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ABSTRACT 

Current methods of domain entity extraction of scientific texts rely 

heavily on manually annotation corpus and thus have poor 

generalization ability. In this paper, we proposed a two-stage 

methodology that can make good use of existed author keywords 

of the given domain to solve this problem. Firstly, the author 

keyword set was used to mark the boundary of candidate entities, 

and then their features are integrated to classify their entity type. 

In the experiment on artificial intelligence (AI) documents from 

WOS, our approach obtains an F1 value of 0.753 without manual 

annotation, which is slightly lower than the BERT-BiLSTM-CRF 

baseline model (F1=0.772) trained on manual annotation corpus, 

showing the usability of our approach in practice. 

CCS CONCEPTS 

• Computing methodologies • Artificial intelligence • Natural 

language processing • Information extraction 

KEYWORDS 

Information Extraction, Domain Named Entity Recognition, 

Analysis of Scientific Papers, Author Keywords 

1 Introduction 

At present, there have been many studies on knowledge entity 

extraction in scientific papers, and the biggest problem is the lack 

of labeled data[1]. As we all know, scientific papers usually 

belong to a specific domain, so manual annotation needs 

corresponding domain knowledge, which makes the annotation 

more expensive, and many popular named entity recognition 

(NER) models can not play their inherent excellent performance. 

To ensure the generalization ability of NER models, it is necessary 

to reduce their dependence on manual annotation. At present, 

thanks to the rapid development of databases and the Internet, a 

large number of knowledge resources have been accumulated in 

many domains, such as knowledge bases, gazetteers, glossaries, 

dictionaries, etc. These resources are widely used in NER models 

of distant supervision[2] or semi-supervision learning[3], which 

reduces the dependence of models on labeled data and improves 

the generalization ability of models to a certain extent. 

Actually, domain entity extraction can be divided into two 

subtasks: entity boundary recognition and entity type 

classification. Taking the domain of artificial intelligence (AI) as 

an example, we firstly used the domain glossary to help to identify 

the entity boundaries and then constructed a low-cost training data 

to classify the entities. Problems and solutions were viewed as the 

key-insights of scientific papers[1], so we took them as the main 

entity types in the experiment. According to related studies, we 

summarized the research objectives, domains, applications, and 

tasks in technical papers as problems, and the methods, schemes, 

models, technologies, tools, software, algorithms, and theories 

used to solve these problems as solutions[4][5][6]. The 

experimental results showed that a good index of our methodology 

was obtained without manual annotation, and the F1-measure 

reached 0.753. 

2 Related Studies 

At present, the mainstream methods of domain NER are divided 

into two categories: methods based on statistical machine learning 

(ML) and methods based on deep learning (DL). The NER method 

based on ML is essentially classification, that is, given multiple 

types of named entities, and then models are used to classify the 

entities in the text. And there are two ideas in the implementation. 

One is to identify the boundaries of all named entities in the text 

firstly, and then classify them into different types, such as 

CoBoost[7]. The other is sequence annotation. Each word in the 

text is given several candidate type labels, which correspond to its 

position in various entities. The classical NER models based on 

sequence annotation in ML include HMM[8], CRF[9], etc. The 

NER models based on DL use pre-trained word vectors to 

represent words, which can solve the problem of data sparsity in 

high latitude vector space. Meanwhile, pre-trained word vectors 

contain more semantic information than manually selected 

features and can obtain the feature representation in unified vector 

space from heterogeneous texts, which brings strong development 

for sequence annotation tasks, especially for NER[10]. 
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The biggest problem of domain NER is the lack of labeled corpus 

nowadays. When a general NER method is applied to a specific 

domain, corresponding adjustment strategies need to be taken 

according to the domain corpus. A common idea is to use transfer 

learning to share data and models among domains. Ni et al. 

projected labeled data and distributed representation of words 

without manual annotation in the target domain[11]. Giorgi et al. 

transferred the source domain model parameters to the target 

domain for initialization, and then fine-tune the parameters to 

meet the task[12]. Another idea is to make full use of the existing 

knowledge resources in domains to automatically build datasets 

and carry out distant supervision, semi-supervision, weak 

supervision, etc. Nooralahzadeh et al. adopted a technique of 

partial annotation and implemented a reinforcement learning 

strategy with a neural network policy in distant supervision 

NER[2]. Peters et al. demonstrated a general semi-supervised 

approach for adding pre-trained context embeddings from 

bidirectional language models to NLP systems and apply it to 

NER[3]. Lison et al. relied on a broad spectrum of labeling 

functions to automatically annotate texts from the target 

domain[13].  

From the above researches, it could be seen that various domain 

resources were widely used to reduce the manual annotation cost 

as much as possible, which thus achieved good results. However, 

the domain NER models based on transfer learning, semi-

supervision etc. still could not avoid manual participation in the 

construction of datasets. Therefore, after analyzing the essence of 

the NER task, domain NER was divided into two subtasks in this 

paper, which avoided manual annotation with the help of domain 

resources. In addition, some new ideas such as zero-shot 

learning[14] and learning with noisy labels[15] have also been 

applied to domain NER to help further reduce labor costs. 

3 Methodology 

3.1 Framework 

Traditional NER was regarded as a sequence labeling task, which 

assigned the corresponding entity type and location label to each 

token in the text. In fact, NER could be regarded as two subtasks: 

boundary recognition and entity classification. That was, we can 

firstly identify the boundaries of named entities in the text, and 

then classify them into different types. The NER method based on 

sequence labeling treated two subtasks as a whole, in which the 

same labeled data was shared by two subtasks so that the 

requirement for its quality was pretty high. As a result, many 

classic NER methods could not be applied in some subdivided 

domains. In addition, the NER method based on sequence labeling 

could not be effectively integrated into the existing domain 

resources. At present, the common practice was to use domain 

terms as auxiliary data to help roughly label data. On the contrary, 

by dividing NER into boundary recognition and entity 

classification, we could make full use of the existing domain 

knowledge resources. 

Entity boundary recognition could be regarded as a word 

segmentation task, which required large-scale resources (i.e. user-

defined lexicon). And there usually exist some domain glossaries 

and a large-scale author keyword set in a given domain, which can 

help to solve the word segmentation task. Compared with word 

segmentation, entity classification required smaller-scale resources 

(i.e. training data). At present, many domains knowledge can be 

obtained easily through an online database or knowledge graph, 

which can provide necessary training data for entity type 

classification without manual annotation. To sum up, the 

framework of this paper was shown in Figure 1. 

 

Figure 1 Framework of knowledge entities extraction.

The framework was divided into three parts. The first was the 

acquisition of domain resources. The domain resources used in 

this paper included domain glossary and domain documents. 

Domain glossary could be obtained directly through browser (such 

as Google, Firefox, etc.) or relevant domain knowledge websites 

(such as Wikipedia, Baidu baike, etc.). In addition, we also got the 

types of terms when constructing a domain glossary. Domain 

documents could be obtained through databases (such as WOS, 

CNKI, etc.), then author keywords and abstract were extracted. 

Author keywords were indispensable large-scale resources for 

entity boundary recognition, and abstracts could be used in 

constructing features for the training data. The second was entity 

boundary recognition, which was regarded as a word segmentation 

task. The user-defined lexicon of the word segmentation task was 

constructed by combining domain glossary and author keywords 

set and helped to realize entity boundary recognition at a low cost. 

The third was entity classification. The training data required for 
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classification were extracted from the domain glossary, and the 

text features were obtained from abstract training or counting. 

3.2 Implementation 

3.2.1 Entity Boundary Recognition. As mentioned above, entity 

boundary recognition was transformed into word segmentation. 

Inspired by the Chinese automatic word segmentation method, the 

forward maximum matching algorithm based on string matching 

was used in this paper. Slightly different from Chinese word 

segmentation, it was necessary to extract the stem of English 

words before English word segmentation to avoid the influence of 

word form on word segmentation. In addition, there would be 

some noise when using word segmentation lexicon to label the 

candidate entities, so the following entity classification task was 

actually multi-class. 

3.2.2 Entity Classification. Entity classification was essentially 

word classification, which was a typical supervised task, and the 

training data was indispensable. At present, it is difficult to 

construct a large number of high-quality classification data in a 

given domain. However, a small number of high-quality data 

could usually be obtained at a low cost with the help of domain 

knowledge bases or domain experts. 

1) Construct training data. Training data consisted of positive 

samples and negative samples. Positive samples consisted of 

entities and corresponding types. And the pre-constructed 

glossary contained the types of terms, so we directly 

extracted some high-quality terms and their types as the 

positive samples. Negative samples, i.e. non-entities, were 

randomly extracted from keyword sets and texts. 

2) Construct text features. According to the task, word vector, 

part of speech (POS) feature, and word case feature were 

constructed. Word vectors could be obtained by training 

large-scale domain unlabeled corpus, and semantic 

information was given to discrete words according to the 

context. POS feature was obtained by counting the corpus 

without word segmentation. The acquisition of the case 

feature was basically consistent with the POS feature, but the 

corpus with word segmentation was used and the cases 

needed to be self-defined. 

3) Model selection, training, evaluation, and optimization. 

According to the task, the models we used included four 

classical machine learning models: Random Forest (RF), K-

Nearest Neighbor (KNN), Support Vector Machine (SVM), 

Multilayer Perceptron (MLP), and TextCNN, which 

performed well in sentence classification[16]. The detailed 

steps of our experiment were as follows: ① feeding the 

training data to models to obtain the basic results; ② 

optimizing the word vector according to the model effect and 

adding features in the training process; ③ evaluating the 

effect of models to decide whether to continue optimizing. 

3.3 Feature Processing 

3.3.1 Word Vector. At present, common models for training 

word vectors included Word2Vec, GloVe, ELMO, GPT, BERT, 

etc. The word vectors trained by the first two models were 

context-independent. Because our core task was phrase 

classification, which not needed context information, we chose 

Word2Vec to train word vectors. Before training, we used 

underline to concatenate the words in a phrase in the corpus after 

word segmentation, to ensure that phrases were regarded as a 

whole when training word vectors. 

Word2Vec included two algorithms: Skip-gram and CBOW. 

Research showed that Skip-gram contained more semantic 

information, while CBOW contains more grammatical 

information[17]. The window size was also very important for 

training word vectors, and the commonly used window sizes were 

5 and 101. Therefore, we would first explore the above two factors 

affecting word vector results in the classification experiment. 

According to related studies[18], other parameters were shown in 

Table 1. In addition, to make word vectors more robust, we used 

stemmed corpus to train Word2Vec. 

Parameters Values 

sg 1 / 0 

window size(w) 5 / 10 

min count 5 

iteration number 20 

embedding size 200 

Table 1 Parameters of Word2Vec. sg=1 meant algorithm was 

Skip-gram, sg=0 was CBOW. w was used to represent the 

window size later. 

3.3.2 POS Feature. POS of words in sentences could be 

obtained through the Python third-party package nltk. There were 

36 kinds of POS in nltk, which meant the length of the POS vector 

of a single word was 36. In the classification experiment, POS 

vectors of training data were obtained by concatenating the POS 

vectors of component words. To avoid the inconsistent length of 

POS vectors, we counted the lengths of phrases (the number of 

words in phrases) in the segmentation lexicon to obtain the 

maximum phrase length. When the lengths of training data were 

less than the maximum phrase length, POS vectors of training data 

would be padded with 0. Finally, the length of POS vectors of 

training data was 36 * max(len(phrase{lexicon})) (Maximum length 

of phrases in lexicon). POS vectors were used by concatenating 

word vectors in the experiment. 

3.3.3 Case Feature. Three types of phrase cases were defined 

in this paper: initial uppercase, all uppercase and all lowercase. 

The lengths of case vectors of training data were 3. Similarly, case 

vectors were used by concatenating word vectors. 

3.4 Classification Models 

Classification models used in this paper included RF, KNN, SVM, 

MLP, and TextCNN. The first four models were implemented by 

sklearn in Python. In the RF, the number of decision trees was set 

to 100. All parameters of the KNN took the default values. In the 

SVM, the probability was set to True, that was, probability 

estimation was enabled. In the MLP, the number of neurons in the 

                                                                 
1 https://www.bbsmax.com/A/A2dm2D7zen/ 
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hidden layer was (100, 50). TextCNN was originally used to 

classify sentences, and phrases could be regarded as shorter 

sentences. The input of TextCNN 2  were vectors generated by 

Word2Vec. The embedding size, sequence length, batch size, and 

training epoch in TextCNN were set as 200, 10, 32, and 20 

respectively. Parameters not mentioned above took the default 

values. 

4 Experiment 

To verify the effectiveness of our methodology, we took the 

domain of AI as an example in the experiment.  

4.1 Data Acquisition and Preprocessing 

Firstly, we obtained the bibliography data of the AI domain. The 

data was from the category of AI in the core collection of WOS 

(Web of Science). Documents were retrieved with WC = computer 

science and WC = artificial intelligence, and the time range was 

set as from 1996 to 2020. Then, abstracts and keywords were 

extracted from the bibliography data, including 927675 abstracts 

and 161169 keywords. 

Secondly, we constructed a glossary of AI domain. The data came 

from a knowledge website3 in AI domain, from which we obtained 

all problem and solution entities. The problem entities were from 

the tasks of the Browse State-of-the-Art page in the website, and 

the solution entities were from the machine learning components 

of the Methods page. After removing duplications, 1887 problem 

entities and 1209 solution entities were remained. 

Finally, we processed the above data to get the final experimental 

data. The user-defined lexicon of English word segmentation was 

constructed by merging keywords set and domain glossary. The 

training data of classifiers consisted of entities and non-entities, in 

which 360 entities of each type were manually extracted from the 

glossary, and 360 non-entities were manually constructed. Non-

entities included phrases and words, in which phrases were 

extracted from high-frequency keywords and words were 

constructed randomly. The ratio of phrases to words in non-

entities was about 2:1. This was because almost all entities were 

phrases, so more phrase-level non-entities were needed to help 

train models. Finally, 1080 pieces of classification data were 

obtained. The training set and validation set were randomly 

divided according to the ratio of 5:1. In addition, to evaluate the 

performance of our methodology, we set our baseline as the 

traditional BERT-BiLSTM-CRF NER model. A previous 

annotated corpus containing 3000 sentences was used for the 

baseline model, in which 2000 sentence were randomly selected as 

the training data and the rest 1000 sentences were used as the 

common test set. 

4.2 Result Analysis 

                                                                 
2 https://github.com/cjymz886/text-cnn 
3 https://paperswithcode.com/ 

The macro average of precision, recall, and F1-measure were used 

to evaluate the models. 

Word vectors were the basic input of models, so we firstly 

explored the influences of word vectors trained by the two 

algorithms in different window sizes, and the results were shown 

in Table 2. 

 sg=1 sg=0 

 w=5 w=10 w=5 w=10 

RF 0.672 0.681 0.666 0.655 

KNN 0.55 0.672 0.151 0.146 

SVM 0.736 0.701 0.709 0.679 

MLP 0.672 0.685 0.428 0.478 

TextCNN 0.695 0.685 0.67 0.67 

Table 2 Macro F1-measure of models using different word 

vectors on the test set. 

Firstly, we compared the results in Table 2 vertically. When sg=1, 

five models in two window sizes achieved good results on the 

whole. Only when w=5, KNN performed poorly. However, when 

sg=0, the performances of all models decreased, especially KNN 

and MLP. The possible reason was that Skip-gram focused on 

semantics, which was more conducive to the NER task than 

CBOW. In addition, KNN and MLP had higher requirements for 

data quality, but word vectors trained by CBOW could not meet 

the requirement. Secondly, we compared the results in Table 2 

horizontally, and the best F1-measures of each model were about 

0.7, which were highlighted in bold in Table 2. In the following 

experiments, the word vector that made each model achieved the 

best performance was used, and POS features and case features 

were added to models. The results were shown in Table 3. 

It could be found in Table 3 that the addition of two features 

effectively improved the F1-measures. When all features were 

fused, optimal results were obtained in all models. Among the five 

models, SVM had the best performance, with an F1-measure of 

0.753. This might be because the underlying training mechanism 

of SVM made SVM more suitable for small sample classification. 

When the word vector parameters were sg=1 and w=10, the voting 

model had the best performance, and the F1-measure was 0.752. 

SVM or voting model could be selectively used in practical 

application. The best F1-measure of TextCNN was 0.715, which 

was far from its performance in sentence classification. One 

possible reason was that the length of phrases was much smaller 

than sentences. 

The baseline BERT-BiLSTM-CRF4 performed well on the domain 

NER task. Its F1-measure was 0.772, which was far less than its 

performance in the general NER task, but it had been a very good 

result in the subdivided domain. And the result was 0.019 higher 

than our optimal model. From the experimental result, there was 

still a gap in our methodology, but from the cost of experimental 

data, the gap was acceptable. In the following work, we can 

further optimize the word vectors and add more features to 

improve the performance. 

                                                                 
4 https://github.com/macanv/BERT-BiLSTM-CRF-NER 
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5 Conclusion 

Aiming at the problem that the current domain NER models 

heavily rely on manually annotation data and thus has poor 

domain generalization ability, we propose a two-stage knowledge 

entity extraction methodology, which can get rid of the 

dependence on manually annotation data. Experiments in WOS 

documents in the domain of AI showed that good results can be 

achieved in the extraction of problem and solution entities without 

manual annotation using our approach. 

In general, our approach has good domain generalization because 

it does not need manual annotation, and can be applied to many 

subdivided domains at a low cost. However, the performance of 

our scheme still has some room for improvement. In the follow-up 

work, we can try to use better word vectors and more features to 

improve the accuracy of entity extraction, and gradually extend 

the model to the extraction of more knowledge types.  

 f1 f1+f2 f1+f3 f1+f2+f3 

 P R F1 P R F1 P R F1 P R F1 

RF 0.588 0.812 0.681 0.629 0.824 0.713 0.618 0.812 0.702 0.661 0.833 0.736 

KNN 0.593 0.78 0.672 0.603 0.773 0.676 0.604 0.784 0.681 0.614 0.783 0.687 

SVM 0.677 0.81 0.736 0.701 0.809 0.749 0.69 0.812 0.744 0.706 0.812 0.753 

MLP 0.593 0.813 0.685 0.604 0.815 0.694 0.605 0.814 0.694 0.621 0.826 0.709 

TextCNN 0.63 0.785 0.695 0.631 0.815 0.701 0.64 0.765 0.697 0.65 0.81 0.715 

Voting - - - - - - - - - 0.689 0.831 0.752 

BERT-BiLSTM-CRF(baseline) P: 0.756 R: 0.789 F1:0.772 

Table 3 Macro P, R, F1-measure of models using different features on the test set. f1 was word vector, f2 was POS feature, f3 was 

case feature. 

ACKNOWLEDGMENTS 

This study is supported by the MOE (Ministry of Education in 

China) Project of Humanities and Social Sciences. 

REFERENCES 
[1] Zara Nasar, Syed Waqar Jaffry and Muhammad Kamran Malik, 2018. 

Information extraction from scientific articles: a survey. Scientometrics 117 

3(2018), 1931-1990. DOI: https://doi.org/10.1007/s11192-018-2921-5.  

[2] Nooralahzadeh Farhad, Lønning Tore Jan and Øvrelid Lilja, 2019. 

Reinforcement-based denoising of distantly supervised NER with partial 

annotation. In Proceedings of the 2nd Workshop on Deep Learning 

Approaches for Low-Resource NLP. 225-233. 

[3] Peters E. Matthew, Ammar Waleed and Bhagavatula Chandra, et al., 2017. 

Semi-supervised sequence tagging with bidirectional language models. In 

Proceedings of the 55th Annual Meeting of the Association for Computational 

Linguistics. 1756–1765. 

[4] Gupta Sonal and Manning D, 2011. Analyzing the dynamics of research by 

extracting key aspects of scientific papers. In Proceedings of the 5th 

International Joint Conference on Natural Language Processing. 1-9. 

[5] Singh Mayank, Dan Soham, Agarwal Sanyam, Goyal Pawan and Mukherjee 

Animesh, 2017. AppTechMiner: Mining Applications and Techniques from 

Scientific Articles. In Proceedings of the Joint Conference on Digital 

Libraries Joint Conference on Digital Libraries. 1-8. 

[6] Heffernan Kevin and Teufel Simone, 2018. Identifying Problems and 

Solutions in Scientific Text. Scientometrics 116 2 (2018), 1367–1382. 

DOI: https://doi.org/10.1007/s11192-018-2718-6. 

[7] Michael Collins and Yoram Singer, 1999. Unsupervised models for named 

entity classification. In Proceedings of the Joint SIGDAT Conference on 

Empirical Methods in Natural Language Processing and Very Large Corpora. 

100-110. 

[8] Zhou Guodong and Su Jian, 2002. Named entity recognition using an HMM-

based chunk tagger. In Proceedings of the 40th Annual Meeting on 

Association for Computational Linguistics. Stroudsburg: Association for 

Computational Linguistics, 473-480. 

[9] McCallum Andrew and Li Wei, 2003. Early results for named entity 

recognition with conditional random fields, feature induction and web-

enhanced lexicons. In Proceedings of the Seventh Conference on Natural 

Language Learning at HLT-NAACL. Stroudsburg: Association for 

Computational Linguistics, 188-191. 

[10] Cherry Colin and Guo Hongyu, 2015. The unreasonable effectiveness of word 

representations for Twitter named entity recognition. In The 2015 Annual 

Conference of the North American Chapter of the ACL. Stroudsburg: 

Association for Computational Linguistics, 735-745. 

[11] Ni Jian, Dinu Georgiana and Florian Radu, 2017. Weakly Supervised Cross-

Lingual Named Entity Recognition via Effective Annotation and 

Representation Projection. In Proceedings of the 54th Annual Meeting on 

Association for Computational Linguistics. 1470-1480. 

[12] Giorgi M John and Bader D Gary, 2018. Transfer learning for biomedical 

named entity recognition with neural networks. Bioinformatics 34 23 (2018), 

4087-4094. 

[13] Lison Pierre, Barnes Jeremy, Hubin Aliaksandr and Touileb Samia. 2020. 

Named Entity Recognition without Labelled Data: A Weak Supervision 

Approach. In Proceedings of the 58th Annual Meeting of the Association for 

Computational Linguistics. 1518-1533. 

[14] Dai, Damai, et al. "Inductively Representing Out-of-Knowledge-Graph 

Entities by Optimal Estimation Under Translational Assumptions." (2020). 

[15] Ifeoluwa David Adelani, A. Michael Hedderich, Dawei Zhu, den Esther van 

Berg and Dietrich Klakow, 2020. Distant Supervision and Noisy Label 

Learning for Low Resource Named Entity Recognition: A Study on Hausa 

and Yor\`ub\'a. arXiv preprint arXiv: 2003.08370 (2020). 

[16] Kim Y . Convolutional Neural Networks for Sentence Classification[J]. Eprint 

Arxiv, 2014. 

[17] Mikolov Tomas, Chen Kai, Corrado Greg and Dean Jeffrey, 2013. Efficient 

Estimation of Word Representations in Vector Space. Computer Science. 

arXiv preprint arXiv:1301.3781v3 (2013). 

[18] Siwei Lai, Kang Liu, Liheng Xu and Jun Zhao, 2016. How to Generate a 

Good Word Embedding. IEEE Intelligent Systems 31 6 (2016), 5–14. 

45

https://doi.org/10.1007/s11192-018-2921-5
https://doi.org/10.1007/s11192-018-2718-6

