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ABSTRACT
Scientific articles contain various types of domain-specific enti-
ties and relations between them. The entities and their relations
succinctly capture important information about the topic of the
document and hence, they are crucial to the understanding and
automatic analysis of the documents. In this paper, we aim to au-
tomatically extract entities and relations from a scientific abstract
using a deep neural model. Given an input sentence, we use a
pretrained transformer to produce contextual embeddings of the
tokens which are then enriched with embeddings of their part-of-
speech (POS) tags. A sequence of enriched token representations
forms a span, and entities and relations are jointly learned over
spans. Entity logits predicted by the entity classifier are used as
features in the relation classifier. Our proposed model improves
upon competitive baselines in the literature for entity and relation
extraction on SciERC and ADE datasets.

CCS CONCEPTS
• Information systems → Information retrieval; • Applied
computing → Document management and text processing.

KEYWORDS
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1 INTRODUCTION
The fast pace of modern scientific research and paper publication
advances the state-of-the-art at a rapid rate. But it also makes it
difficult for researchers to track all relevant publications even in
their specialized domain. Therefore, machine learning algorithms
are being increasingly deployed to ‘read’ them at scale, extract use-
ful information from them and organize the extracted information
so that scholarly knowledge is more readily accessible to users.
One important task in automatic analysis of research papers is the
extraction of entities, i.e., entity mentions and their types, and the
relations between entity pairs. These tasks are also called named
entity recognition (NER) and relation extraction (RE), respectively.
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For example, the following sentence S1 contains two entities; we
delineate the entity mentions with square brackets and the corre-
sponding entity types with suffixes:
S1: The [generalized LR parsing]Method is enhanced in this [ap-
proach]Generic.
The relation (or relation type) directed from the second entity to
the first is Used-for. NER and RE are useful for applications like
knowledge graph construction [15], entity retrieval [1], semantic
search [26], keyphrase extraction [20], question-answering [21],
summarization [6], fact checking [28], and recommendation [8].

In this paper, we present a deep learning-based model to jointly
extract entities and relations from abstracts in scientific papers. As
a motivation and baseline, we use a recent model named SpERT
[5] that uses a pretrained transformer [27] for the task. The trans-
former is first used to generate embeddings for the tokens in the
abstract, then the embeddings of a span of tokens are combined
into a span embedding on which a shallow entity classifier and a
shallow relation classifier are applied to extract the entities and
the relations, respectively. Many NLP tasks have benefited from
the use of linguistic information such as part-of-speech tags [7],
but they are less explored in deep neural models for NER and RE.
For example, one can easily observe that entities tend to be noun
phrases. Relations between entity pairs also appear to be related to
the entity types. For example, we often found that there is relation
‘Used-for’ from a ‘Generic’ entity to a ‘Method’ entity. Therefore,
we augment SpERT as follows: (1) we enrich the representations
of the input tokens with linguistic information, in particular, part-
of-speech (POS) tags of the words, and (2) include as inputs to the
relation classifier the predicted entity type logits (or simply, entity
logits). We call our model SpERT.PL (P=POS, L= logits)1. Our model
advances the state-of-the-art for entity and relation extraction on
the benchmark datasets SciERC and ADE.

2 RELATEDWORK
Traditionally NER deals with the task of identifying names of or-
ganizations, people, geographic locations, currency, time and per-
centage expressions [14]. RE is an allied field of study that aims to
identify a well-defined relationship between two or more named

1Our code is publicly available at https://github.com/dksanyal/SpERT.PL.
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entities [19]. Deep learning is a popular technique for NER and
RE. Recently, researchers have extended NER to include concrete
(e.g., names of diseases) and abstract (i.e., concepts like magnetism)
entities in scientific documents. While early works used separate
models to extract entities and relations, more recent approaches
focus on joint extraction frameworks as they typically reduce inter-
task error propagation and utilize the interconnection between
NER and RE [30]. Many joint models [2, 3, 17, 32] predict BILOU
tags (BILOU = ‘beginning, inside, last, outside, unit’) for tokens
to identify entities. Use of BILOU tags preclude inclusion of a to-
ken in multiple entities. In contrast, span-based approaches like
ours first construct spans of tokens and then label the spans with
entity types, thereby allowing overlapping entities as a token can
be part of multiple spans. SpERT [5], which is extended by this
paper, uses a pretrained transformer (BERT [10] or its variants) to
generate span representations from which entities and relations
are extracted. Notably, Luan et al. proposed different models like
BiLSTM network [15], dynamic span graph [16] and transformers
[29] for scientific entity and relation extraction. SpERT, though
simpler, outperforms them all. However, none of these approaches
used linguistic information to construct span representations, or
the predicted entity types for RE.

3 PROPOSED APPROACH
Our model, SpERT.PL, consists of a pretrained transformer, a POS
encoder, a fusion module, a shallow entity classifier and a shallow
relation classifier. The architecture of the proposed model is shown
in Figure 1. We assume the predefined set of entities is E and that
of relations is R.

Pretrained Transformer. The first layer of the transformer con-
tains the WordPiece tokenizer [22] that splits the input sentence
into a sequence of tokens 𝐷 = ( [CLS], 𝑡1, · · · , 𝑡𝑛, [SEP]). Note that
the tokenizer may fragment a word into multiple subword tokens.
For example, if the word “gpu" is absent in the tokenizer’s dic-
tionary, it may be split into two tokens: [“gp", “##u"]. [CLS] and
[SEP] are special symbols. [CLS] captures the context of the whole
sentence while [SEP] acts as a separator between adjacent sen-
tences. The WordPiece tokens are passed through the inner layers
of a pretrained transformer like BERT [10] to obtain an embedding
sequence

(b[CLS] , b1, · · · , b𝑛, b[SEP] ) = Transformer(𝐷)

where each embedding vector b𝑖 ∈ R𝑑1 where 𝑑1 is the embedding
dimension.

POS Encoder. We use ScispaCy [18] to generate POS tags of the
input sentence. ScispaCy is a Python NLP library for processing
biomedical or scientific text. Since the WordPiece algorithm may
split a word into many tokens, we assign the POS tag of the parent
word to each subword token born of it. We use a dedicated embed-
ding matrix to generate embeddings, each of dimension 𝑑2, of the
POS tags.

Fusion Module. For every token, the fusion module concatenates
the BERT embedding of the token and the POS embedding of its POS
tag. This produces enriched representations of the input sentence:
( [c[CLS] , c1, · · · , c𝑛, c[SEP] ) where c𝑖 ∈ R𝑑1+𝑑2 . Note that the POS

embeddings of [CLS] and [SEP] tokens are not meaningful, and will
not be used for further processing.

Entity Classifier. To detect entities, every sequence 𝑠 of 𝑘 (≤
𝑘max = 10) consecutive tokens is considered, and their embeddings
(c𝑖 , · · · , c𝑖+𝑘−1) are max-pooled to form a vector

v(𝑠) = maxpool(c𝑖 , c𝑖+1, . . . , c𝑖+𝑘−1) ∈ R𝑑1+𝑑2

Long spans are unlikely to represent valid entities and so, span
width is an important feature for entity classification. So a width
embedding matrix is trained to contain an embeddingw𝑘 ∈ R𝑑3 for
a span of length 𝑘 . The span width embedding w𝑘 is concatenated
with v(𝑠) to form the entity representation:

e(𝑠) = v(𝑠) | |w𝑘 ∈ R𝑑1+𝑑2+𝑑3

Finally, b[CLS] , which represents the sentence context, is concate-
nated with e(𝑠) to obtain the vector

x(𝑠) = e(𝑠) | |b[CLS] ∈ R2𝑑1+𝑑2+𝑑3

The POS tag of the [CLS] token is not meaningful, so we simply
take the BERT embedding of the [CLS] token. The vector x(𝑠) is
passed through a shallow entity classifier, which is a single layer
feed-forward neural network (FFNN) that outputs entity logits:

p(𝑠) = Wx(𝑠) + b ∈ R𝑑4

where 𝑑4 = |E | + 1; “+1” is due to the ‘null’ entity ∅ that denotes
the absence of entity. W, b are the learnable weight matrix and
bias of the FFNN, respectively. The logits p(𝑠) are passed through a
softmax function to predict the entity type.

Relation Classifier. Those spans that are classified as ∅ by the
entity classifier are filtered out. For the remaining spans, the next
task is to identify the relation between every pair of them. Consider
a pair of spans 𝑠1, 𝑠2 where 𝑠1 occurs before 𝑠2 in the input sentence.
We assume relations to be asymmetric, so the relation directed from
𝑠1 to 𝑠2 may be different from that directed from 𝑠2 to 𝑠1, and each
of them must be separately classified. We take the representations,
(c𝑖 , · · · c𝑗 ), where c𝑖 is the embedding of the first token following
𝑠1 and c𝑗 is that of the last token preceding 𝑠2 in the sentence, and
max-pool them:

v(𝑠1, 𝑠2) = maxpool(c𝑖 , · · · , c𝑗 ) ∈ R𝑑1+𝑑2

Next, the candidate relation from span 𝑠1 to 𝑠2 is encoded as

r𝑠1→𝑠2 = e(𝑠1) | |v(𝑠1, 𝑠2) | |e(𝑠2) | |p(𝑠1) | |p(𝑠2) ∈ R3𝑑1+3𝑑2+2𝑑3+2𝑑4

where p(𝑠𝑖 ) ∈ R𝑑4 denotes the logits for span 𝑠𝑖 . Finally, r𝑠1→𝑠2 is
passed through a single layer FFNN with sigmoid of size |R | and
threshold𝛼 . As relations can be asymmetric, r𝑠2→𝑠1 = e(𝑠2) | |v(𝑠1, 𝑠2) | |
e(𝑠1) | |p(𝑠2) | |p(𝑠1) is constructed and classified. The loss function
of the joint model is the sum of the cross-entropy loss of the entity
classifier and that of the relation classifier. The model is trained in
end-to-end fashion by backpropagation. The transformer is fine-
tuned during training. To train the entity classifier, we use gold
standard entity spans as positive examples and randomly sample
non-entity spans from the same sentence as negative samples. For
relation classification, like [5], we treat the ground truth relations
as positive samples, and exploit the following as negative samples:
(i) entity span pairs without any relation, and (ii) non-entity span

16



EEKE 2021 – Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents

Figure 1: Architecture of our proposed model, SpERT.PL.

pairs, both from the same sentence. While the first strategy helps
the model to label the relations accurately across all entities, the
second strategy makes the relation classifier more robust to the
errors in the entity classification step.

4 EXPERIMENTS AND RESULTS
4.1 Datasets
4.1.1 SciERC. SciERC dataset [15] comprises 500 abstracts of AI
papers; includes 6 scientific entities: Task, Method, Metric, Ma-
terial, Other-Scientific-Term, and Generic, and 7 relations: Com-
pare, Conjunction, Evaluate-For, Used-For, Feature-Of, Part-Of, and
Hyponym-Of, in a total of 2687 sentences. The official split has
3 parts: train (1861 sentences), dev (275 sentences) and test (551
sentences). Similar to [5], we use (train + dev) for training as we do
not perform hyperparameter tuning.

4.1.2 ADE. ADE dataset [9] consists of 4272 sentences and 6821
relations extracted frommedical reports. It contains a single relation
type Adverse-Effect and the two entity types Adverse-Effect and
Drug. Due to absence of an official split, we conduct a 10-fold cross
validation like the other existingworks.We consider 2 cases: (1)with
overlap: all entities and relations are retained; (2) without overlap:
the 120 instances of relations containing overlapping entities (e.g.,
‘lithium’ is a drug included in ‘lithium intoxication’) are removed.

4.2 Implementation
We use SciBERT [4] as the pretrained transformer for SciERC. We
experiment with both SciBERT and BioBERT [11], separately, for
ADE. The dimension of POS embedding (𝑑2) and that of span width
embedding (𝑑3) are both 25. We did not tune the hyperparameters
but use those in [5]. Specifically, we train the model for 20 epochs
using Adam optimizer with linear warmup, linear decay and peak
learning rate 5𝑒-5; set the threshold for sigmoid activation in re-
lation classifier to 𝛼 = 0.4; and sample 100 negative samples per
sentence for both the tasks. We use a training batch size of 10.

4.3 Evaluation Metrics
For every span of text (of length 𝑘 ≤ 10), the proposed model per-
forms NER in which an entity is considered correct if the entity
type and span are predicted correctly. Given two text spans, the
model also performs RE. Following [2, 5], we define its correctness
in two ways: (1) Strict RE: the relation type and the two related
entities (i.e., both span and entity type) must be correct. (2) Bound-
aries RE: the relation type and only the spans of the two related
entities must be correct. Following the literature [5], we report only
micro-average for SciERC, both micro- and macro-average for ADE,
and only strict RE for ADE. Since only one relation occurs in ADE,
the averaging method for RE does not matter.

4.4 Results
4.4.1 Performance on SciERC. We report the performance of SpERT.PL
on SciERC dataset in Table 1. Due to the large variance in the mea-
sured values for SpERT.PL – a similar observation is made by Taillé
et al. [23] for SpERT – we report the mean and standard deviation of
the scores from 15 observations for SpERT.PL. Compared to SpERT
(that also uses SciBERT), there is a slight fall in precision but an
increase in recall and F1-score for all the 3 tasks. SpERT.PL also
outperforms other joint entity-relation extraction approaches like
SciIE [15], DyGIE [16] and DyGIE++ [29] and a recent pipelined
approach called PURE [33], even when PURE uses cross-sentence
context to build better contextual representations of spans.

4.4.2 Performance on ADE. Table 2 shows that SpERT.PL outper-
forms SpERT and establishes new state-of-the-art results for ADE.
Notably, in most of the cases using BioBERT as a pretrained trans-
former in SpERT.PL produces higher performance than using SciB-
ERT. This is not surprising as BioBERT is pretrained entirely on
biomedical papers while SciBERT also includes computer science
papers. When overlapping entities are included, SpERT.PL records
gains of 1.91% in micro-average F1-score for NER, 1.89% in macro-
average F1-score for NER, and 3.19% in F1-score for strict RE over
the second best performer. When overlapping entities are excluded,
the corresponding gains are 1.92%, 1.44% and 1.25%, and SpERT.PL
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Table 1: Performance on SciERC. Micro-average scores are reported.

Model NER Boundaries RE Strict RE
Precision Recall F1 Precision Recall F1 Precision Recall F1

SpERT.PL (SciBERT) 69.82
(±0.44)

71.25
(±0.51)

70.53
(±0.37)

51.94
(±0.72)

50.62
(±0.94)

51.25
(±0.55)

39.94
(±0.9)

38.98
(±0.89)

39.41
(±0.77)

SpERT [5] 70.87 69.79 70.33 53.4 48.54 50.84 40.51 36.82 38.57
DyGIE++ [29] - - 67.5 - - 48.4 - - -
DyGIE [16] - - 65.2 - - 41.6 - - -
SciIE [15] 67.2 61.5 64.2 47.6 33.5 39.3 - - -
PURE (Single sentence) [33] - - 66.6 - - 48.2 - - 35.6
PURE (Cross sentence) [33] - - 68.9 - - 50.1 - - 36.8

Table 2: Performance on ADE. ∗ indicates that the corresponding paper does not state if NER performance is micro-average or
macro-average, though we use the micro-average columns for these cases.

Model NER (Micro-average) NER (Macro-average) Strict RE
Precision Recall F1 Precision Recall F1 Precision Recall F1

W
ith

O
ve
rla

p SpERT.PL (BioBERT) 90.05 91.69 90.86 90.33 92.03 91.17 80.11 84.18 82.03
SpERT.PL (SciBERT) 89.15 91.73 90.4 89.43 91.96 90.72 78.54 83.98 81.16

SpERT [5] 88.69 89.2 88.95 88.99 89.59 89.28 77.77 79.96 78.84

W
ith

ou
t

O
ve
rla

p

SpERT.PL (BioBERT) 90.44 91.3 90.86 90.66 91.64 91.14 80.33 84.57 82.39
SpERT.PL (SciBERT) 89.89 91.16 90.52 89.15 90.75 89.94 79.04 84.39 81.62

CMAN [31] - - - - - 89.4 - - 81.14
Table Sequence [30] - - - - - 89.7 - - 80.1

SpERT [5] 89.02 88.87 88.94 89.26 89.26 89.25 78.09 80.43 79.24
Relation-Metric [25]∗ 86.16 88.08 87.1 - - - 77.36 77.25 77.29
Multi-head + AT [2] - - 86.7 - - - - - 75.52

Multi-head [3] 84.72 88.16 86.4 - - - 72.1 72.24 74.58
BiLSTM + SDP [12]∗ 82.7 86.7 84.6 - - - 67.5 75.8 71.4

CNN + Global features [13]∗ 79.5 79.6 79.5 - - - 64 62.9 63.4

Table 3: Ablation study of SpERT.PL on SciERC.

Model NER Boundaries RE Strict RE
Precision Recall F1 Precision Recall F1 Precision Recall F1

SpERT.PL (SciBERT) 69.87 71.47 70.66 52.06 51.26 51.65 40.49 39.87 40.18
− POS embeddings 69.52 70.66 70.09 51.64 50.82 51.23 39.59 38.95 39.26

− entity logits 69.41 70.49 69.96 51.34 49.66 50.48 39.51 38.23 38.86

not only outperforms SpERT but also more efficient approaches like
CMAN [31] and Table Sequence [30]. Both SpERT.PL and SpERT
score over many other recent approaches like [2, 3, 12, 13, 25]. Note
that, among the models considered here, only SpERT and SpERT.PL
allow overlapping entities.

4.5 Ablation Study
The ablation study in Table 3 shows the role of POS embeddings and
entity logits on the final classification scores. The reported figures
for each model are the average of three runs. We observe that
removing POS embeddings from SpERT.PL causes a drop of 0.57%,
0.42%, and 0.92% in F1-score for NER, boundaries RE, and strict RE,
respectively. The drop is not substantial as BERT already captures
the grammatical features of the input [24]. Removing entity logits
from SpERT.PL reduces F1-score by 0.7%, 1.17%, and 1.32% for NER,

boundaries RE, and strict RE, respectively. Thus, entity logits have
more pronounced effect on relation extraction, more so when the
associated entities must be correctly identified in both span and
type.

5 CONCLUSION
We proposed a deep neural model called SpERT.PL for entity and
relation extraction from scientific documents. We found that part-
of-speech information and predicted entity logits boost the clas-
sification performance. In future, we will explore if dependency
parse of the input sentences can further improve the classification
accuracy.
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