
EEKE 2021 - Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents

Copyright 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Extracting Domain Entities from Scientific Papers Leveraging

Author Keywords

Jiabin Peng
 School of Economics &

Management

 Nanjing University of Science and

Technology

 Nanjing, JiangSu, China

 2542505085@qq.com

Jing Chen
 School of Economics &

Management

 Nanjing University of Science and

Technology

 Nanjing, JiangSu, China

 chenjinguuu@126.com

Guo Chen
 School of Economics &

Management

 Nanjing University of Science and

Technology

 Nanjing, JiangSu, China

 delphi1987@qq.com

ABSTRACT

Current methods of domain entity extraction of scientific texts rely

heavily on manually annotation corpus and thus have poor

generalization ability. In this paper, we proposed a two-stage

methodology that can make good use of existed author keywords

of the given domain to solve this problem. Firstly, the author

keyword set was used to mark the boundary of candidate entities,

and then their features are integrated to classify their entity type.

In the experiment on artificial intelligence (AI) documents from

WOS, our approach obtains an F1 value of 0.753 without manual

annotation, which is slightly lower than the BERT-BiLSTM-CRF

baseline model (F1=0.772) trained on manual annotation corpus,

showing the usability of our approach in practice.

CCS CONCEPTS

• Computing methodologies • Artificial intelligence • Natural

language processing • Information extraction

KEYWORDS

Information Extraction, Domain Named Entity Recognition,

Analysis of Scientific Papers, Author Keywords

1 Introduction

At present, there have been many studies on knowledge entity

extraction in scientific papers, and the biggest problem is the lack

of labeled data[1]. As we all know, scientific papers usually

belong to a specific domain, so manual annotation needs

corresponding domain knowledge, which makes the annotation

more expensive, and many popular named entity recognition

(NER) models can not play their inherent excellent performance.

To ensure the generalization ability of NER models, it is necessary

to reduce their dependence on manual annotation. At present,

thanks to the rapid development of databases and the Internet, a

large number of knowledge resources have been accumulated in

many domains, such as knowledge bases, gazetteers, glossaries,

dictionaries, etc. These resources are widely used in NER models

of distant supervision[2] or semi-supervision learning[3], which

reduces the dependence of models on labeled data and improves

the generalization ability of models to a certain extent.

Actually, domain entity extraction can be divided into two

subtasks: entity boundary recognition and entity type

classification. Taking the domain of artificial intelligence (AI) as

an example, we firstly used the domain glossary to help to identify

the entity boundaries and then constructed a low-cost training data

to classify the entities. Problems and solutions were viewed as the

key-insights of scientific papers[1], so we took them as the main

entity types in the experiment. According to related studies, we

summarized the research objectives, domains, applications, and

tasks in technical papers as problems, and the methods, schemes,

models, technologies, tools, software, algorithms, and theories

used to solve these problems as solutions[4][5][6]. The

experimental results showed that a good index of our methodology

was obtained without manual annotation, and the F1-measure

reached 0.753.

2 Related Studies

At present, the mainstream methods of domain NER are divided

into two categories: methods based on statistical machine learning

(ML) and methods based on deep learning (DL). The NER method

based on ML is essentially classification, that is, given multiple

types of named entities, and then models are used to classify the

entities in the text. And there are two ideas in the implementation.

One is to identify the boundaries of all named entities in the text

firstly, and then classify them into different types, such as

CoBoost[7]. The other is sequence annotation. Each word in the

text is given several candidate type labels, which correspond to its

position in various entities. The classical NER models based on

sequence annotation in ML include HMM[8], CRF[9], etc. The

NER models based on DL use pre-trained word vectors to

represent words, which can solve the problem of data sparsity in

high latitude vector space. Meanwhile, pre-trained word vectors

contain more semantic information than manually selected

features and can obtain the feature representation in unified vector

space from heterogeneous texts, which brings strong development

for sequence annotation tasks, especially for NER[10].

41

EEKE 2021 - Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents

The biggest problem of domain NER is the lack of labeled corpus

nowadays. When a general NER method is applied to a specific

domain, corresponding adjustment strategies need to be taken

according to the domain corpus. A common idea is to use transfer

learning to share data and models among domains. Ni et al.

projected labeled data and distributed representation of words

without manual annotation in the target domain[11]. Giorgi et al.

transferred the source domain model parameters to the target

domain for initialization, and then fine-tune the parameters to

meet the task[12]. Another idea is to make full use of the existing

knowledge resources in domains to automatically build datasets

and carry out distant supervision, semi-supervision, weak

supervision, etc. Nooralahzadeh et al. adopted a technique of

partial annotation and implemented a reinforcement learning

strategy with a neural network policy in distant supervision

NER[2]. Peters et al. demonstrated a general semi-supervised

approach for adding pre-trained context embeddings from

bidirectional language models to NLP systems and apply it to

NER[3]. Lison et al. relied on a broad spectrum of labeling

functions to automatically annotate texts from the target

domain[13].

From the above researches, it could be seen that various domain

resources were widely used to reduce the manual annotation cost

as much as possible, which thus achieved good results. However,

the domain NER models based on transfer learning, semi-

supervision etc. still could not avoid manual participation in the

construction of datasets. Therefore, after analyzing the essence of

the NER task, domain NER was divided into two subtasks in this

paper, which avoided manual annotation with the help of domain

resources. In addition, some new ideas such as zero-shot

learning[14] and learning with noisy labels[15] have also been

applied to domain NER to help further reduce labor costs.

3 Methodology

3.1 Framework

Traditional NER was regarded as a sequence labeling task, which

assigned the corresponding entity type and location label to each

token in the text. In fact, NER could be regarded as two subtasks:

boundary recognition and entity classification. That was, we can

firstly identify the boundaries of named entities in the text, and

then classify them into different types. The NER method based on

sequence labeling treated two subtasks as a whole, in which the

same labeled data was shared by two subtasks so that the

requirement for its quality was pretty high. As a result, many

classic NER methods could not be applied in some subdivided

domains. In addition, the NER method based on sequence labeling

could not be effectively integrated into the existing domain

resources. At present, the common practice was to use domain

terms as auxiliary data to help roughly label data. On the contrary,

by dividing NER into boundary recognition and entity

classification, we could make full use of the existing domain

knowledge resources.

Entity boundary recognition could be regarded as a word

segmentation task, which required large-scale resources (i.e. user-

defined lexicon). And there usually exist some domain glossaries

and a large-scale author keyword set in a given domain, which can

help to solve the word segmentation task. Compared with word

segmentation, entity classification required smaller-scale resources

(i.e. training data). At present, many domains knowledge can be

obtained easily through an online database or knowledge graph,

which can provide necessary training data for entity type

classification without manual annotation. To sum up, the

framework of this paper was shown in Figure 1.

Figure 1 Framework of knowledge entities extraction.

The framework was divided into three parts. The first was the

acquisition of domain resources. The domain resources used in

this paper included domain glossary and domain documents.

Domain glossary could be obtained directly through browser (such

as Google, Firefox, etc.) or relevant domain knowledge websites

(such as Wikipedia, Baidu baike, etc.). In addition, we also got the

types of terms when constructing a domain glossary. Domain

documents could be obtained through databases (such as WOS,

CNKI, etc.), then author keywords and abstract were extracted.

Author keywords were indispensable large-scale resources for

entity boundary recognition, and abstracts could be used in

constructing features for the training data. The second was entity

boundary recognition, which was regarded as a word segmentation

task. The user-defined lexicon of the word segmentation task was

constructed by combining domain glossary and author keywords

set and helped to realize entity boundary recognition at a low cost.

The third was entity classification. The training data required for

Domain Resources

Glossary

Document

Author Keywords

Abstract

Entity Boundary Recognition

Lexicon

Segmentation

Entity Classification

Word Vector

Pos of Speech

Word Case

Features

Training Data

Model

Evaluation &

Optimization

42

EEKE 2021 - Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents

classification were extracted from the domain glossary, and the

text features were obtained from abstract training or counting.

3.2 Implementation

3.2.1 Entity Boundary Recognition. As mentioned above, entity

boundary recognition was transformed into word segmentation.

Inspired by the Chinese automatic word segmentation method, the

forward maximum matching algorithm based on string matching

was used in this paper. Slightly different from Chinese word

segmentation, it was necessary to extract the stem of English

words before English word segmentation to avoid the influence of

word form on word segmentation. In addition, there would be

some noise when using word segmentation lexicon to label the

candidate entities, so the following entity classification task was

actually multi-class.

3.2.2 Entity Classification. Entity classification was essentially

word classification, which was a typical supervised task, and the

training data was indispensable. At present, it is difficult to

construct a large number of high-quality classification data in a

given domain. However, a small number of high-quality data

could usually be obtained at a low cost with the help of domain

knowledge bases or domain experts.

1) Construct training data. Training data consisted of positive

samples and negative samples. Positive samples consisted of

entities and corresponding types. And the pre-constructed

glossary contained the types of terms, so we directly

extracted some high-quality terms and their types as the

positive samples. Negative samples, i.e. non-entities, were

randomly extracted from keyword sets and texts.

2) Construct text features. According to the task, word vector,

part of speech (POS) feature, and word case feature were

constructed. Word vectors could be obtained by training

large-scale domain unlabeled corpus, and semantic

information was given to discrete words according to the

context. POS feature was obtained by counting the corpus

without word segmentation. The acquisition of the case

feature was basically consistent with the POS feature, but the

corpus with word segmentation was used and the cases

needed to be self-defined.

3) Model selection, training, evaluation, and optimization.

According to the task, the models we used included four

classical machine learning models: Random Forest (RF), K-

Nearest Neighbor (KNN), Support Vector Machine (SVM),

Multilayer Perceptron (MLP), and TextCNN, which

performed well in sentence classification[16]. The detailed

steps of our experiment were as follows: ① feeding the

training data to models to obtain the basic results; ②

optimizing the word vector according to the model effect and

adding features in the training process; ③ evaluating the

effect of models to decide whether to continue optimizing.

3.3 Feature Processing

3.3.1 Word Vector. At present, common models for training

word vectors included Word2Vec, GloVe, ELMO, GPT, BERT,

etc. The word vectors trained by the first two models were

context-independent. Because our core task was phrase

classification, which not needed context information, we chose

Word2Vec to train word vectors. Before training, we used

underline to concatenate the words in a phrase in the corpus after

word segmentation, to ensure that phrases were regarded as a

whole when training word vectors.

Word2Vec included two algorithms: Skip-gram and CBOW.

Research showed that Skip-gram contained more semantic

information, while CBOW contains more grammatical

information[17]. The window size was also very important for

training word vectors, and the commonly used window sizes were

5 and 101. Therefore, we would first explore the above two factors

affecting word vector results in the classification experiment.

According to related studies[18], other parameters were shown in

Table 1. In addition, to make word vectors more robust, we used

stemmed corpus to train Word2Vec.

Parameters Values

sg 1 / 0

window size(w) 5 / 10

min count 5

iteration number 20

embedding size 200

Table 1 Parameters of Word2Vec. sg=1 meant algorithm was

Skip-gram, sg=0 was CBOW. w was used to represent the

window size later.

3.3.2 POS Feature. POS of words in sentences could be

obtained through the Python third-party package nltk. There were

36 kinds of POS in nltk, which meant the length of the POS vector

of a single word was 36. In the classification experiment, POS

vectors of training data were obtained by concatenating the POS

vectors of component words. To avoid the inconsistent length of

POS vectors, we counted the lengths of phrases (the number of

words in phrases) in the segmentation lexicon to obtain the

maximum phrase length. When the lengths of training data were

less than the maximum phrase length, POS vectors of training data

would be padded with 0. Finally, the length of POS vectors of

training data was 36 * max(len(phrase{lexicon})) (Maximum length

of phrases in lexicon). POS vectors were used by concatenating

word vectors in the experiment.

3.3.3 Case Feature. Three types of phrase cases were defined

in this paper: initial uppercase, all uppercase and all lowercase.

The lengths of case vectors of training data were 3. Similarly, case

vectors were used by concatenating word vectors.

3.4 Classification Models

Classification models used in this paper included RF, KNN, SVM,

MLP, and TextCNN. The first four models were implemented by

sklearn in Python. In the RF, the number of decision trees was set

to 100. All parameters of the KNN took the default values. In the

SVM, the probability was set to True, that was, probability

estimation was enabled. In the MLP, the number of neurons in the

1 https://www.bbsmax.com/A/A2dm2D7zen/

43

EEKE 2021 - Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents

hidden layer was (100, 50). TextCNN was originally used to

classify sentences, and phrases could be regarded as shorter

sentences. The input of TextCNN 2 were vectors generated by

Word2Vec. The embedding size, sequence length, batch size, and

training epoch in TextCNN were set as 200, 10, 32, and 20

respectively. Parameters not mentioned above took the default

values.

4 Experiment

To verify the effectiveness of our methodology, we took the

domain of AI as an example in the experiment.

4.1 Data Acquisition and Preprocessing

Firstly, we obtained the bibliography data of the AI domain. The

data was from the category of AI in the core collection of WOS

(Web of Science). Documents were retrieved with WC = computer

science and WC = artificial intelligence, and the time range was

set as from 1996 to 2020. Then, abstracts and keywords were

extracted from the bibliography data, including 927675 abstracts

and 161169 keywords.

Secondly, we constructed a glossary of AI domain. The data came

from a knowledge website3 in AI domain, from which we obtained

all problem and solution entities. The problem entities were from

the tasks of the Browse State-of-the-Art page in the website, and

the solution entities were from the machine learning components

of the Methods page. After removing duplications, 1887 problem

entities and 1209 solution entities were remained.

Finally, we processed the above data to get the final experimental

data. The user-defined lexicon of English word segmentation was

constructed by merging keywords set and domain glossary. The

training data of classifiers consisted of entities and non-entities, in

which 360 entities of each type were manually extracted from the

glossary, and 360 non-entities were manually constructed. Non-

entities included phrases and words, in which phrases were

extracted from high-frequency keywords and words were

constructed randomly. The ratio of phrases to words in non-

entities was about 2:1. This was because almost all entities were

phrases, so more phrase-level non-entities were needed to help

train models. Finally, 1080 pieces of classification data were

obtained. The training set and validation set were randomly

divided according to the ratio of 5:1. In addition, to evaluate the

performance of our methodology, we set our baseline as the

traditional BERT-BiLSTM-CRF NER model. A previous

annotated corpus containing 3000 sentences was used for the

baseline model, in which 2000 sentence were randomly selected as

the training data and the rest 1000 sentences were used as the

common test set.

4.2 Result Analysis

2 https://github.com/cjymz886/text-cnn
3 https://paperswithcode.com/

The macro average of precision, recall, and F1-measure were used

to evaluate the models.

Word vectors were the basic input of models, so we firstly

explored the influences of word vectors trained by the two

algorithms in different window sizes, and the results were shown

in Table 2.

 sg=1 sg=0

 w=5 w=10 w=5 w=10

RF 0.672 0.681 0.666 0.655

KNN 0.55 0.672 0.151 0.146

SVM 0.736 0.701 0.709 0.679

MLP 0.672 0.685 0.428 0.478

TextCNN 0.695 0.685 0.67 0.67

Table 2 Macro F1-measure of models using different word

vectors on the test set.

Firstly, we compared the results in Table 2 vertically. When sg=1,

five models in two window sizes achieved good results on the

whole. Only when w=5, KNN performed poorly. However, when

sg=0, the performances of all models decreased, especially KNN

and MLP. The possible reason was that Skip-gram focused on

semantics, which was more conducive to the NER task than

CBOW. In addition, KNN and MLP had higher requirements for

data quality, but word vectors trained by CBOW could not meet

the requirement. Secondly, we compared the results in Table 2

horizontally, and the best F1-measures of each model were about

0.7, which were highlighted in bold in Table 2. In the following

experiments, the word vector that made each model achieved the

best performance was used, and POS features and case features

were added to models. The results were shown in Table 3.

It could be found in Table 3 that the addition of two features

effectively improved the F1-measures. When all features were

fused, optimal results were obtained in all models. Among the five

models, SVM had the best performance, with an F1-measure of

0.753. This might be because the underlying training mechanism

of SVM made SVM more suitable for small sample classification.

When the word vector parameters were sg=1 and w=10, the voting

model had the best performance, and the F1-measure was 0.752.

SVM or voting model could be selectively used in practical

application. The best F1-measure of TextCNN was 0.715, which

was far from its performance in sentence classification. One

possible reason was that the length of phrases was much smaller

than sentences.

The baseline BERT-BiLSTM-CRF4 performed well on the domain

NER task. Its F1-measure was 0.772, which was far less than its

performance in the general NER task, but it had been a very good

result in the subdivided domain. And the result was 0.019 higher

than our optimal model. From the experimental result, there was

still a gap in our methodology, but from the cost of experimental

data, the gap was acceptable. In the following work, we can

further optimize the word vectors and add more features to

improve the performance.

4 https://github.com/macanv/BERT-BiLSTM-CRF-NER

44

https://paperswithcode.com/sota
https://paperswithcode.com/methods

EEKE 2021 - Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents

5 Conclusion

Aiming at the problem that the current domain NER models

heavily rely on manually annotation data and thus has poor

domain generalization ability, we propose a two-stage knowledge

entity extraction methodology, which can get rid of the

dependence on manually annotation data. Experiments in WOS

documents in the domain of AI showed that good results can be

achieved in the extraction of problem and solution entities without

manual annotation using our approach.

In general, our approach has good domain generalization because

it does not need manual annotation, and can be applied to many

subdivided domains at a low cost. However, the performance of

our scheme still has some room for improvement. In the follow-up

work, we can try to use better word vectors and more features to

improve the accuracy of entity extraction, and gradually extend

the model to the extraction of more knowledge types.

 f1 f1+f2 f1+f3 f1+f2+f3

 P R F1 P R F1 P R F1 P R F1

RF 0.588 0.812 0.681 0.629 0.824 0.713 0.618 0.812 0.702 0.661 0.833 0.736

KNN 0.593 0.78 0.672 0.603 0.773 0.676 0.604 0.784 0.681 0.614 0.783 0.687

SVM 0.677 0.81 0.736 0.701 0.809 0.749 0.69 0.812 0.744 0.706 0.812 0.753

MLP 0.593 0.813 0.685 0.604 0.815 0.694 0.605 0.814 0.694 0.621 0.826 0.709

TextCNN 0.63 0.785 0.695 0.631 0.815 0.701 0.64 0.765 0.697 0.65 0.81 0.715

Voting - - - - - - - - - 0.689 0.831 0.752

BERT-BiLSTM-CRF(baseline) P: 0.756 R: 0.789 F1:0.772

Table 3 Macro P, R, F1-measure of models using different features on the test set. f1 was word vector, f2 was POS feature, f3 was

case feature.

ACKNOWLEDGMENTS

This study is supported by the MOE (Ministry of Education in

China) Project of Humanities and Social Sciences.

REFERENCES
[1] Zara Nasar, Syed Waqar Jaffry and Muhammad Kamran Malik, 2018.

Information extraction from scientific articles: a survey. Scientometrics 117

3(2018), 1931-1990. DOI: https://doi.org/10.1007/s11192-018-2921-5.

[2] Nooralahzadeh Farhad, Lønning Tore Jan and Øvrelid Lilja, 2019.

Reinforcement-based denoising of distantly supervised NER with partial

annotation. In Proceedings of the 2nd Workshop on Deep Learning

Approaches for Low-Resource NLP. 225-233.

[3] Peters E. Matthew, Ammar Waleed and Bhagavatula Chandra, et al., 2017.

Semi-supervised sequence tagging with bidirectional language models. In

Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics. 1756–1765.

[4] Gupta Sonal and Manning D, 2011. Analyzing the dynamics of research by

extracting key aspects of scientific papers. In Proceedings of the 5th

International Joint Conference on Natural Language Processing. 1-9.

[5] Singh Mayank, Dan Soham, Agarwal Sanyam, Goyal Pawan and Mukherjee

Animesh, 2017. AppTechMiner: Mining Applications and Techniques from

Scientific Articles. In Proceedings of the Joint Conference on Digital

Libraries Joint Conference on Digital Libraries. 1-8.

[6] Heffernan Kevin and Teufel Simone, 2018. Identifying Problems and

Solutions in Scientific Text. Scientometrics 116 2 (2018), 1367–1382.

DOI: https://doi.org/10.1007/s11192-018-2718-6.

[7] Michael Collins and Yoram Singer, 1999. Unsupervised models for named

entity classification. In Proceedings of the Joint SIGDAT Conference on

Empirical Methods in Natural Language Processing and Very Large Corpora.

100-110.

[8] Zhou Guodong and Su Jian, 2002. Named entity recognition using an HMM-

based chunk tagger. In Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics. Stroudsburg: Association for

Computational Linguistics, 473-480.

[9] McCallum Andrew and Li Wei, 2003. Early results for named entity

recognition with conditional random fields, feature induction and web-

enhanced lexicons. In Proceedings of the Seventh Conference on Natural

Language Learning at HLT-NAACL. Stroudsburg: Association for

Computational Linguistics, 188-191.

[10] Cherry Colin and Guo Hongyu, 2015. The unreasonable effectiveness of word

representations for Twitter named entity recognition. In The 2015 Annual

Conference of the North American Chapter of the ACL. Stroudsburg:

Association for Computational Linguistics, 735-745.

[11] Ni Jian, Dinu Georgiana and Florian Radu, 2017. Weakly Supervised Cross-

Lingual Named Entity Recognition via Effective Annotation and

Representation Projection. In Proceedings of the 54th Annual Meeting on

Association for Computational Linguistics. 1470-1480.

[12] Giorgi M John and Bader D Gary, 2018. Transfer learning for biomedical

named entity recognition with neural networks. Bioinformatics 34 23 (2018),

4087-4094.

[13] Lison Pierre, Barnes Jeremy, Hubin Aliaksandr and Touileb Samia. 2020.

Named Entity Recognition without Labelled Data: A Weak Supervision

Approach. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics. 1518-1533.

[14] Dai, Damai, et al. "Inductively Representing Out-of-Knowledge-Graph

Entities by Optimal Estimation Under Translational Assumptions." (2020).

[15] Ifeoluwa David Adelani, A. Michael Hedderich, Dawei Zhu, den Esther van

Berg and Dietrich Klakow, 2020. Distant Supervision and Noisy Label

Learning for Low Resource Named Entity Recognition: A Study on Hausa

and Yor\`ub\'a. arXiv preprint arXiv: 2003.08370 (2020).

[16] Kim Y . Convolutional Neural Networks for Sentence Classification[J]. Eprint

Arxiv, 2014.

[17] Mikolov Tomas, Chen Kai, Corrado Greg and Dean Jeffrey, 2013. Efficient

Estimation of Word Representations in Vector Space. Computer Science.

arXiv preprint arXiv:1301.3781v3 (2013).

[18] Siwei Lai, Kang Liu, Liheng Xu and Jun Zhao, 2016. How to Generate a

Good Word Embedding. IEEE Intelligent Systems 31 6 (2016), 5–14.

45

https://doi.org/10.1007/s11192-018-2921-5
https://doi.org/10.1007/s11192-018-2718-6

