
On the Design of an Artificial Player
for a Popular Word Game?

Alberto Coffrini1, Stefania Monica2, and Federico Bergenti1

1 Dipartimento di Scienze Matematiche, Fisiche e Informatiche
Università degli Studi di Parma, Italy

alberto.coffrini@studenti.unipr.it, federico.bergenti@unipr.it
2 Dipartimento di Scienze e Metodi dell’Ingegneria

Università degli Studi di Modena e Reggio Emilia, Italy
stefania.monica@unimore.it

Abstract. This paper describes the design of an implemented software
system intended to accomplish a specific natural language processing
task. The targeted task is a challenge of the Evaluation Campaign of
Natural Language Processing and Speech Tools for Italian proposed in
2020. The challenge is to design and implement an artificial player for the
closing game of a popular Italian television show. Given five words, the
goal of the player is to find a word related to, but also different from, the
given words. The design of the proposed artificial player is discussed by
presenting the dataset used to acquire sufficient linguistic knowledge and
by briefly describing the algorithm used to play the game. A preliminary
experimental evaluation of the artificial player is also discussed.

Keywords: Word games · Lexical semantics · Natural language pro-
cessing · Artificial intelligence

1 Introduction

Natural Language Processing (NLP) is an interdisciplinary research field that
overlaps computer science, artificial intelligence, and linguistics. The grand goal
of NLP is to make computers able to process and understand human languages
(e.g., [8]). Despite such an ambitious goal, current research on NLP targets
restricted and specific goals to study relevant characteristics of natural languages
or to design and implement solutions for specific tasks.

Logic programming has been playing a relevant role in NLP since the very
first studies related to computational linguistics (e.g., [5]). Actually, the logic
programming paradigm shares several characteristics with the approaches used
to study natural languages. For example, the surface structure of a natural lan-
guage is often described in terms of a lexicon and a set of grammatical rules.
Hence, logic programs are particularly well suited to describe the surface struc-
tures of natural languages.

? Copyright c© 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



As a general-purpose logic programming language, Prolog is normally consid-
ered an appropriate option to deal with NLP problems, and it has been effectively
used to develop complex NLP systems (e.g., [3]) since its initial presentation. The
integrated search and unification mechanisms that are intrinsic to Prolog make
it an ideal candidate to implement formal models of languages. In addition, the
declarative nature of Prolog allows focusing on problems rather than on their
solving algorithms. Finally, a Prolog program is capable of conveniently sup-
porting incremental knowledge, and such an ability is crucial when designing
software systems that need to deal with open and dynamic contexts, such as
those related to complex NLP problems.

It is worth noting that inductive logic programming (e.g., [9]) and probabilis-
tic logic programming (e.g., [10, 11]) have also been successfully used to design
and implement NLP systems. More recently, several approaches based on neural
networks (e.g., [2]) and deep learning (e.g., [13]) were extensively used to tar-
get practical NLP problems. Finally, probabilistic methods and techniques have
been intensively studied to target complex NLP problems (e.g., [4]).

The first studies on NLP date back to the 1950s, but the interest on the topic
is still high and rapidly increasing because of the large assortment of possible
application contexts for NLP. Traditional application contexts for NLP include
machine translation, text classification, and question answering. In recent years,
the advent of mobile technologies and the massive use of social networking ser-
vices led to the rise of new application contexts, such as sentiment analysis for
brand monitoring or for social media monitoring.

The accurate analysis of the targeted application context is crucial for the
design and implementation of effective NLP systems. Actually, it is common
opinion that different NLP tasks can be best accomplished using different ap-
proaches. A method to tackle a task typically achieves better performance in
that task than in any other task, even if the tasks are closely related.

The software system discussed in this paper is specifically designed to ac-
complish an NLP task related to a popular word game called La Ghigliottina
(Italian for The Guillotine), which is the closing game of one of the most pop-
ular Italian television shows. Given five words, the goal of the player is to find
a sixth word related to, but also different from, the given five words. Possible
relationships between the sixth word and each one of the given words include:
being synonyms, being antonyms, or being used in the lyrics of a popular song.
The goal of the NLP system discussed in this paper is to play this game in the
attempt to find the sixth word related to a given set of five words. The chal-
lenge to design and implement artificial players for this game was included as
a task called Ghigliottin-AI in the Evaluation Campaign of Natural Language
Processing and Speech Tools for Italian (EVALITA) [1] in 2020.

This paper is organized as follows. Section 2 describes the procedure followed
to collect and process the texts used to acquire the needed linguistic knowledge.
Section 3 outlines the design of the proposed artificial player. Section 4 shows
and comments some experimental results. Section 5 concludes the paper and
discusses planned developments of the artificial player.



2 Construction of the Dataset

The first step to implement the artificial player for the considered word game
regarded the preparation of a dataset to acquire sufficient linguistic knowledge.
The dataset contains texts that were properly cleaned to remove punctuation
marks and words that are not used in the game, such as articles and prepositions.
After the initial cleaning phase, a set of pairs of words was constructed by
considering words that are close to each other in the cleaned texts. For each
pair of words, the number of occurrences in the cleaned texts was counted. The
collected pairs of words and their number of occurrences are used to play the
game, as briefly discussed in Section 3. The remaining of this section describes
the initial cleaning phase and the construction of the set of pairs of words.

2.1 The Set of Cleaned Texts

The initial cleaning phase is intended to remove, from all considered texts, punc-
tuation marks and words that are not useful to play the game. To this aim, a set
of stop words was defined. The considered stop words are Italian words that are
not used in the game, and they are mainly articles and prepositions. All occur-
rences of stop words were removed by parsing input texts to generate cleaned
texts. For each input text, a new cleaned text is produced after the initial clean-
ing phase. The processing of input texts to remove stop words was also used
to replace all punctuation marks with an uncommon symbol, namely $, that
is conventionally used to break sentences. Note that, in order to speed up the
initial cleaning phase, all input texts were split into separate text files with sizes
limited to 1 MB.

The considered word game uses Italian words only, and therefore several
texts written in Italian were collected to acquire sufficient linguistic knowledge.
Various types of texts were chosen from different sources to ensure that the words
required to play the game were actually contained in the considered texts. Note
that some texts were written by Italian authors, while others are professional
translations from other languages.

Thirteen freely available books were downloaded from e-book platforms and
cleaned. They are mainly narrative books, and they include Pinocchio, Zeno’s
Conscience, Don Quixote, Alice’s Adventures in Wonderland, and The Little
Prince. A part of Corpus Paisà [7] was downloaded and cleaned. Corpus Paisà
is a large collection of texts written in Italian that is commonly used to acquire
linguistic knowledge on the Italian language. The considered part of Corpus
Paisà corresponds to approximately 0.5 GB of text files.

The titles of all articles included in the Italian edition of Wikipedia were
downloaded and cleaned. In addition, 150 complete articles included in the Ital-
ian edition of Wikipedia were downloaded and cleaned. The complete articles
concern various topics, such as cooking, music, and travels. The articles are all
about general knowledge topics because the considered game makes no assump-
tions on the education level of players.



Several texts containing lists of common compound words were downloaded
and cleaned. In Italian, a compound word is a word that is composed of two
other words, and the meaning of the compound word is not immediately related
to the meanings of the two constituents. For example, sempreverde (Italian for
evergreen) is a compound word composed of the two words sempre (Italian for
ever) and verde (Italian for green). Note that a compound word is a regular
word, and its two constituents are normally regular words. Therefore, besides
considering the compound word sempreverde, the two words sempre and verde
can also be considered as two separate words. It is worth noting that the division
of compound words into theirs constituents is very useful to play the considered
game. Actually, it is common that one of the constituents of a compound word is
included in the five words given to the player, and the sixth word that the player
should guess is the second constituent of the compound word. The compound
word often represents the only relationships between the two words, and the
player is expected to take compound words into account to play the game. Other
examples of compound words in Italian are: girasole (Italian for sunflower), that
is composed of the two words gira (Italian for turn) and sole (Italian for sun);
lanciafiamme (Italian for flamethrower), that is composed of the two words
lancia (Italian for throw) and fiamme (Italian for flames).

In addition to compound words, the considered texts also include lists of
idiomatic phrases. Idiomatic phrases are phrases composed of few words that
exhibit a specific semantic cohesion. Idiomatic phrases can belong to various
lexical categories, such as nouns, adjectives, and adverbs. For instance, gatto
delle nevi (Italian for snowcat) is used to indicate a vehicle designed to move
on snow. This idiomatic phrase sets up a very unusual relationship between the
word gatto (Italian for cat) and the word nevi (Italian for snow), and such a
relationship is very useful to play the considered game. It is common that one
of the words of an idiomatic phrase is included in the five words given to the
player, and the sixth word that the player should guess is another word of the
idiomatic phrase. Other examples of idiomatic phrases in Italian are: di male in
peggio (Italian for from bad to worse); meglio tardi che mai (Italian for better
late than never); and nervi a fior di pelle (Italian for nerves on edge).

Finally, the considered texts also include a list of Italian proverbs, which
are often used informally and can be very useful to play the considered game.
Examples of proverbs include: l’erba del vicino è sempre più verde (Italian for
the grass is always greener on the other side of the fence); non piangere sul latte
versato (Italian for do not cry over spilled milk); and non dire gatto se non ce
l’hai nel sacco (Italian for don’t count your chickens before they hatch). Proverbs
create relationships among words that are not found in other contexts. Therefore,
the inclusion of a list of proverbs is useful when playing the considered game to
take into account common sentences of the everyday language.

Note that the inclusion of compound words, idiomatic phrases, and proverbs
is very helpful to play the considered game. Preliminary empirical observations
suggest that, on average, at least one of the five words given to the player is
related to a compound word, an idiomatic phrase, or a proverb.



2.2 The Set of Pairs of Words

The player of the considered game is expected to find relationships among words.
Actually, the player is expected to find a relationship between the guessed word
and each one of the given words. For this reason, the texts obtained after the
initial cleaning phase are further processed to obtain a set of pairs of words.
Such pairs of words are obtained by parsing all cleaned texts and by considering
two consecutive words in the same sentence as a pair.

In the remaining of this paper, the first word of each pair is called token and
the second word is called related token. Using this nomenclature, a generic pair
of words is denoted as

〈 token, related token 〉. (1)

For each pair of words, the occurrence of the pair corresponds to the number
of times in which the pair is found in the cleaned texts. Given a pair of words,
its inverse is the pair of words obtained by swapping the token with the related
token. The occurrence of the inverse of a pair equals the occurrence of the original
pair. The algorithm to play the considered game outlined in Section 3 uses the
available pairs of words and their occurrences. Each one of the given five words
is considered as a token, and the related tokens obtained by the available pairs
of words are considered good guesses for the sixth word. The actual answer is
chosen randomly among the related tokens with maximum occurrence.

The following example should clarify the roles of tokens, related tokens, and
occurrences. Assume that the phrase parcheggiare la macchina (Italian for park
the car) is found in a text. During the cleaning process, the article (namely, la)
is removed, so that the two words parcheggiare and macchina are close to each
other in the cleaned text. Then, the pair

〈 parcheggiare, macchina 〉 (2)

is created and added to the dataset, where parcheggiare is considered as token
and macchina is considered as related token. Assuming that this pair of words
is found 5 times in the cleaned texts, the occurrence of the pair is equal to 5.
Since the two words should be considered as related regardless of which is the
token and which is the related token, the inverse pair

〈macchina, parcheggiare 〉 (3)

is also created and added to the dataset. The occurrence of the inverse pair is
equal to the occurrence of the direct pair, which is 5. The direct pair ensures
that, if parcheggiare is given, then macchina is a valid guess for the sixth word.
Similarly, the inverse pair guarantees that, if macchina is given, then parcheggiare
is a good guess for the sixth word.

All pairs of words obtained from the cleaned texts described at the beginning
of this section were persistently stored together with their respective occurrences
to provide the needed dataset to the artificial player. The current dataset con-
tains more than 34,000 tokens, and each token is matched with a number of
related tokens between 100 and 1,000.



3 The Implemented Algorithm in Brief

This section outlines the algorithm that is currently implemented in the artificial
player for the considered word game. The algorithm works on a set of five words,
and it returns the chosen guess for the sixth word. A preliminary experimental
evaluation of the performance of this algorithm is discussed in Section 4.

The algorithm can be briefly summarized as follows. Each one of the five
words is treated as a token of a word pair and it is searched in the dataset
obtained using the method discussed in the previous section. To simplify the
notation, it is assumed that all five tokens are found in the dataset. The set of
five tokens is denoted as {ti}5i=1, and, for each token ti, with 1 ≤ i ≤ 5, the
set of its related tokens is denoted as Ri. All related tokens of the five tokens
are considered as valid guesses for the sixth word. Actually, the sixth word is
searched in the following set

R =

5⋃
i=1

Ri. (4)

In order to choose the returned sixth word among the related tokens in R, each
related token in R is associated with two numeric values, called frequency and
match. The values of frequency and match of each related token in R are used
to choose the sixth word.

In order to properly define the frequency, let rj be a generic element of R.
If the pair 〈 ti, rj 〉 is found in the dataset, then it is associated with oi,j , which
equals the occurrence of the pair. Otherwise, the pair is conventionally associated
with oi,j = 0. The frequency of the generic related token rj , denoted as fj , is
evaluated as the sum of the occurrences

fj =

5∑
i=1

oi,j . (5)

Possible values for the frequency of a generic related token rj are positive inte-
ger numbers. Note that the frequency fj increases as the occurrences {oi,j}5i=1

increase. Hence, the chosen sixth word is expected to have a large frequency.

The match of the generic related token rj of R, denoted as mj , is the number
of tokens for which rj is a related token. In other words, the match of the generic
related token rj is computed as the count of the pairs of words 〈 ti, rj 〉 that found
in the dataset. Possible values for the match of a generic related token rj are
integer numbers from 1 to 5, where mj = 1 if rj is the related token of only one
of the given words, and mj = 5 if rj is the related token of all given words.

Frequency and match are evaluated for each related token rj in R, and they
are used to decide which related token should be selected as sixth word. First,
the set of guesses for the sixth word is restricted to the related tokens with the
largest match. Then, the sixth word is chosen among the related tokens with the
largest frequency. If two ore more related tokens share the same frequency, then
the sixth word is chosen at random among them.



The following example should explain the roles of the frequency and the
match of a related token, and it should clarify the approach behind the algorithm
used by the player. Given a set of five words {ti}5i=1, consider a simple dataset
composed of the following pairs of words

〈 t1, r1 〉, 〈 t1, r2 〉, 〈 t1, r3 〉, 〈 t1, r4 〉
〈 t2, r1 〉, 〈 t2, r3 〉, 〈 t2, r4 〉
〈 t3, r1 〉, 〈 t3, r2 〉, 〈 t3, r4 〉
〈 t4, r1 〉, 〈 t4, r3 〉, 〈 t4, r4 〉, 〈 t4, r5 〉
〈 t5, r1 〉, 〈 t5, r4 〉, 〈 t5, r6 〉, 〈 t5, r7 〉, 〈 t5, r8 〉

(6)

Note that only the pairs of words related to the input words are listed in order
to simplify the discussion of the example. Normally, a useful dataset contains a
lot of other pairs of words.

For each pair of words 〈ti, rj〉 in the dataset, with 1 ≤ i ≤ 5 and 1 ≤ j ≤ 8,
assume that its occurrence oi,j has the following values

o1,1 = 2, o1,2 = 1, o1,3 = 2, o1,4 = 1
o2,1 = 1, o2,3 = 2, o2,4 = 2
o3,1 = 5, o3,2 = 4, o3,4 = 8
o4,1 = 3, o4,3 = 3, o4,4 = 7, o4,5 = 1
o5,1 = 7, o5,4 = 8, o5,6 = 5, o5,7 = 1, o5,8 = 9

(7)

Consider now, for example, the related token r1. The frequency f1 of the related
token r1 is

f1 =

5∑
i=1

oi,1 = 18. (8)

Since r1 is a related token of all five tokens, the match m1 of r1 equals 5. Then,
consider the related token r3, whose frequency f3 is

f3 =

5∑
i=1

oi,3 = 7, (9)

where o3,3 and o5,3 equal 0 because r3 is neither a related token of t3 nor of t5.
Since r3 is a related token of three tokens, the match m3 of r3 equals 3. Finally,
consider the related token r8. Since r8 is a related token of t5 only, the frequency
f8 of r8 equals o5,8 = 9. For the same reason, the match m8 of r8 equals 1.

Among the eight related tokens considered in the example, r1 and r4 are
those with the largest match. Actually, r1 and r4 are related tokens of each one
of the five tokens {ti}5i=1, so that m1 = m4 = 5. Since the frequency of r1 is
f1 = 18 and the frequency of r4 is f4 = 26, the sixth word guessed by a player
that uses the discussed algorithm is r4.

Note that, in order to simplify the notation, the description of the algorithm
summarized in this section assumes that all input words are actually found in
the dataset. However, rare input words may not appear in the dataset in real
situations. In this case, the proposed algorithm does not change significantly,
and the rare words are simply removed from the set of input words.



4 Preliminary Experimental Results

In order to preliminary assess the performance of the algorithm briefly discussed
in the previous section, 100 instances of the considered game were played by
the implemented artificial player. The considered instances were taken from the
instances that were played in the television show. The success rate of the current
version of the artificial player over the considered instances was 24%.

The following is an example of an instance of the game in which the player
found the correct sixth word. The given five words are:

– Chimico (Italian for chemical)
– Polizia (Italian for police)
– Segreto (Italian for secret)
– Cambio (Italian for change)
– Commercio (Italian for commerce)

The correct sixth word, as found by the artificial player, is agente (Italian for
agent). Actually, one can say in Italian: agente chimico (Italian for chemical
agent); agente di polizia (Italian for police officer); agente segreto (Italian for se-
cret agent); agente di cambio (Italian for stockbroker); and agente di commercio
(Italian for sales agent).

The following is an example of an instance of the game in which the player
did not find the correct sixth word. The given five words are:

– Male (Italian for evil)
– Perdere (Italian for lose)
– Ordine (Italian for order)
– Campo (Italian for field)
– Natura (Italian for Nature)

In this case, the correct sixth word is forza (Italian for force). Actually, in Italian
one can say: forza del male (Italian for force of evil); perdere forza (Italian for
lose strength); forza dell’ordine (Italian for law enforcement); forza in campo
(Italian for ground force); and forza della natura (Italian for force of nature).
Instead, the sixth word proposed by the artificial player was gioco (Italian for
game). Although the proposed sixth word is wrong, it is worth noting that it is
strongly related to some of the five words. Actually, one can say in Italian: perdere
un gioco (Italian for loose a game); and campo di gioco (Italian for playing field).

Currently, the artificial player can be interfaced using a Telegram chatbot
that was specifically created for the purpose. The user sends the message /start
to the chatbot to start a new session. Then, the user can send to the chatbot
commands or lists of five words. Supported commands are: /myname, to have the
chatbot reply with a short greeting message; and /modegame to have the chatbot
reply with a short message explaining how to play the game. Messages that do
not start with commands are interpreted as lists of five words. When a list of
five words is received, the chatbot queries the artificial player and replies to the
user with the sixth word chosen by the artificial player. Normally, the artificial
player chooses the sixth word in less than a second.



(a) (b)

Fig. 1. Screenshots of the implemented Telegram chatbot when (a) the correct sixth
word is returned, and (b) a wrong sixth word is returned.

Fig. 1 shows two screenshots of the Telegram chatbot. Fig. 1a shows an
instance of the game in which the artificial player found the correct sixth word.
The five words were:

– Amore (Italian for love)

– Fascia (Italian for sash)

– Oro (Italian for gold)

– Tenera (Italian for tender)

– Maggiore (Italian for major)

The correct sixth word, as proposed by the artificial player, was età (Italian for
age). As a matter of fact, one can say in Italian: età dell’amore (Italian for age
of love); fascia d’età (Italian for age range); età dell’oro (Italian for golden age);
tenera età (Italian for early age); and maggiore età (Italian for age of majority).



Fig. 1b shows an instance of the game in which the artificial player did not
find the correct sixth word. The five words were:

– Entrare (Italian for enter)
– Auguri (Italian for wishes)
– Netto (Italian for net)
– Pagamento (Italian for payment)
– Accademico (Italian for academic)

In this case, the correct sixth word was ritardo (Italian for delay). As a matter
of fact, one can say in Italian: entrare in ritardo (Italian for enter late); auguri
in ritardo (Italian for belated wishes); in netto ritardo (Italian for in net delay);
pagamento in ritardo (Italian for late payment); and ritardo accademico (Italian
for academic quarter). Instead, the sixth word proposed by the artificial player
was interesse (Italian for interest). Although the proposed sixth word was wrong,
it is worth noting that it is strongly related to some of the five words. As a
matter of fact, one can say in Italian: interesse netto (Italian for net interest)
and pagamento di interesse (Italian for interest payment).

5 Conclusion

This paper discussed the design of an artificial player for a word game that
has been used as closing game in a popular Italian television show since 2005.
Given five words, the goal of the player is to find a new word related to, but
also different from, the given five words within a short period of time (normally,
one minute). The challenge to design and implement an artificial player for this
game was proposed at EVALITA 2020 [1]. Only two other artificial players were
developed to accept the challenge, namely Il Mago della Ghigliottina [12] and
GUiLlotine gLovE resolVER (GUL.LE.VER.) [6]. Even if the artificial player
discussed in this paper did not participate to EVALITA 2020, a comparison with
the two players is deserved. The preliminary experimental results presented in
the previous section show that the success rate of the artificial player discussed
in this paper is 24%. The success rate of Il Mago della Ghigliottina is 68.6% [12],
and the success rate of GUL.LE.VER. is 26% [6]. Note that the mentioned success
rates were not obtained using a common set of game instances, and therefore
their relevance to compare the artificial players is limited.

It is worth noting that human players often fail when they play the consid-
ered game. Hence, while a success rate of 24% seems low, it can be considered
encouraging. Therefore, various developments have already been planned to im-
prove the success rate of the discussed player. Future developments of the player
include the extension of the dataset and the use of additional metrics to compare
words. For example, the introduction of appropriate weighting factors is planned
to give more relevance to the pairs of words obtained from compound words and
idiomatic phrases. Finally, a detailed analysis of the game instances in which the
player fails is planned for the near future to better understand the strengths and
the weaknesses of the adopted approach.



References

1. Basile, P., Lovetere, M., Monti, J., Pascucci, A., Sangati, F., Siciliani, L.:
Ghigliottin-AI @ EVALITA 2020: Evaluating artificial players for the language
game “La Ghigliottina”. In: Basile, V., Croce, D., Di Maro, M., Passaro, L.C.
(eds.) Seventh Evaluation Campaign of Natural Language Processing and Speech
Tools for Italian. Final Workshop (EVALITA 2020). CEUR Workshop Proceedings,
vol. 2765. RWTH Aachen (2020)

2. Belinkov, Y., Glass, J.: Analysis methods in neural language processing: A survey.
Transactions of the Association for Computational Linguistics 7, 49–72 (2019)

3. Bitter, C., Elizondo, D.A., Yang, Y.: Natural language processing: A Prolog per-
spective. Artificial Intelligence Review 33(1), 151–173 (2010)

4. Chater, N., Manning, C.D.: Probabilistic models of language processing and ac-
quisition. Trends in Cognitive Sciences 10(7), 335–344 (2006)

5. Dahl, V.: Natural language processing and logic programming. The Journal of
Logic Programming 19-20, 681–714 (1994)

6. de Francesco, N.: GUL.LE.VER @ GhigliottinAI: A glove based artificial player to
solve the language game “La Ghigliottina”. In: Basile, V., Croce, D., Di Maro, M.,
Passaro, L.C. (eds.) Seventh Evaluation Campaign of Natural Language Processing
and Speech Tools for Italian. Final Workshop (EVALITA 2020). CEUR Workshop
Proceedings, vol. 2765. RWTH Aachen (2020)

7. Lyding, V., Stemle, E., Borghetti, C., Brunello, M., Castagnoli, S., Dell’Orletta, F.,
Dittmann, H., Lenci, A., Pirrelli, V.: The PAISÀ corpus of Italian Web texts. In:
Proceedings of the 9th Web as Corpus Workshop (WaC-9), pp. 36–43. Association
for Computational Linguistics (2014)

8. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press (1999)

9. Mooney, R.J.: Inductive logic programming for natural language processing. In:
Muggleton, S. (ed.) Inductive Logic Programming. pp. 1–22. Springer (1997)

10. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic program-
ming on the Web. Software Practice and Experience 46(10), 1381–1396 (2016)

11. Riguzzi, F., Lamma, E., Alberti, M., Bellodi, E., Zese, R., Cota, G.: Probabilistic
logic programming for natural language processing. In: Chesani, F., Mello, P.,
Milano, M. (eds.) AI*IA Workshop on Deep Understanding and Reasoning: A
Challenge for Next-generation Intelligent Agents. CEUR Workshop Proceedings,
vol. 1802, pp. 30–37. RWTH Aachen (2016)

12. Sangati, F., Pascucci, A., Monti, J.: “Il Mago della Ghigliottina” @ GhigliottinAI:
When linguistics meets artificial intelligence. In: Basile, V., Croce, D., Di Maro, M.,
Passaro, L.C. (eds.) Seventh Evaluation Campaign of Natural Language Processing
and Speech Tools for Italian. Final Workshop (EVALITA 2020). CEUR Workshop
Proceedings, vol. 2765. RWTH Aachen (2020)

13. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. IEEE Computational Intelligence Magazine
13(3), 55–75 (2018)


