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Abstract
Monitoring traffic flows in cities is crucial to improve urban mobility, and images are the best sensing
modality to perceive and assess the flow of vehicles in large areas. However, current machine learning-
based technologies using images hinge on large quantities of annotated data, preventing their scalabil-
ity to city-scale as new cameras are added to the system. We propose a new methodology to design
image-based vehicle density estimators with few labeled data via an unsupervised domain adaptation
technique.
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1. Introduction

Traffic problems are constantly increasing, and tomorrow’s cities can only be smart if they enable
smart mobility. This concept is becoming more critical since traffic congestion caused by the
increasing number of people using different road infrastructures to travel anywhere is imposing
extra costs that make all activities more expensive and put a damper on the development.

Smart mobility applications such as smart parking and road traffic management are nowadays
widely employed worldwide, making our cities more livable and bringing benefits to the cities,
a better quality of our life, reducing costs, and improving energy usage.

Images are probably the best sensing modality to perceive and assess the flow of vehicles
in large areas. Like no other sensing mechanism, networks of city cameras can observe such
large dimensions and simultaneously provide visual data to AI systems to extract relevant
information from this deluge of data.

In this work, we propose a CNN-based system that can estimate traffic density and count the
vehicles present in urban scenes directly on-board smart city cameras, analyzing the images
captured by themselves.
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∑ 25 vehicles

Figure 1: Example of an image with the bounding box annotations (left) and the corresponding density
map that sums to the counting value (right).

Current systems address the counting problem as a supervised learning process. They fall
into two main classes of methods: a) detection-based approaches [1][2][3] that try to identify
and localize single instances of objects in the image and b) density-based techniques that rely
on regression techniques to estimate a density map from the image, and where the final count
is given by summing all pixel values [4]. Figure 1 illustrates the mapping of such regression.
Concerning vehicle counting in urban spaces, where images are of low resolution, and most
objects are partially occluded, density-based methods have a clear advantage on detection
methods [5][6].

However, since this class of approaches requires pixel-level ground truth for supervised
learning, they may not generalize well to unseen images, especially when there is a large
domain gap between the training (source) and the test (target) sets, such as different camera
perspectives, weather, or illumination. The direct transfer of the learned features between
different domains does not work very well because the distributions are different. Thus, a model
trained on the source domain usually experiences a drastic drop in performance when applied
to the target domain. This problem is commonly referred to as Domain Shift [7], and it severely
hampers the application of counting methods to very large-scale scenarios since annotating
images for all the possible cases is unfeasible.

To mitigate this problem, we introduce a methodology that performs Unsupervised Domain
Adaptation (UDA) among different scenarios. UDA techniques address the domain shift taking
a source labeled dataset and a target unlabeled one. The challenge here is to automatically infer
some knowledge from the target data to reduce the gap between the two domains. Specifically,
in this work, we propose an end-to-end CNN-based UDA algorithm for traffic density estimation
and counting, based on adversarial learning performed directly on the generated density maps,
i.e., in the output space, given that in this specific case, the output space contains valuable
information such as scene layout and context. We focus on vehicle counting, but the approach
is suitable for counting any other types of objects.

Another contribution of this work is represented by the creation of two new per-pixel
annotated datasets made available to the scientific community. One of the two novel datasets is
a collection of synthetic images taken from a photo-realistic video game where the labels are
automatically assigned while interacting with the API of the graphical engine. We conducted
our experiments considering these two datasets and another collection of images already
present in the literature, validating our approach over different types of domain shifts: i) the
Camera2Camera domain shift, where the source images belong to some specific cameras, and



the target ones are instead taken from different perspectives and context; ii) the Day2Night
domain shift, where the source domain is represented by images taken during the day and the
target domain by pictures taken at night; iii) the Synthetic2Real domain shift, where source
images are collected using a video game and automatically annotated, while the target ones are
real urban pictures. Experiments show a significant improvement compared to the performance
of the model without domain adaptation.

2. The Datasets

This section describes the datasets exploited in this work, focusing mainly on the two novel
datasets created on purpose in this work.

2.1. NDISPark Dataset

The NDISPark - Night and Day Instance Segmented Park dataset is a small, manually annotated
dataset for counting cars in parking lots, consisting of about 250 images. This dataset is
challenging and describes the most difficult situations that can be found in a real scenario:
seven different cameras capture the images under various weather conditions and angles of
view. Furthermore, it is worth noting that pictures are taken during the day and the night,
showing utterly different light conditions. The images are precisely annotated with instance
segmentation labels, and this allowed us to generate accurate ground truth density maps usable
for the counting task.

2.2. GTA Dataset

The GTA - Grand Traffic Auto dataset is a vast collection of about 15,000 synthetic images of
urban traffic scenes collected from the highly photo-realistic video game GTA V - Grand Theft
Auto V. We deploy a framework that can automatically and precisely annotate the vehicles
present in the scene with per-pixel annotations. To the best of our knowledge, it is the first
instance segmentation synthetic dataset of city traffic scenarios. Figure 2 shows some examples
of images belonging to this dataset together with the annotations.

2.2.1. WebCamT Dataset

The WebCamT dataset is a collection of traffic scenes recorded using city-cameras introduced
by [6]. It is particularly challenging for analysis due to the low-resolution (352× 240), high
occlusion, and large perspective. We considered images belonging to different cameras and
consequently having different views.

3. Proposed Method

Our method relies on a CNN model trained end-to-end with adversarial learning in the output
space (i.e., the density maps), which contains rich information such as scene layout and context.



Figure 2: Some examples of images of our Grand Traffic Auto dataset, together with the automatically
generated instance segmentation annotations.

The peculiarity of our adversarial learning scheme is that it forces the predicted density maps
in the target domain to have local similarities with the ones in the source domain.

Figure 3 depicts the proposed framework consisting of two modules: 1) a CNN that predicts
traffic density maps, from which we estimate the number of vehicles in the scene, and 2) a
discriminator that identifies whether a density map (received by the density map estimator)
was generated from an image of the source domain or the target domain.

In the training phase, the density map predictor learns to map images to densities based on
annotated data from the source domain. At the same time, it learns to predict realistic density
maps for the target domain by trying to fool the discriminator with an adversarial loss. The
discriminator’s output is a pixel-wise classification of a low-resolution map, as illustrated in
Figure 3, where each pixel corresponds to a small region in the density map. Consequently,
the output space is forced to be locally similar for both the source and target domains. In the
inference phase, the discriminator is discarded, and only the density map predictor is used for
the target images. We describe each module and how it is trained in the following subsections.

3.1. Density Estimation Network

We formulate the counting task as a density map estimation problem [4]. The density (intensity)
of each pixel in the map depends on its proximity to a vehicle centroid and the size of the vehicle
in the image so that each vehicle contributes with a total value of 1 to the map. Therefore,
it provides statistical information about the vehicles’ location and allows the counting to be
estimated by summing of all density values.

This task is performed by a CNN-based model [5], whose goal is to automatically determine
the vehicle density map associated with a given input image. Formally, the density map estimator,
Ψ : ℛ𝒞×ℋ×𝒲 ↦→ ℛℋ×𝒲 , transforms a 𝒲 ×ℋ input image ℐ with 𝒞 channels, into a density
map, 𝐷 = Ψ(ℐ) ∈ ℛℋ×𝒲 .

3.2. Discriminator Network

The discriminator network, denoted by Θ, also consists of a CNN model. It takes as input
the density map, 𝐷, estimated by the network Ψ. Its output is a lower resolution probability
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Figure 3: Algorithm overview. Given 𝐶 × 𝐻 × 𝑊 images from source and target domains, we pass
them through the density map estimation network to obtain output predictions. A density loss is
computed for source predictions based on the ground truth. In order to improve target predictions, a
discriminator is used to locally classify whether a density map belongs to the source or target domain.
Then, an adversarial loss is computed on the target prediction and is back-propagated to the density
map estimation and counting network.

map where each pixel represents the probability that the corresponding region (from the input
density map) comes either from the source or the target domain. The goal of the discriminator
is to learn to distinguish between density maps belonging to source or target domains. Through
an adversarial loss, this discriminator will, in turn, force the density estimator to provide density
maps with similar distributions in both domains. In other words, the target domain density
maps have to look realistic, even though the network Ψ was not trained with an annotated
training set from that domain.

3.3. Domain Adaptation Learning

The proposed framework is trained based on an alternate optimization of the density estimation
network, Ψ, and the discriminator network, Θ. Regarding the former, the training process relies
on two components: 1) density estimation using pairs of images and ground truth density maps,
which we assume are only available in the source domain; and 2) adversarial training, which
aims to make the discriminator fail to distinguish between the source and target domains. As for
the latter, images from both domains are used to train the discriminator on correctly classifying
each pixel of the probability map as either source or target.

To implement the above training procedure, we use two loss functions: one is employed in
the first step of the algorithm to train network Ψ, and the other is used in the second step to
train the discriminator Θ. These loss functions are detailed next.
Network Ψ Training. We formulate the loss function for Ψ as the sum of two main compo-

nents:



ℒ(ℐ𝒮 , ℐ𝒯 ) = ℒ𝑑𝑒𝑛𝑠𝑖𝑡𝑦(ℐ𝒮) + 𝜆𝑎𝑑𝑣ℒ𝑎𝑑𝑣(ℐ𝒯 ), (1)

where ℒ𝑑𝑒𝑛𝑠𝑖𝑡𝑦 is the loss computed using ground truth annotations available in the source
domain, while ℒ𝑎𝑑𝑣 is the adversarial loss that is responsible for making the distribution of
the target and the source domain closer to each other. In particular, we define the density loss
ℒ𝑑𝑒𝑛𝑠𝑖𝑡𝑦 as the mean square error between the predicted and ground truth density maps, i.e.
ℒ𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑀𝑆𝐸(𝐷𝒮 , 𝐷𝒮_𝒢𝒯 ).

To compute the adversarial loss ℒ𝑎𝑑𝑣 , we first forward the images belonging to the target
domain through network Ψ, to generate the predicted density maps 𝐷𝒯 . Then, we forward
𝐷𝒯 through network Θ, to generate the probability map 𝑃 = Θ(Ψ(ℐ𝒯 )) ∈ [0, 1]𝐻

′×𝑊 ′
, where

𝐻 ′ < 𝐻 and 𝑊 ′ < 𝑊 . The adversarial loss is given by

ℒ𝑎𝑑𝑣(ℐ𝒯 ) = −
∑︁
ℎ,𝑤

log(𝑃ℎ,𝑤), (2)

where the subscript ℎ,𝑤 denotes a pixel in 𝑃 . This loss makes the distribution of 𝐷𝒯 closer to
𝐷𝒮 by forcing Ψ to fool the discriminator, through the maximization of the probability of 𝐷𝒯

being locally classified as belonging to the source domain.
Network Θ Training. Given an image ℐ and the corresponding predicted density map 𝐷,

we feed 𝐷 as input to the fully-convolutional discriminator Θ to obtain the probability map 𝑃 .
The discriminator is trained by comparing 𝑃 with the ground truth label map 𝑌 ∈ {0, 1}𝐻′×𝑊 ′

using a pixel-wise binary cross-entropy loss

ℒ𝑑𝑖𝑠𝑐(ℐ) = −
∑︁
ℎ,𝑤

(1− 𝑌ℎ,𝑤) log(1− 𝑃ℎ,𝑤) + 𝑌ℎ,𝑤𝑙𝑜𝑔(𝑃ℎ,𝑤), (3)

where 𝑌ℎ,𝑤 = 0 ∀ ℎ,𝑤 if ℐ is taken from the target domain and 𝑌ℎ,𝑤 = 1 otherwise.

4. Experimental Results

We validate the proposed UDA method for density estimation and counting of traffic scenes
under different settings. First, we employ the NDISPark dataset, and we test the Day2Night
domain shift considering pictures taken during the day as the source domain, while night
images for the target domain. Then, we utilize the WebCamT dataset to take into account
the Camera2Camera performance gap, tackling the domain shift that takes place when we
consider a camera different from the ones used during the training phase. Finally, we use the
GTA dataset to assess the Synthetic2Real domain difference, training the algorithm using the
synthetic images, and then test it on real data considering the WebCamT dataset again.

For all the experiments, we base the evaluation of the models on three metrics widely used
for the counting task: (i) Mean Absolute Error (MAE) that measures the absolute count error
of each image; (ii) Mean Squared Error (MSE) that instead quantifies the squared count error
for each image; (iii) Average Relative Error (ARE), which measures the absolute count error
divided by the true count. Note that, as a result of the squaring of each error, the MSE effectively
penalizes large errors more heavily than small ones. Instead, the ARE is the only metric that



Table 1
Experimental results obtained for the four considered domain shift in terms of MAE, MSE and ARE. We
achieved performance improvements for all the scenarios, considering all the three metrics.

MAE MSE ARE

Day2Night Domain Shift - NDISPark Dataset
Baseline - CSRNet [5] 3.95 27.45 0.43
Our Approach 3.49 20.90 0.39

Camera2Camera Domain Shift - WebCamT Dataset [6]
Baseline - CSRNet [5] 3.24 16.83 0.21
Our Approach 2.86 13.03 0.19

Synthetic2Real Domain Shift - GTA Dataset
Baseline - CSRNet [5] 4.10 25.83 0.28
Our Approach 3.88 23.80 0.27

considers the relation of the error and the total number of vehicles present for each image.
Results are summarized in Table 1. We achieved better results compared to the basic model in
all the considered scenarios and considering all the three metrics.

5. Conclusions

In this article, we tackled the problem of determining the density and the number of objects
present in large sets of images. Building on a CNN-based density estimator, the proposed
methodology can generalize to new data sources for which there are no annotations available.
We achieved this generalization by exploiting an Unsupervised Domain Adaptation strategy,
whereby a discriminator attached to the output forces similar density distribution in the target
and source domains. Experiments show a significant improvement relative to the performance
of the model without domain adaptation. To the best of our knowledge, we are the first to
introduce a UDA scheme for counting to reduce the gap between the source and the target
domain without using additional labels. Given the conventional structure of the estimator, the
improvement obtained by just monitoring the output entails a great capacity to generalize
learned knowledge, thus suggesting the application of similar principles to the inner layers of
the network.

Another contribution is represented by the creation of two new per-pixel annotated datasets
made available to the scientific community. One of the two novel datasets is a synthetic dataset
created from a photo-realistic video game. Here the labels are automatically assigned while
interacting with the API of the graphical engine. Using this synthetic dataset, we demonstrated
that it is possible to train a model with a precisely annotated and automatically generated syn-
thetic dataset and perform UDA toward a real-world scenario, obtaining very good performance
without using additional manual annotations.

In our view, this work’s outcome opens new perspectives to deal with the scalability of
learning methods for large physical systems with scarce supervisory resources.
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