates is organized in a lattice which is dynamically generated using a loop. In each

iteration, we generate one level of the lattice (the n-th) by combining pairs of the previously

generated predicates into one d-formula. Only combinations of predicates whose coverage is

within the interval defined by Heuristic 2 are kept for the next level of the lattice. The generation

of the lattice ends when the threshold, as per Heuristic 1, is reached or when it is no longer

possible to generate predicates.



2.2. Building top-k descriptions

Selecting the best d-formulas in isolation does not necessarily lead to the best descriptions. We

need to search for the optimal set of d-formulas across partitions that all together best fit the

users’ needs. To achieve this, we use dynamic programming: our current implementation is

based on the List Viterbi Algorithm [5]. Viterbi Algorithm and its variants require to model the

search space as a trellis. We build a vertical slice for each partition. The nodes in the slice are

the d-formulas we have found in the previous phase. Nodes of a slice are connected to all the

nodes of the next slice via weighted edges. A path represents a list of d-formulas, with at most

one d-formula for partition. The algorithm is used to find the best full path.

Viterbi needs an objective function 𝑤 to score a path, which intuitively represents the score

of the (intermediate) descriptions we are computing.

We introduce a scoring function which measures (1) the adherence between the features of

the description and the expectation of the user (expressed with a preference on level of coverage,

degree and diversity); and (2) the goodness of the chosen attribute in describing the partitions.

Other techniques can be evaluated. For example, we experimented also with the Smooth Local

Search [6] with no improvement in the performance.

3. Applying Descriptions to the EM scenario

When we need to explain entity matches, it is natural to create descriptions with a d-formula for

each cluster of matching entities. The use of descriptions enables the computation of different

types of explanation, obtained by varying the preferences of coverage, degree and diversity

specified by the user.

What do these entities represent? When users are interested in understanding the main

features of the entities in the dataset, they have to select settings with high coverage values.

These configurations generate descriptions where d-formulas aim to represent the clusters

of matching entities as whole units. Descriptions with high degree tend to create d-formulas

with more predicates. Descriptions with high diversity tend to use different attributes in the

predicate lists of different d-formulas.

Example 2. 𝐷1 in Example 1 is a description with high coverage, low degree and low diversity.
All clusters of matching entities shown in Table 1 are represented and the user can understand
that the values of Song Name qualify the entities. 𝐷2 is an example of a description with high
coverage, low degree and high diversity. In this case, the approach tries to select different attributes
for describing each partition.

𝐷2 : (M_E ∈ {𝑒1}
⋀︀

Song Name ∈ {I Ai n’t Livin ’ Long Like This})
⋁︀

(M_E ∈ {𝑒2}
⋀︀

Artist Name ∈ {Keith Urban})
⋁︀

(M_E ∈ {𝑒3}
⋀︀

Song Name ∈ {I Ca n’t Go There (Acoustic Version)})
⋁︀

(M_E ∈ {𝑒4}
⋀︀

Genre ∈ {Pop})

Descriptions with high degree tend to use the largest number of possible attributes for each parti-
tion. Clearly, degree and diversity are related dimensions and when the dataset has a low dimen-
sionality as in Table 1, the generated descriptions cannot accomplish both the requirement.



Is this a mistake? When users are interested in discovering possible mistakes in clusters of

matching entities, they need to generate low coverage descriptions, that apply only to a small

portion for each partition. As before for high coverage descriptions, degree and diversity are

used to qualify the d-formulas generated.

Example 3. 𝐷3 is a description with low coverage, low degree and low diversity. It describes a
unique partition, i.e., the cluster of matching entities 𝑒3. In this cluster, the entity with Entity
id 7 has a genre which is different from the ones of the other entities in the same cluster. This can
be a possible mistake that the domain expert needs to check. Note that 𝐷3 shows the information
about cluster 𝑒3, since it is not possible to generate low coverage d-formulas for the other partitions.

𝐷3 :M_E ∈ {𝑒3}
⋀︀

Song Name ∈ {I Ca n’t Go There (Acoustic Version)}
⋀︀

Genre ∈ {Urban Cowboy}

In this case, the expert will probably validate the cluster, since all songs in 𝑒3 actually refer to
the same real-world item. Nevertheless, let us suppose that the EM model erroneously generates
a cluster of matching entities which is the concatenation of the entities in 𝑒1 and 𝑒2. 𝐷4 is a low
coverage description for this new cluster. In this case, the item reported by this description will
probably be evaluated by an expert as a mistake, since the song with Entity id 4 is completely
different from the other ones.

𝐷4 :M_E ∈ {𝑒1 + 𝑒2}
⋀︀

Song Name ∈ {Billy}
⋀︀

Genre ∈ {Country}

4. Related Work

Describing datasets. Explanation systems help users in gaining knowledge on the behavior of

systems, experiments or query answers [7], and “black box” complex models [8]. Explanations

typically assume the form of association rules, decision lists and decision sets [9]. Our approach

performs data explanation since it creates partitions from a dataset and builds rules that provide

users with an explanation of their content. The paper develops a subgroup discovery technique

for performing data explanation and exploration on structured datasets [10].

Explainable Entity Matching. Entity matching [11] represents one of the main steps of data

integration and has been under study for several years. Many techniques have been proposed:

from the more traditional rule-based approaches to the most recent machine learning and deep

learning methods. Rule-based approaches [12] are intrinsically interpretable, however, the

identification of the most effective set of matching rules is a complex and non-trivial task [13].

EM approaches based on Deep Learning (e.g., DeepER [14], DeepMatcher [15], DITTO [16] and

many others [17]) have been demonstrated particularly effective. Nevertheless, they require a

significant amount of annotated data, they need a complex configuration, and there is no direct

interpretation of their behavior, affecting their usability in business environments. There are

typically two alternative approaches for providing explanation of AI techniques [18]: 1) applying

explanation systems to interpret their behavior a-posteriori or 2) building models that are

interpretable by design, i.e. models that base their decisions on humanly interpretable "structures

/ components”. The main approaches in EM (e.g., LIME [19] and SHAP [20], Mojito [21] and

Landmark Explanation [22]) belong to the first area.



5. Conclusion

This discussion paper shows how data descriptions can be used for evaluating an EM task. In

particular, descriptions can be used to generate an overview of the main features of the entities

in the dataset or for discovering outliers, which can be the symptom of a mistake in the approach.

Interested readers can found further details of the approach and a deep evaluation in [2, 3].
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