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Abstract
Language embeddings are a promising approach for handling natural language expressions. Current
embeddings encompass a large language corpus, and need to be retrained to deal with specific sub-
domains. On the other hand, these embeddings often disregard even basic domain knowledge, making
them specially fragile when handling technical, specific, knowledge domains, and requiring costly re-
training. To alleviate this issue, we propose a combined approach where the embedding is seen as a
model of a logical knowledge base. Through a continuous learning approach, the embedding improves its
satisfaction of the knowledge base, and in turn produces better training examples by labelling previously
unseen text. In this position paper we describe the general framework for this continuous learning, along
with its main features.
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1. Introduction

Natural Language Understanding (NLU) is the mechanical act of understanding language
expressions, which is pivotal to many text related applications (e.g., text classification, informa-
tion retrieval, question-answering). These applications require features that faithfully represent
text meaning, to use them in relevant algorithms.
Language embeddings (LE) [1, 2, 3] are dense representations of textual expressions, that

capture their distributional semantics by pre-training a language model over large corpora of
general language (e.g., Wikipedia). Their pre-trained nature allows to conveniently use LE
in many down-stream tasks as representations of language expressions (known as transfer
learning). However, pre-trained LE are challenged by domain-specific language in several
applications. There are three main reasons for this.

First, LE do not capture domain-specific language, and require re-training over domain-
specific corpora of unstructured text. However, re-training is computationally expensive, and
the available datasets are not always large enough to effectively re-train LE. Second, LE capture
the sense of words from their context, as distributional semantics. However, many domain-
specific tasks require a more precise understanding of text. To cope with these problems one
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can take advantage of structured information, such as key phrases or ontological categories.
Third, even general domain applications often require to represent larger fragments of text (e.g.,
sentences, paragraphs). In such cases NLU techniques need to capture deep, semantic rooted
understanding of text structures that are more complex than simple bags of tokens. Although
several methods have been proposed in the literature, they are often task specific and increase
design complexity of down-stream models in practice.

To mitigate these challenges, we propose to complement LE with Knowledge Bases
(KB)—that is, formal representations of knowledge. Specifically, we aim to improve language
understanding by (i) acting on the LE’s ability to represent domain-specific language expressions,
and (ii) linking KB symbols (i.e., entities and relations) to language expressions. Intuitively, we
consider language expressions as instances of KB assertions (interpretations), hence defining KB
embeddings (KBE) (i.e., dense representations of KB symbols) as a function of LE. We jointly
train both from supervised data to maximise logical satisfaction of the KB. We argue that this
approach helps to address the LE challenges highlighted above.

First, we propose to use the KB to extract a domain-specific supervised dataset to pre-train
our model. By doing so we decouple the problem of re-training LE over domain-specific data
from task-specific data-sets that, as said, could not be large enough. Second, we propose to
learn representations of text fragments longer than a token by means of a knowledge-aware
task mediated by the KB, that is learning a representation of KB symbols (i.e., KBE). We argue
that such representations are more useful to down-stream tasks than the ones obtained with the
next sentence prediction task, which mainly capture syntactic properties rather than semantics.
Third, we propose to use the combined knowledge and language embeddings (i.e., KBE and
LE) to associate KB symbols to language expressions, and use them as features in down-stream
models. We argue that representing language expressions with symbols, in addition to LE, is a
step forward to precisely characterising their meaning compared to distributional semantics
alone.

In addition, note that by using KB symbols as features we improve interpretability of down-
stream models. Moreover, as we will explain in more details, interpretability enables a continu-
ous learning framework to mutually improve LE and KBE.

2. Related work

Complementing KB and LE is not new. Some works [4, 5, 6] focus on the LE’s challenge to
represent domain-specific language, and use a knowledge-aware tasks (mediated by a KB) to re-
train LE; while [7] specifically focuses on continuous learning. The problem of complementing
Knowledge Graph (KG) embeddings with textual information, such as names and descriptions
of KG entity and relations, to improve the KG Completion task is studied in [8, 9, 10]. However,
none of those works address the problem of complementing domain-specific LE with the
extraction of symbolic features from language expressions for NLU.

Petroni et al. study the ability of word embeddings to capture relational knowledge,
similarly to what a KB does, by focusing on general language. They highlight that word
embeddings can capture lightweight KB capabilities. From this perspective, [12] proposes
encoding relational knowledge in a separate word embedding learned from co-occurrence



statistics, complementary to a given standard word embedding. The analysis presented by the
authors shows that relational word vectors do indeed capture information that is complementary
to what is encoded in standard word embeddings. We argue that formal representations of
knowledge are not matched by distributional semantics out of the box.

Information Extraction (IE) aims to extract structured information from unstructured text.
Most work focuses on unsupervised methods, to face the challenges of compiling supervised
datasets and obtaining a KB upfront [13, 14]. Open Information Extraction (OIE) [15, 16,
17] extracts relational facts from unstructured text as surface patterns (i.e., spans of pure
unstructured text), without linking them to an existing KB. We argue that using KBs to formally
describe domain knowledge is beneficial to enforce control over the IE process. In fact, KBs can
assist in the compilation of supervision, simplify the evaluation process of IE results by letting
to focus on fewer, well-known symbols rather than the more widespread surface patterns, and
improve explainability of down-stream tasks.

Several tasks focus on extracting KB resources from unstructured text; e.g., Named Entity
Recognition (NER), Named Entity Linking (NEL), and Relation extraction (RE). Traditional
approaches use extraction pipelines that treat NER, RE and NEL as separate tasks, suffering from
error propagation and ignoring synergies between sub-tasks. In addition, these methods depend
heavily on complex features. Thus, recent works focus on building joint, neural models [18].
These models are either task-purposed (i.e., they only focus on entities [19] or relations [20, 18])
or domain-specific [21, 22]. We are interested, instead, on the more general problem of modelling
synergies between language expressions and KBs, to extract complete relational facts from
language expressions for any domain, similarly to KG completion [23].

Providing dense representations of KG resources (subjects, objects and relations) has been
widely considered [24, 25]. In such models, KG embeddings (KGE) are learnt from relational
facts, to optimise a predetermined embedding function. However, domain-specific background
knowledge is usually formalised through hierarchies, taxonomies and logical rules, which are
typical of KBs rather than KGs—the latter store large collections of relational facts instead.
Gutiérrez-Basulto and Schockaert [26] showed that KGE models hardly capture even the most
basic logical properties of KBs, and propose to represent KB resources through convex regions
in a semantic space, which is seen as an interpretation of the KB. In addition, they describe how
to keep the embedding model open to external resources; e.g., language expressions represented
by embeddings. Kulmanov et al. [27] apply a similar KB embedding model to a domain-specific
task for KB completion. Although [26, 27] are related to our study, we focus on NLU.

Similar approaches combining logic and real world objects represented by embeddings were
studied in [28, 29]. These differ by the methods used to enforce logical consistency (i.e., fuzzy
logic or probability) in contrast to the geometric properties by [26, 27]. In addition, [28] have
not been fully studied to interpret language expressions for NLU [30, 31].

3. Model Description

Our main goal is to infer KB symbols (i.e., entities and relations) from surface patterns, that
is, text spans of arbitrary length from unstructured text. As a simple example, consider the
sentence The city of lights has been the capital of France for many centuries, where city of lights



Figure 1: An intuitive representation of the model for a positive case: parameters of a function to
translate the language embeddings semantic space and regions representing KB symbols are optimized
to satisfy the KB from language expressions labeled with KB symbols.

and France are surface patterns that should be meant as Paris and France respectively, and
the sentence as CapitalOf(Paris, France).

We consider surface patterns as possible interpretations of KB symbols. Recall that a KB is a
partial representation of the world, which usually introduces restrictions on the possible mean-
ings of the symbols it uses. Hence, KB semantics is typically defined by means of interpretations.
In essence, an interpretation describes all the instances of interest and their relationship within
all the properties expressed in the KB. Slightly more formally, an interpretation consists of an
interpretation domain, which describes the objects in the world, and an interpretation function,
which describes the meaning of each symbol within this world. This interpretation is a model of
the KB if it satisfies all the constraints imposed by the KB [26, 32].

We consider (the set of representations of) surface patterns as an interpretation domain,
and aim to learn from data a suitable interpretation function guaranteeing that the resulting
interpretation is in fact a model. To achieve this, we propose to (see Figure 1):

• encode surface patterns in a language semantic space, using a pre-trained LE model;
• encode KB symbols as regular regions in a KB semantic space as in [26]. Specifically,

relations are interpreted as convex regions;
• build an interpretation function bridging both semantic spaces.

We use a supervised dataset to jointly train the parameters of the model, using a loss based
on the violation of the KB constraints. The supervised dataset labels the unstructured text
fragments with markers of surface patterns and their relative symbols in the KB. The pre-trained
model can be used to obtain domain-specific language embeddings, and to infer KB symbols
over natural language expressions by using regular regions. In addition, regular regions can be
used as KBE in down-stream tasks (e.g., KB Completion).

Importantly, to deal with the problem of polyonymity, notice that entities are also considered
(unary) relations, and they are represented as regular regions. In fact entities in the KB are
singleton symbols (e.g., Paris) but they are representative of potentially many different surface
patterns (e.g., the city of lights, Paris, the capital of France). We also emphasise the restriction
to regular regions for interpreting relations. There are three main reasons for this choice. First,
regular regions allow for better interpretability of the representations; second, the results allow



Figure 2: A framework for continuous learning

generalizability by avoiding over-fitting through complex regions; and third, regular regions
can be succinctly described through a few parameters.

Indeed, learning regular regions over the original language embedding space would be
desirable, because the interpretation function would be reduced to the identity function. This
would be possible for entities, as LE guarantee that similar entities lay close in the semantic space.
However, it might be not possible for relations of arity greather than 1. For one, relations with
the same domain and range would have overlapping regions. In addition, relations with a wide
domain or range would have very large regions. In both cases we would lose representativity.
Thus, we need either to increase the dimensions of the embeddings (𝑛− 1 dimensions on the
number of KB symbols are needed [26], leading to a sparse representation space) or to use a
non-linear, relation-specific transformation to to encode inputs.

4. Continuous Learning

To train the proposed model from supervised datasets and to make use of pre-existing KBs are
certainly two strong assumptions, as they might be expensive to obtain. Still, domain-specific
applications exist where highly-qualified, labour-intensive, error-prone human interventions are
usually employed. Two examples are offered by the manual screening of scientific publications
to be included in literature reviews, and by manual labelling of unstructured text. Such human
activities could be shifted to higher level interventions, such as maintaining KBs and supervised
datasets; keeping a degree of control over the inference process through interpretable models is
desirable in such scenarios, when compared to completely unsupervised approaches.

We propose a continuous learning framework, which iteratively refines the supervised dataset
and the knowledge base. This framework, depicted in Figure 2, is organised into the following
steps:

• background knowledge is formalised through a KB containing relational data (assertions)
and Datalog rules (axioms);

• assertions from the KB are used to extract a distantly supervised dataset from a domain-
specific corpus of unstructured text fragments;

• the supervised dataset is used to re-train the model, and the model is used to comprehend
new text fragments by inferring KB symbols;

• inferred KB symbols can be analysed by humans, and used to maintain the supervised
dataset and the KB.

We use distance supervision to select sentences from unstructured text corpora that match
named entities from KB assertions. A known challenge of this approach is to discriminate if



matching sentences have a meaning which is coherent to the assertion under scrutiny. Observe
that compiling a good dataset for supervised learning is more related to precision than recall:
capturing all possible good sentences is less desirable than capturing a few high quality sentences
representing the assertions.

In our view, this distance supervision problem can be successfully addressed by considering
it as a search problem: we view any given assertion as a query made over a corpus of (natural
language) sentences. [33] suggest that re-ranking models (i.e., BM25+CE [33], ColBERT [34])
works well in combination with pre-trained LE, showing good generalization capabilities over
unseen datasets and domains.

5. Conclusions and Future Work

We propose a framework to learn from supervised data a model aimed to to align language
embeddings and KB representations; such a framework can be useful in two ways. First, we
obtain domain-relevant, knowledge-aware language embeddings by continuously re-training
them with a KB mediated task; second, we obtain KB embeddings that provide a model of
the KB over language expressions, which can be used to infer KB symbols (i.e., relations and
entities) over language expressions. LE and KB symbols can be used in domain-specific down-
stream applications as features. This model can improve the effectiveness of natural language
understanding methods in domain-specific applications and, by using KB symbols as features,
improve interpretability. We also propose distant supervision to compile a dataset for training,
and to use text ranking techniques to improve precision.

One potential application field is in the area of literature reviews, where all publications
related to a specific topic need to be analysed. In this case, our methods automatically find and
recommend scientific publications that match the topic of interest, among the huge amount of
existing publications. Importantly, current literature reviews require extensive interventions
from highly-qualified human experts to discern whether a publication is indeed related to the
topic studied, and also to evaluate its importance and relevance.

As future work, we plan to implement such a model and test its performance in potential
down-stream tasks.
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