CEUR-WS.org/Vol-2999/bxpaperl.pdf

C-Lenses Explained:
Bx Foundations for the Rest of Us

Anthony Anjorin’, Hsiang-Shang Ko? and Erhan Leblebici

"TAV GmbH, Germany

Institute of Information Science, Academia Sinica, Taiwan

Abstract

Bidirectional transformations (bx) are mechanisms for maintaining the consistency of multiple artefacts.
Some of the challenges bx research aims to address include answering fundamental questions such as
how best to precisely characterise consistency, “good” consistency maintainers, and the required input
and assumptions to guarantee this good behaviour.

While substantial progress has been made towards unifying the different (variants of) formal frame-
works for bx, many of these formal results are not yet easily accessible to more practically-oriented bx
researchers, often due to a missing background in (advanced) category theory. This is an unfortunate
situation, as many bx tools are developed and maintained by practically-oriented bx researchers, who
would but currently cannot fully profit from formal results and insights. In particular, we are not aware
of any practical implementation of C-lenses, not even preliminary discussions about its relevance to
practical bx. We believe this is because of the inaccessibility of the categorical language, and write this
paper to decipher C-lenses for bx researchers without any substantial background in category theory.
Our goal is to spark broader interest in C-lenses and in discussions on their usefulness in practice and
potential for improving existing, and inspiring new bx tools.

We start by reviewing the well-known state-based bx framework, already accessible to a broad au-
dience due to its simplicity. We then explain how this framework can be elegantly generalised to the
richer, delta-based setting of C-lenses using multiple examples and illustrative diagrams.

Keywords

Bidirectional Transformations, Formal Foundations, C-Lenses

1. Introduction

Bidirectional transformations (bx) are mechanisms for maintaining the consistency of multiple
artefacts [1]. To provide support for consistency maintenance, a formal understanding of what
constitutes a “good” consistency maintainer, as well as tooling support for automation are
equally important. It is also essential that formal and practical bx go hand-in-hand: bx tools
should faithfully instantiate a bx formal framework, and bx formal frameworks should cover
aspects of practical relevance.

There has been considerable progress made regarding bx foundations. Johnson et al. [2, 3, 4]
and Diskin et al. [5] have both suggested generalisations of the state-based lens bx framework [6]
to a richer delta-based setting, addressing certain limitations inherent to a state-based setting.

Bx 2021: 9th International Workshop on Bidirectional Transformations, part of STAF, June 21, 2021
& anthony.anjorin@iav.de (A. Anjorin); joshko@iis.sinica.edu.tw (H. Ko); erhan.leblebici@outlook.com
(E. Leblebici)
© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=1 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:anthony.anjorin@iav.de
mailto:joshko@iis.sinica.edu.tw
mailto:erhan.leblebici@outlook.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

While there are relatively direct implementations of the state-based characterisation of bx
such as Boomerang [7], GRoundTram [8], BiGUL [9] and HOBIT [10] (to name just a few),
we are not aware of any bx tool that faithfully implements C-lenses according to Johnson
et al. [3]. This is certainly not because practical bx tools are inherently state-based, or that
working in a rich delta-based setting is often infeasible in practice. Indeed, bx tools from the
Model-Driven Engineering (MDE) community are often able to record and work with deltas (see
a recent comparison of bx tools for details [11]). Diskin and Hermann [12] have collaborated to
discuss how Triple Graph Grammars (TGGs) [13] can be aligned with D-lenses according to
Diskin et al. [5]. This is a helpful step in the right direction, as there are multiple TGG-based
bx tools available. We claim that most results of Johnson et al. [3], concerning C-lenses as
an elegant generalisation of state-based to delta-based bx, remain largely inaccessible to most
practically-oriented bx researchers mainly due to a missing background in category theory.

Our goal in this paper is to contribute to the ongoing endeavour of bridging formal and
practical bx. We aim to spark interest in C-lenses from a practical point of view, and enable
discussions on their potential to improve existing bx tools and perhaps inspire a new generation
of bx tools in the different bx sub-communities. To serve the primary purpose of the bx commu-
nity — to enable communication and exchange of ideas between the various sub-communities —
we target practical bx researchers without any substantial background in category theory, and
aim to be as self-contained and understandable as possible. As the paper is intentionally kept
lightweight in terms of technicality, we refer to and rely on Johnson et al. [2, 3, 4] for all formal
details and proofs.

The paper starts with lenses in the state-based setting (Sect. 2) as a warm-up for the generali-
sation to C-lenses in our main, delta-based setting (Get and Put operations in Sect. 3 and their
laws in Sect. 4). The main advantage of C-lenses is universality, which we explain and discuss
in Sect. 5. Related work is in Sect. 6 and our conclusion in Sect. 7.

2. State-based bx

We start with the basic notions of consistency maintenance in a simple state-based setting, as a
warm-up for our main delta-based setting in Sect. 3. Consider a simple consistency maintenance
scenario (known as the composers example [14]) where we wish to synchronise multisets
(sources) of composers with their name, date of birth, and nationality, with multisets (views) of
composers with only their name and nationality. This minimal example exhibits asymmetry,
a property of consistency maintenance scenarios that we will assume' throughout the paper:
when a pair of source and view are consistent, the view is completely determined by the source.
Assuming asymmetry, a lens [6] keeps a pair of source and view consistent using two functions:
Glet to obtain the view of a source, and Put to update an existing source given a new view. This
can be formalised in a straightforward manner as follows:

Get : S—)V,sgv (1)
Put : V><S—>S,(v,s)»ﬁ>s’)

'Johnson et al. [15] argue that this is not a fundamental restriction as symmetric lenses can be constructed as
spans of asymmetric lenses.

S and V are sets of objects, Get and Put are functions, and V' x S is the product set consisting
of pairs (v, s) of objects with v € V and s € S. Independent of the exact behaviour of a lens
— a pair (Get, Put) — the challenge is to characterise “good” synchronisation behaviour in a
general manner. The lens framework does this by requiring the three laws depicted in Fig. 1
for very well-behaved lenses. We have chosen a diagrammatic notation for the laws as this
generalises well to the delta-based setting in Sect. 3. We now explain the meaning of these laws.

PutGet GetPut PutPut

1y x Put
ngLS SMVXS V><V><SV VxS
A N A
1% S VxS Pul S

Figure 1: State-based lens laws for very well-behaved lenses

Starting with PutGet, the diagram to the far left: 7 is the projection to the first (0th) di-
mension, i.e., to V in this case — meaning that my maps pairs (v, s) to v. The equals sign “="
inside the diagram means that it must commute for the law to hold, i.e., Put ; Get = my where
the operator “;” — read as “then” — composes functions as required. The intuition here is that
if you put a view v into an old source s to obtain a new source s’, the view you get from s’
immediately after that should be exactly v. This ensures that Put synchronises v fully with s.

Example 1. To make things more concrete, consider our composers example: Let S be a set
of multisets of triples (name, date, nat) representing composers, and V' be a set of multisets
of pairs (name, nat) representing composers without their date of birth. This means that
source and view objects here are multisets of triples and pairs, respectively. Let Get be the
function mapping sources to views by mapping the triples (name, date, nat) in a source to
pairs (name, nat) in the resulting view. Now let us define Put(v, s) = s as follows:

1. Sets’ =s.

2. For every pair (name, nat) in v, if there exists no triple of the form (name, _, nat)®in s’
then add a new triple (name, ???, nat) to s'.

3. For every triple (name, date, nat) in &', if there exists no pair (name, nat) in v then
remove the triple (name, date, nat) from s'.

While this choice of Get and Put might seem reasonable, the PutGet law tells us that it is
actually a bad idea: Consider v = { (}.S. Bach, German), (}.S. Bach, German) } and s = { (}.S.
Bach, 31/03/1685, German) }. This is a valid input pair for Put — in particular, v is a valid view,
ie, v € V. As Put does not care about duplicates, however, it will yield an unchanged s as the
result s'. As Get(s) = { (J.S. Bach, German) } # v, the PutGet law is violated.

Intuitively, Put as we have defined it does not take v fully into account. Specifically, it
ignores the fact that some pairs can be present multiple times in the view. As this information

26 »
_” means any value.

is, however, not ignored by Get, something is wrong. To avoid violating PutGet, Get can be
adjusted to avoid duplicate pairs in the view.

For the second law GetPut in the diagram of Fig. 1: 15 denotes the identity function s — s,
(Get, 1g) denotes a pair of functions that maps s to the pair (Get(s), 1s(s)) = (v, s). As the
diagram is to be commutative, the law demands that (Get, 1g) ; Put = 1g. Intuitively, this
means getting a view v from a source s and directly putting the same view v back in s must do
nothing to s. This ensures that Put does not fabricate random information that does not come
from the view.

Example 2. Revisiting our composers example, let Put be defined as for Ex. 1. Let Get project
triples to pairs as in Ex. 1 and additionally avoid duplicates so PutGet is fulfilled. To explore
a practical violation of GetPut, let us assume that Get is further adjusted to keep only last
names, e.g., 1.S. Bach becomes Bach in the view to provide a more compact list of composers.
Without changing Put, the PutGet law is still satisfied for this new Get. Consider the source
containing 7.S. Bach as a composer. Applying Get results in an abbreviated name in the view.
Put as defined for Ex. 1 will not, however, recognise this and instead delete the composer 7.S.
Bach in the source and add the new composer Bach with a default date of birth. As this changes
the source, we see that (Get, 1g) ; Put # 1g, violating GetPut.

The final law PutPut is depicted to the right of Fig. 1. V' x V' x S is a product set consisting
of triples (v, v', s). mp 2 is the projection to the first (0th) and third (2nd) components, i.e., maps
triples (v, v', s) to pairs (v, s). The function 1y x Put applies the identity to the first component
of a triple, and Put to the second and third components, i.e., maps triples (v, ', s) to pairs
(v, Put(v', s)) = (v, s"). As the diagram is to be commutative, this means that 1y x Put ; Put,
i.e., applying Put to the first view v/, then to the second v, is to be the same as 7 2 ; Put, i.e.,
skipping the first view v’ and just applying Put to the second view v. Intuitively, this means
that it should make no difference if intermediate views such as v’ are put into the source or not.
The last and final view v fully determines the resulting source.

Example 3. Consider our composers example with Put as defined in Ex. 1 and Get as the
projection to names and nationalities avoiding duplicates. PutPut can be shown to be violated
as follows: Starting with a source s = { (].S. Bach, 31/03/1685, German) },let v’ = {} and v =
{ (J.S. Bach, German) }. As Put(v, Put(v', s)) = Put(v,{}) = { (J.S. Bach, ???, German) } #
Put(v, s) = s, PutPut is violated. Intuitively, the first view v’ deletes the single entry in the
source, while the second view v can be interpreted as attempting to recreate it. This does not
work, however, as there is no way to reconstruct the date of birth of the composer from v.

Numerous authors including Johnson et al. [2] and Diskin et al. [5] use the PutPut law to
motivate a generalisation of the lens state-based framework to a delta-based setting. In some
state-based scenarios, the PutPut law is indeed unreasonable: it basically demands that putting
arbitrary intermediate views make no difference to the final result of putting the final view.

Considering Ex. 3, the practical consequence of PutPut would be to require tracking a com-
plete history of all changes so that all previous values can be restored. This can be undesirable
or even infeasible in practice due to limited memory and other practical constraints, and is also
potentially confusing as there is no formal way to distinguish between (i) deleting and restoring
a composer and (ii) deleting a composer and adding a new composer that just happens to have

the same name and nationality. In a richer, delta-based setting this distinction becomes possible,
making the PutPut law just as fundamental as PutGet and GetPut.

3. Delta-based get and put

In this section and the next, we generalise the Get and Put functions and the (first two) well-
behavedness laws to a delta-based setting, in which we can express not only what sources
and views become but also how they are modified. In this setting, .S is no longer simply a
collection of all possible sources but is now a category, consisting not only of all sources as its
objects 0bj(.S), but also of all possible arrows arr(S) between all sources. As it helps (in a bx
context) to think of these arrows as “deltas” that represent a means of obtaining (computing,
transforming) one source from another, we shall often use the term “delta” instead of the more
generic “arrow” in the rest of this paper. Analogously, V is also a category consisting of all
possible views 0bj (V') and view deltas arr(V'). While we shall use the notation 05 : s — &
to represent deltas, it is crucial to bear in mind that deltas are in general not fully determined
by their endpoints. This means that unless explicitly stated otherwise, there can in general be
multiple, different deltas 05 # 07, : s — s’ between the same objects s and .

Example 4. Some objects and deltas in the source and view categories S and V' for the composers
example are shown in Fig. 2. Within the two categories (depicted as rectangles), objects are
multisets/states (depicted as ellipses), and deltas are modifications from one multiset to another
(depicted as bold arrows). Only three sources and three deltas are shown in .S. The source s
contains just one composer 7.S. Bach (represented as a triple). The source delta §,y adds a new
composer with the same name and nationality but a different date of birth 08/03/1714 to result
in &', while dy ¢~ then edits this new composer by changing the name to C.P.E. Bach.

S o |V
(J.S. Bad@

Geto 4+ - - 5,0,0//

S

(J.S. Bach,31/03/1685, German)

e — — —

555’; 65’5”

1

(J.S. Bach,German)
(C.P.E. Bach,German)

(J.S. Bach,31/03/1685, German)
C.P.E. Bach,08/03/1714, German

(

Figure 2: Excerpt of delta-based Get for the composers example

3

Categories must have a composition operator “;” with which deltas can be composed in an
associative manner (without caring about the order in which a chain of deltas is composed),
and an identity operator id that maps every object s to an identity delta id(s) : s — s that
represents doing nothing to s. Identity is expected to be compatible with composition: doing
nothing before or after doing something should make no difference, that is, id(s) ; sy = Oy
and dy/ 5 ; id(s) = g4 for all incoming deltas d¢ : s — s’ and outgoing deltas 045 : 8" — s.

Example 5. Back to Fig. 2, the composition of both deltas, i.e., adding C.P.E. Bach directly, is
depicted as the delta d,,; 044 leading directly from s to s”. Get® maps s to a view v in V
containing }.S. Bach represented as a pair. The identity deltas are not shown in the figure, but
there is one from each state back to itself, representing a no-op.

As S and V' are now categories, Get : S — V has to operate on both objects and deltas,
mapping source objects to view objects, and source deltas to view deltas. Get is now a so called
functor with two parts: Get®, which maps sources to views, and Get™, which maps source
deltas 04y : s — s’ to corresponding view deltas d,,/ : Get®(s) — Get°(s’). Such functors
must respect the composition and identity operators in the source and target categories, i.e.,

Get™ (05g505r57) = Get ™ (8s¢); Get ™ (dgr5v) and Get ™ (id(s)) = id(Get®(s)).

Example 6. Figure 2 contains a small excerpt of a delta-based Get : S — V for the composers
example. Mappings for Get® are depicted as dashed “—” arrows between sets, mappings for
Get™ as dotted “—” arrows between deltas. The functor Get is given by the entirety of all
dashed and dotted mappings. As we are using the variant of Get that avoids duplicates, Get®
also maps s’ to v. As the new composer becomes distinct in the view after his name is changed
to C.P.E. Bach, s” is mapped to a new set v” now with both }.S. Bach and C.P.E. Bach. As Get is
a functor, we also have to specify what happens to deltas: d,¢ is mapped to id(v) as it does
not correspond to any change in the view. d4 4 is mapped to d,,», i.e., in this case editing a
composer in the source corresponds to adding a composer in the view if the corresponding
composer becomes distinct. As functors must respect composition, d,4; d4 s must be mapped

to Get™ (0ss;05r57) = Get ™ (8s5g); Get™ (dgr51) = id(V); Opprr = it

To generalise Put to a functor, let
us start by discussing the input for /
Put®, the object part of Put. From S P’U,to)
the state-obased Put, we can surmise 1 Get® —
that Put® has to take at least a new
view v’ and an old source s as input. v Dot ’Ul
But v’ and s cannot be completely
unrelated. The input will only make
sense for Put® if the new view v’
resulted from a delta 4, applied to
an old view v that corresponds to the old source s. This is formalised with the diagram depicted
in Fig. 3. The new view v’ must be the result of applying a view delta d,,/ to v that must
be Get°(s). This is crucially important as there are settings where it is simply impossible to
get from some given v to another v/, i.e., no such corner with v and v’ exists. This cannot
be expressed in a state-based framework. Furthermore, even if we are in a setting where it

Figure 3: Input and output of Put®

is possible to get from every v to every other v’ via some delta (or possibly multiple deltas),
it is still important to note that Put can treat each of these deltas as different corners. In a
state-based framework, the assumption is that it is possible to get from every v to every other
v" in a unique way — think of the meaning of this delta as “discarding the original view and
changing to the target view”; therefore there is no need to bother with how to handle this
unique delta as it is fixed by the pair of connected objects.®

Example 7. Figure 4 provides a concrete example for Put®. The view v (containing }.S. Bach)
is extended by adding C.P.E. Bach to produce v'. This corner is valid input for Put® according
to Fig. 3, and Put° produces a new source s’ consisting of 7.S. Bach from the old source s and
a new composer (C.P.E. Bach, ???, German) corresponding to the newly added (C.P.E. Bach,
German) in the view v'.

(9

(J.S. Bach,31/03/1685, German)

(J.S. Bach,31/03/1685, German)

(J.S. Bach,31/03/1685, German)

(C.P.E. Bach,???, German)

A
(J.S. Bach, German)
C.P.E. Bach, German)|

N\
(J.S. Bach, German)

(C.P.E. Bach, German (i

Figure 4: Example for Put®

On our way to C-lenses, the challenge is
now to work out what Put™ could operate

—/

on. How would a category look like with “cor- 0= S S
ner” objects shaped as the input for Put® in SS/ /
P’U/t_) (6857 51)/1_)/)

Fig. 37 How should we define deltas (arrows) S S/
between these corners? As chance would 5,
have it, categories with exactly such corner BEAAN 'l_)/
objects are already well-studied in category
theory. This means we have a fully worked S

) v/ / (5 I 551
out suggestion that we can adopt to abx con- U — v v'v

text (and decide if it makes sense for us).
The basic idea of the comma category con-
struction is to create new categories by han-
dling arrows as objects. So in our case, the
arrows that we want to treat as objects are the view deltas §,,/. The construction generalises
this idea by using functors to choose the exact arrows we are interested in. In the most general
form, one functor is used to choose the start of the arrow, while a second functor chooses the

Figure 5: Input and output for Put™

*In category theory the state-based setting corresponds to codiscrete categories and not discrete categories as
one might falsely assume.

end of the arrow. Applying this idea to our “corners”, we can characterise our corner objects as
exactly those view deltas d,,/, whose starting point is fixed by Get (remember Get is a functor),
and whose ending point is basically free. We can express this freeness formally by using 1y
(the identity functor from V' to V) to “fix” the ending point of §,,.

With this we can now look up the standard definition of the comma category (Get, 1) and
obtain the shape for its objects and arrows as depicted in Fig. 5. An “arrow” in (Get, 1y) is a
pair of arrows (ds3, 0,777) between two corners (s, 0, : v — v') and (5, 055 : © — ¥) in light
grey squares. So this special “corner delta” in our category of corners is a pair of a source delta
sz changing the old source s, and a view delta 0,/ changing the new view v’. As Get is a
functor, d43 already fixes the corresponding view delta on the old view v, namely Get®(ds3). As
the bottom square must commute (according to the standard comma category construction), we
only accept such d,/5 that “preserve” our corner structure, i.e., there must exist a suitable 9y .

Intuitively, think of the corner delta as a change to an input for Put® that produces again
a valid input for Put®, i.e., that produces a valid corner. The corner delta serves as input for
the functor Put™ that now has to map the pair of source and view changes (053, d,/3/) to a
corresponding change Put™ (053, d,/7) of the updated source s in the “pre-square” to obtain
the new updated source 5, which completes the “post-square”. So we can think of Put™ in
Fig. 5 as being able to handle a “small” perturbation of the bottom-left corner (s and v’) of a
consistent pre-square, by computing a corresponding update of the top-right part (s’) of the
pre-square required to directly obtain a consistent post-square.

Example 8. A concrete example demonstrating input and output for Put™ is depicted in
Fig. 6. The two grey rectangles contain squares that can both be interpreted as the combined
input (corner objects in (Get, 1)) and output (objects in S) for Put®. In the pre-square a
new composer (C.P.E. Bach, German) is added to the view and put back into the old source to
result in a new composer (C.P.E. Bach, ???, German) with an unknown date of birth. What the
example now demonstrates is that if the old source s is changed by adding a composer (1.S. Bach,
08/03/1714, German) via d3, and the new view v’ is changed by removing (7.S. Bach, German)
via 0,57, these two changes can be passed to Put™ to directly compute the delta required
to change the new source s’ to s’. As Put is required to be a functor, the computed delta
Put™ (43, 0,73) must produce a source s’ that matches the post-square derived by applying
Put® to the post corner.

While Put® is clearly useful and can be intuitively understood as the straightforward delta-
based version of Put, it is not so clear if Put™ is a good fit for bx. At first glance, Fig. 5 is
probably unexpected. Why do we have to handle a pair of changes to both the source and the
view? The reader’s intuition at this point is probably to map the view delta §,, to a source
delta d¢ using Put™. While this would certainly be simpler, the problem is that the choice of
Put™ (dss) would not be “unique”, “special”, “minimal”, “least controversial”, or - as category
theorists would say in a general setting — universal when compared to other possible choices.
We shall see in Sect. 5 that providing the additional information of how to handle all possible
ways of changing corners (old source and corresponding new view) helps us arrive at a particular
Put behaviour that is unique in a specific sense and highly desirable in some scenarios.

(J.S. Bach,31/03/1685, German)
-7

. \'(J.5. Bach,08/03/1714, German)

(C.P.E. Bach, German)

A

(J.S. Bach, German)
7

(J.S. Bach, 31/0‘3/1685, German)

(J.S. Bach, 31/03/1685, German)

(C.P.E. Bach,???, German)

N 3
(J.S. Bach, German)_

(J.8. Bach, German) (C.P.E. Bach, Ger;n—u,n)

Figure 6: Example for Put™

4. Delta-based lens laws

Before we explain the advantages of Put ™ in Sect. 5, we still need to generalise the lens laws
depicted as commutative diagrams in Fig. 1. We will do so for PutGet and GetPut; as the
third law PutPut is not directly required for the rest of the paper, we shall skip it and refer the
interested reader to Johnson et al. [2, 3] for the rather technical details.

To provide delta-based versions of PutGet and GetPut we need two simple functors: Qy :
(Get, 1y) — V to extract normal views from our comma category, and nge: : S — (Get, 1y)
to inject sources into the comma category. As these are functors, we have to think in terms of
both objects and arrows as depicted in Fig. 7. Q}, extracts the new view v’ from a corner object,
while Q7 extracts the delta between views of two connected corners. g, injects a source s
into the comma category by extending it to a corner object using Get° and id. 1),, operates
similarly on a source delta, using Get®, Get™ and id to extend it to a pair of connected corners
(an arrow between corners).

Using @) and ng.; we can now formulate delta-based versions of PutGet and GetPut as
depicted in Fig. 8. Compared with the state-based diagrams in Fig. 1, the only difference here is
that V' x S is now generalised to our comma category (Get, 1y/). Consequently, extracting the

Qv° Qv
5.
Getol — Svof o s
0,01
v 2 v 5,1 / / //
v 2% v 51)’1)’ () 51}’17’

o S S id()
NGeg o Oz = —

s —3% Get s5 — \ — T

23] H)\%%5

id(v) s o = 2

v —> U A\
id(v) o
v — U

Figure 7: View extraction and injection

view in PutGet now requires (Jy as a generalisation of 7 and lifting the source uses 7g¢; as a
generalisation of the function (Get, 1) used in Fig. 1. When “reading” the diagrams, note that
all arrows are functors with an object and a corresponding delta component. By tracing the
commutative paths in the diagrams, equations for both objects and deltas can be compiled.

PutGet

GetPut

(Geta]lV)

S

T]Get (Get,]]_V)

Figure 8: Delta-based lens laws

Example 9. Here we verify a concrete instance of PutGet for the composers example by tracing
the PutGet diagram in Fig. 8 — both its object and delta parts — on the specific input shown in
Fig. 4 and 6. For the object part, we start with the corner (s, d,,/) on the left of Fig. 4, which
is mapped to s’ on the right of Fig. 4 by Put°. We then apply Get® to s/, yielding { (}.S. Bach,
German), (C.P.E. Bach, German) }. If PutGet holds, we should also get this state if we apply Q3

to the input corner in Fig. 4, and indeed, what @}, does is extract the new view component v/,
which is the same as the state we arrive at through the Put ; Get path. For the delta part,

the input is the pair of deltas (053, 0,777) between the corner objects (s, d,,7) and (3, dzy/) in
Fig. 6. This delta pair is first mapped by Put™ to the source delta Put™ (853, d,/57) between
s' = Put®(s,8yy) and 3 = Put®(8, d3y), deleting 1.S. Bach. This source delta is then mapped

by Get™ to the view delta between Get°(s’) = { (J.S. Bach, German), (C.P.E. Bach, German) }
and Get°(s') = { (C.P.E. Bach, German) }, also deleting }.S. Bach. As this view delta is precisely
dyrw, the result of applying)7/ to the input, the delta part of PutGet is also verified.

5. Universal updates

We are now ready to argue from a practical point of view why the delta-based bx framework
according to Johnson et al. could be a suitable formal basis for building bx tools. One point
we have left open at the end of Sect. 3 is why the apparent complexity of Put™ is justified.
Indeed, instead of just requiring mappings of view deltas to source deltas as one might expect,
the framework requires information about pairs of view and source deltas as depicted in Fig. 5
and Fig. 6. One justification for this additional specification effort is that the resulting source
deltas for the provided view deltas are universal in the sense that any other valid source delta
(with respect to functoriality and the lens laws) can be obtained by composing the universal
delta with another uniquely determined delta. Due to the uniqueness condition, universal deltas
are essentially unique in the sense that they are all just different representations of the same
change, so a bx tool is free to produce any representation of a universal delta without worrying
about accidentally implementing a different change.

To explain this in more detail, let us complete the square formed by Put°. Up until now, we
have refrained from connecting the new s’ with the old source s and new view v’ (see Fig. 3
and Fig. 4). We now fill in the missing arrows in the following (we refer the interested reader to

Johnson et al. [3] for all technical details we skip). As depicted in Fig. 9 it is helpful to start with
(v)

id
the corner s — v =5 v. As this corner is exactly how s is injected into the corner category
by 7> we can apply GetPut on objects and surmise that the result of applying Put® to the
corner must be s (as indicated in the figure). As this is the same s as before, we know that
it maps via Get® to v. We now apply our actual view delta of interest d,, to v to obtain v'.

The corner s — v 63/ v’ maps to s’ via Put®. To obtain information about the connection
between s and s’ we now extend d,, to a pair of deltas between corners by pairing it with
doing nothing to s, i.e., with id(s) as depicted in Fig. 9. Providing this as input to Put™ yields
Put™ (id(s), 0y) connecting s and s’. After rotating the “cube” as indicated in the figure, we
obtain our actual square of interest now with the explicit connection between s and s'. As a
final step, we can argue with PutGet® that Get® applied to s’ must yield v, as this is what is

extracted via (Q7, from the input corner s > v 63/ v’ that yielded s’ via Put®. This all leads to
the final square depicted to the far right of Fig. 9. Indeed for Get and Put that obey all three
delta-based lens laws, also referred to as “C-lenses” [3], one is free to think in terms of such
squares representing how view deltas d,,, are to be put to source deltas d,, computed using
the provided Put as Put™ (id(s), dyyr)-

So why do we need to know how to handle pairs of source and view deltas to corners as
depicted in Fig. 5?7 Why not simply focus on the view deltas that are relevant for bx and only
provide an implementation of Put ™ for d,,, always paired with an unchanged source, i.e., id(s)?
The answer is related to the quest for constructively/computationally justifying the choices of
source deltas produced by Put. As depicted in Fig. 10, the source delta Put ™ (id(s), 0y) is the

id(s) _~* s Put™ (id(s) 8,
S/[G;PT%M(S),(;% s s)s’ s | ; J
I [2% v | [Get} | &
v@v J v 2 v’ v
Figure 9: Filling in all arrows in the square

Put™ (id(s),0,.,)) Put™ (5, 4r,id(v"))

s — s :/73”

| !

61)1)/ /
v — v

Figure 10: Source updates are least change updates

universal source delta that we (as bx developers) have decided to fix for our current choice of
Put. This choice is justified in the sense that it still fully retains the possibilities for the user
to get other valid results (in unique ways), because every other valid source delta d,, (with
respect to the lens laws) that also completes the square can be factored into the universal source
delta and then Put™ (dy s/, id(v")), where the latter represents explicitly the unique additional
source delta that the user can apply to the updated source s’ produced by the tool to get the
source s that the user actually wants. As with any implementation of a universal property,
the extra work of computing all other possibilities provides a computational “proof” for why a
certain valid candidate is not the choice we have made. This does not only provide for formal
clarity, but can also be used as the formal basis for explaining to users why their synchronisers
have made certain choices and not others.

We should emphasise that universality is not always useful — whether and how it is useful
depends crucially on the setting (in particular the allowed source deltas) in which we instantiate
the abstract categorical definition of C-lenses. In some cases universality may guarantee nothing
at all, whereas in some other cases universality can give rise to a highly intuitive and desirable
property guaranteeing that a bx tool produces the least source change needed for a view change.

One setting where universality is not useful is the state-based setting, which, as we briefly
mentioned in Sect. 3, can be seen as a special case of the delta-based setting where there is
exactly one delta from any source/view to another, whose meaning is “discarding the original
source/view and changing to the target source/view”. In this setting, any source delta produced
by Put is universal because whichever source is produced, it can always be further updated (in

a unique way) to any other source, in particular the one that the user actually wants.* Therefore,
what universality guarantees is already implied by the underlying assumption of the setting,
and becomes trivial.

We can argue a bit more generally that universality may become trivial when deltas can be
undone by other deltas.’ Intuitively, universality requires that a bx tool commit source changes
cautiously so that it is still possible to get to other valid sources. If committed changes can
be easily undone, however, then the tool does not need to be cautious — it can produce any
valid delta d5¢ and claim that it is universal, because when the user actually wants some other
delta d,5» and invokes universality to request an additional delta 44/, the tool can simply
produce a delta that undoes §,¢ and then applies §447. In the state-based setting, every delta can
be seen as undoing (discarding) the effect of all previous deltas, so the above argument applies.

On the other hand, if we turn the above argument around, we can identify settings where
universality is useful. For example, in a setting where we only allow deltas representing insertion
into a database (and not deletion or any other operations that could undo the effect of insertion),
a bx tool guaranteeing universality will have to produce exactly the absolutely necessary source
insertions, i.e., the least change — if the tool inserted some redundant entry and the user wanted
an updated database without that entry, then it would be impossible for the tool to produce a
delta to delete the entry; so, to satisfy universality, the tool must not insert the entry in the first
place. Real-world situations can be more delicate though, as the following example indicates.

Example 10. Back to the composers example, consider the instance in Fig. 4, where the view
delta ,, to be handled is an insertion. We can fill in the missing source delta d, between s
and s’ by setting 055 = Put ™ (id(s), 4,7), which represents the insertion of (C.P.E. Bach, ??7?,
German) into the source multiset. As both d,,/ and dsy are insertions, this instance is valid
in the insertion-only setting. Is d5¢ universal in this setting? Let us try some other possible
updated sources s” and deltas d,¢~ and see if ds4+ can be factored through d,4. One possibility
of 04 is redundantly inserting C.P.E. Bach twice, yielding the updated source s” = { (}.S. Bach,
31/03/1685, German), (C.P.E. Bach, ???, German), (C.P.E. Bach, ???, German) }. In this case d4¢/
can indeed be factored as d,y ; d¢ 5 Where dg 4/ represents the (redundant) insertion of the
second C.P.E. Bach. So far so good, but we will see that the situation is in fact more delicate if
we consider another possible source delta 05y that inserts (C.P.E. Bach, 08/03/1714, German)
which includes the specific date of birth, leading to the updated source s = {(J].S. Bach,
31/03/1685, German), (C.P.E. Bach, 08/03/1714, German) }. This time sz~ cannot be factored
into d4; 05 for any insertion delta §4 47, S0 044 is in fact not universal in the insertion-only
setting. However, if we allow one additional kind of source delta that modifies a date of birth
in our setting, then we can choose 44~ to be the one that changes C.P.E. Bach’s date of birth
from ??? to 08/03/1714, making Js universal (in this instance). The Put behaviour is not fully
determined by universality even in this amended setting though — we could have filled in any

*In a bit more detail: suppose that, in response to a view change, Put decides to change an original source s
to a new source s’, represented by the delta d,. (“change to s'”); for any other delta d,,~ (“change to s””) where
s" is also a valid result for the view change, we have §,,/ = §,4/; 8,5 (“changing to s” is the same as changing
to s’ and then to s””), where §,/ 4 is automatically the unique way of updating s’ to s” in the state-based setting,
S0 4,/ is universal.

>This may-statement is deliberately conservative because there is the subtle issue about the uniqueness condi-
tion in the definition of universality, which we do not touch from now on.

specific date of birth when we inserted C.P.E. Bach into s’ and still remained universal, because
that specific date can always be changed to something else later. While determining such choices
only up to isomorphism (i.e., not caring about the specific initial date) can be advantageous, we
could fully determine the Put behaviour by restricting the date-of-birth modification deltas
to only those that change ??? to a specific date. To satisfy universality, Put must then use
??? for the dates of birth in newly-inserted entries, because ??? is the only date that can be
changed to any other dates the user actually wants. For a more general handling of such
“missing information” in structures, we refer the interested reader to Johnson et al. [16, 17] for
the categorical modelling of databases with incomplete data.

6. Related work

According to Johnson and Rosebrugh [4], there are essentially three classes of lenses: state-based
(set-based) lenses, delta-based lenses, and edit-based [18] lenses. We have discussed in this
paper how state-based lenses can be viewed as a special case of delta-based lenses (for codiscrete
categories). Edit lenses can also be represented as delta lenses via a suitable functor [4].

As state-based and edit lenses originate from the programming language community, they
typically have a strong connection to practical tooling and integration in programming lan-
guages. In the following, we discuss the situation for delta lenses and the existing work that
can be compared to our goal of bridging C-lenses and practical bx.

Diskin et al. [5] introduce D-lenses as a generalisation of the state-based bx framework to a
delta-based setting. Compared to C-lenses, D-lenses do exactly what one would expect, namely
map view deltas to source deltas. This means that C-lenses turn out to be essentially special
D-lenses with the universal property discussed in Sect. 5; every C-lens is a D-lens but not every
D-lens is a C-lens [4].

Concerning the practical relevance of D-lenses, Hermann et al. [12] have explored the relation
between D-lenses [5] and Triple Graph Grammars (TGGs) [13]. This relation is further explored
in a tutorial-like fashion by Anjorin [19] as part of the 2016 bx summer school [20]. The result
of this line of work indicates that TGGs can be regarded as an implementation of D-lenses
under a series of additional assumptions. In essence, a TGG rule can be directly interpreted
as a pair of corresponding source and target deltas. An important point is that TGG rules are
applied by checking for matches of their preconditions as graph patterns. This means that a
relatively compact specification consisting of a few TGG rules actually describes an infinite
number of concrete delta mappings for Put. While we do not (yet) see how TGG rules can
be directly used to specify C-lenses, one could take an analogous rule-based approach that
leverages graph pattern matching to enable a compact, finite specification of Get and Put. To
specify how all possible pairs of deltas are to be handled for a specific corner, amalgamated
TGG rules [21] could be explored; the fixed kernel rule would specify the universal choice, while
multiple complementary rules would be used to describe how to handle all possible source deltas.

The challenging of guaranteeing least change synchronisers has been studied in detail by
Cheney et al. [22]. While C-lenses certainly do not completely solve the least change problem,
we believe they provide a helpful formal framework in which least change requirements can be
systematically studied and precisely characterised.

Anjorin and Cheney [23] have started exploring connections between provenance and bx, with
TGGs as a concrete bx language. While they identify why-provenance with TGG correspondence
graphs, and how-provenance with the derivation sequence produced when applying TGG rules,
why-not-provenance [24] is left open. As the universal property of C-lenses can be used to
explain why a certain source delta is not produced by Put, this could be viewed as a means of
providing why-not provenance.

For state-based tools/languages developed in the programming languages community, the for-
mal guarantee about the behaviour of synchronisation programs is usually just well-behavedness,
following the precedent of Foster et al.’s lens combinators [6]. However, it is clear that well-
behavedness alone does not guarantee that users get the synchronisation behaviour they desire,
as analysed by, for example, [9]. Consequently, these tools usually strive to provide a good
range of features so as to be as expressive as possible, with one latest attempt being Matsuda
and Wang’s [10]; complementarily, Ko and Hu [9] developed a program logic with which users
can reason about and determine the bidirectional behaviour of their programs. The overall
direction is giving users adequate expressive power to write down the synchronisation pro-
grams they have in mind. For specific problem domains, however, one could argue that this
expressive power is too low-level and becomes more a burden, and that users should instead
be provided with higher-level or more declarative solutions where most, if not all, of the users’
effort is devoted to describing just the synchronisation problems/requirements, as opposed to
designing the synchronisation programs and managing the implementation details. But to be
declarative, the tools must guarantee stronger properties from which users can deduce that
the synchronisation behaviour is good enough for their purposes without looking into the
implementation details. The universality of C-lenses could be a candidate for such properties:
while universality can be trivial for e.g., codiscrete categories, it might be possible to impose
more structure and restrictions on the source category in a way similar to Ex. 10. In such a
setting where universality is meaningful, we could start all over again and work out a new
generation of lens combinators that guarantee universality compositionally.

On a final note, some indication for the ubiquity of C-lenses and their potential for practical
bx tooling can be observed by investigating existing applications that have essentially converged
to C-lenses without being aware of this (see Johnson et al. [25] for a discussion of this). For
example, the common view updating mechanisms used in the database world depend on so-
called “constant complement updates” which can be viewed in a bx context as the Puts of
C-lenses [26].

7. Conclusion and future work

In this paper, we provide a practical introduction to C-lenses for readers without any substantial
background in category theory. We start with the accessible state-based approach to bx and gen-
eralise it step-by-step to a delta-based setting using multiple examples. We provide explanations
and a practical discussion of the main concepts to help establish an intuitive understanding for
C-lenses and their potential benefit as a formal basis for a new generation of bx tools.

While we already mention some preliminary ideas for how C-lenses could be specified in a
practical bx tool, an open challenge to be addressed in the future is how the lens laws can be

automatically checked by such a tool. Finally, our primary focus in this paper was how formal
results can be leveraged in a practical implementation. Conversely, there are also extensions
to formal foundations that are yet to be worked out in full detail but are already required by
practical approaches such as handling non-determinism and resolving conflicts in the context
of concurrent synchronisation.

References

(1]

(6]

(9]

[10]

[11]

K. Czarnecki, J. N. Foster, Z. Hu, R. Limmel, A. Schiirr, J. Terwilliger, Bidirectional
Transformations: A Cross-Discipline Perspective, in: R. F. Paige (Ed.), ICMT 2009, volume
5563 of LNCS, Springer, 2009, pp. 260-283.

M. Johnson, R. D. Rosebrugh, Lens put-put laws: monotonic and mixed, Electron. Commun.
Eur. Assoc. Softw. Sci. Technol. 49 (2012).

M. Johnson, R. D. Rosebrugh, Delta lenses and opfibrations, Electron. Commun. Eur. Assoc.
Softw. Sci. Technol. 57 (2013).

M. Johnson, R. D. Rosebrugh, Unifying set-based, delta-based and edit-based lenses,
in: A. Anjorin, J. Gibbons (Eds.), Bx 2016, volume 1571 of CEUR Workshop Proceedings,
CEUR-WS.org, 2016, pp. 1-13.

Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, F. Orejas, From state- to delta-
based bidirectional model transformations: The symmetric case, in:]J. Whittle, T. Clark,
T. Kithne (Eds.), MODELS 2011, volume 6981 of LNCS, Springer, 2011, pp. 304-318.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, A. Schmitt, Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem,
ACM Transactions on Programming Languages and Systems 29 (2007) 17:1-65.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, A. Schmitt, Boomerang: resourceful
lenses for string data, in: G. C. Necula, P. Wadler (Eds.), POPL 2008, ACM, 2008, pp.
407-419.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Nakano, GRoundTram: An integrated framework
for developing well-behaved bidirectional model transformations, Progress in Informatics
10 (2013) 131-148.

H.-S. Ko, Z. Hu, An axiomatic basis for bidirectional programming, Proceedings of the
ACM on Programming Languages 2 (2018) 41:1-29.

K. Matsuda, M. Wang, HOBIT: Programming lenses without using lens combinators, in:
ESOP, volume 10801 of LNCS, Springer, 2018, pp. 31-59.

A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin, H. Ko, R. Eramo, G. Hinkel, L. Samimi-
Dehkordi, A. Zindorf, Benchmarking bidirectional transformations: theory, implementa-
tion, application, and assessment, Softw. Syst. Model. 19 (2020) 647-691.

F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong, S. Gottmann, T. Engel,
Model synchronization based on triple graph grammars: correctness, completeness and
invertibility, Softw. Syst. Model. 14 (2015) 241-269.

A. Schiirr, Specification of graph translators with triple graph grammars, in: E. W. Mayr,
G. Schmidt, G. Tinhofer (Eds.), WG ’94, volume 903 of LNCS, Springer, 1994, pp. 151-163.

[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]

[26]

P. Stevens, J. McKinna, J. Cheney, ComposgRs v0.1 in Bx Examples Repository, http:
//bx-community.wikidot.com/examples:home, 2010. Date retrieved: July 9, 2021.

M. Johnson, R. D. Rosebrugh, Symmetric delta lenses and spans of asymmetric delta lenses,
J. Object Technol. 16 (2017) 2:1-32.

M. Johnson, R. Rosebrugh, Three approaches to partiality in the sketch data model, in:
CATS, volume 78 of ENTCS, Elsevier, 2003, pp. 82-99.

M. Johnson, S. Kasangian, A relational model of incomplete data without NULLs, in: CATS,
volume 109 of Conferences in Research and Practice in Information Technology, Australian
Computer Society, 2010, pp. 89-94.

M. Hofmann, B. C. Pierce, D. Wagner, Edit lenses, in: J. Field, M. Hicks (Eds.), POPL 2012,
ACM, 2012, pp. 495-508.

A. Anjorin, An introduction to triple graph grammars as an implementation of the
delta-lens framework, in: J. Gibbons, P. Stevens (Eds.), Bidirectional Transformations -
International Summer School, Oxford, UK, July 25-29, 2016, Tutorial Lectures, volume 9715
of LNCS, Springer, 2016, pp. 29-72.

J. Gibbons, P. Stevens (Eds.), Bidirectional Transformations - International Summer School,
Oxford, UK, July 25-29, 2016, Tutorial Lectures, volume 9715 of LNCS, Springer, 2018.

E. Leblebici, A. Anjorin, A. Schiirr, G. Taentzer, Multi-amalgamated triple graph grammars:
Formal foundation and application to visual language translation, J. Vis. Lang. Comput. 42
(2017) 99-121.

J. Cheney, J. Gibbons, J. McKinna, P. Stevens, On principles of least change and least
surprise for bidirectional transformations, J. Object Technol. 16 (2017) 3:1-31.

A. Anjorin, J. Cheney, Provenance meets bidirectional transformations, in: TaPP 2019,
USENIX Association, 2019.

A. Chapman, H. V. Jagadish, Why not?, in: U. Cetintemel, S. B. Zdonik, D. Kossmann,
N. Tatbul (Eds.), SIGMOD 2009, ACM, 2009, pp. 523-534.

M. Johnson, R. D. Rosebrugh, R. J. Wood, Lenses, fibrations and universal translations,
Math. Struct. Comput. Sci. 22 (2012) 25-42.

M. Johnson, R. Rosebrugh, Constant complements, reversibility and universal view updates,
in: J. Meseguer, G. Rosu (Eds.), Algebraic Methodology and Software Technology, Springer
Berlin Heidelberg, 2008, pp. 238-252.

http://bx-community.wikidot.com/examples:home
http://bx-community.wikidot.com/examples:home

	1 Introduction
	2 State-based bx
	3 Delta-based get and put
	4 Delta-based lens laws
	5 Universal updates
	6 Related work
	7 Conclusion and future work

