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Decentralized self-organizing large-scale systems, such
as robot swarms (Hamann, 2018), can be designed to be
adaptive, robust, and scalable. However, developing robot
and system behaviors that are robust and adaptive to dy-
namic environments, dynamic system size, and faults is still
challenging. We study a swarm showing robust scalabil-
ity. The swarm needs to detect the change in its environ-
ment or in the system size, assess the quantity of the change,
and appropriately adapt parameters of its control algorithm.
In a second part, we discuss bio-hybrid systems of natural
plants interacting with robotic nodes. In the studied exam-
ple, robotic devices are used to steer the growth of natural
plants by exploiting their adaptive behaviors. We use meth-
ods of machine learning to model natural plants and to guide
their growth and motion with an autonomous system. In bio-
hybrid systems, we can exploit natural adaptive behaviors to
build, for example, systems that self-repair.

Adaptivity in Swarm Robotics
Swarm robotics is claimed to have the advantage of high
robustness against failures (Brambilla et al., 2013). Their
high degree of redundancy helps to overcome failures, such
as breaking robots. Similarly, swarm robot behaviors are
claimed to be scalable to different swarm sizes and some-
times also to different swarm densities (robots per area).
High degrees of scalabilty can be achieved as swarms rely
on local information and local communication only and
has been shown in experiments (Rubenstein et al., 2014;
Hamann, 2018). We also know that optimal swarm densities
exist for many systems of swarm robotics (Hamann, 2013).
However, if robots break at runtime, then the swarm den-
sity changes and the swarm possibly requires online scala-
bility to remain efficient. We require the swarm to be robust
against dynamic swarm sizes which can be called ‘robust
scalability.’ If the swarm size changes, then each robot may
require to change its behavior at runtime, for example, by
adapting parameters of its control algorithm.

Wahby et al. (2019) present an aggregation experiment
with N = 10 swarm robots. The robots’ task is to aggregate
at light spots and each robot needs to adapt to a dynamic en-

vironment (location and intensity of light spots changes). In
an additional experiment, the robot swarm is halved and re-
duced to swarm sizeN = 5 during the experiment. For both
adaptation to dynamic environments and adaptation to dy-
namic system size, the robots face an interesting and funda-
mental challenge. The adaptation can either be fast or accu-
rate. A fast adaptation needs to be sensitive to any detected
change that needs to be considered a precursor of changes
requiring adaptations in the robot behavior. However, if
we require a robust adaptation process, then robots need to
avoid false positives (reacting to a change where there was
no change). This is a tradeoff where improving in one ca-
pability results in worsening the other. Wahby et al. (2019)
resolve that challenge by periodical measurements of envi-
ronmental features (e.g., light) and other features (e.g., times
between robot-robot encounters) indicating swarm density.
These measurements are averaged over a limited time win-
dow and directly influence control parameters of the robot.
Hence, the robots do not explicitly react to a detected change
but forget old measurements that were recorded before the
change. Besides measuring light intensities and remember-
ing maximum/minimum light intensities, robots measure the
time ta between two encounters of a wall and the time tr be-
tween two encounters of a robot. If we assume a regular
floor plan (e.g., rectangular) without many obstacles (except
for other robots), then the time between encountering walls
indicates the side length and hence the area of the room. The
time between encountering other robots is similar to a mean
free path and indicates the robot density. The distribution of
measured times between robot-robot encounters is similar to
an exponential distribution and its mean, for example, drops
significantly if the robot density is halved. Robots meeting
robots on a light spot stay stopped for waiting time w. The
time w is a parameter of the control algorithm that depends
on these measured values. w is scaled proportionally to the
measured time tr. Measured time ta was not used here as
the area remained constant in this experiment. The results
indicated that robots adapt successfully to a change of sys-
tem size from N = 10 to N = 5 at runtime and outperform
a swarm that was optimized offline for N = 10.
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Robustness in a Bio-hybrid System
Bio-hybrid systems combine living organisms with tech-
nology. Here, we combine natural plants with robot-like
units. Key of the bio-hybrid approach is that we get ‘life-
like’ features almost for free instead of trying to mimic be-
haviors of living organisms in a purely technological ap-
proach. An advantage is, for example, that a bridge built
from living plants reinforces itself and grows stronger over
time instead of decaying slowly but inevitably (Shankar,
2015). A challenge is that we need to understand how to
interface the plants and how to exploit their natural adap-
tive behaviors. In the EU-funded project flora robotica,
we have developed a bio-hybrid system of living organisms
and robotic devices to steer and guide the growth and mo-
tion of natural plants (Hamann et al., 2015). We use the
phototropism (growth towards light) and the thigmotropism
(growth guided by touch, for example, in climbing plants) of
plants. Bright blue LEDs are used to attract plants and scaf-
folds can be used to determine the growth options of climb-
ing plants (Wahby et al., 2018a). Here, we shortly discuss
two experiments: (A) high-precision control of growth and
motion of a single plant using a single robotic device and
(B) growth of a pattern by guiding a small group of plants
using multiple robotic devices.

In experiment A, we use a simple setup with one plant
(common bean), two lights (left/right), and a camera. We al-
low a user to define target points in 2-d space that the plant’s
tip should visit during the experiment (Wahby et al., 2018b).
Our tool-chain to solve this engineering task is rather com-
plex. We start from a dataset obtained by preliminary exper-
iments where the two lights are switched on/off in a regu-
lar sequence. The plant is photographed every five minutes.
Using computer vision, we extract data that represents the
plant’s reaction to given light conditions and a previous stem
configuration (e.g., length, bend). With that data we train an
LSTM network to obtain a holistic plant model that predicts
the plant’s reaction for a given configuration. We use the
LSTM network and methods of evolutionary computation to
evolve a controller that takes the plant’s configuration, the
light condition, and the user-defined target points as input
and outputs the desired next configuration of the lights. In a
last step, we use the light controllers that performed well in
simulation to control a real plant and find that they succeed
despite an expected reality gap (Jakobi et al., 1995).

In experiment B, we support the growth of a group of bean
plants with a scaffold in the form of a diagrid. In the bifurca-
tion points we place eight robotic devices that use proximity
sensing to detect a close-by plant and that have red and blue
bright LEDs (Wahby et al., 2018a). These robotic devices
can also communicate between each other using WLAN.
The task is to grow a user-defined pattern along the dia-
grid. The pattern is defined and programmed into the robots.
After planting several bean plants, the autonomous system
controls the remaining process. A first robot α in the user-

defined pattern turns on its blue LEDs to attract the plants.
Once α detects the first close-by plant, α communicates with
the next robot β of the programmed pattern. α turns off its
blue LED and β turns its blue LED on. This process repeats
until the plant approaches the last robot in the sequence and
the pattern has been grown. An experiment takes several
weeks and was repeated successfully.

In future work, we plan to show a robust bio-hybrid sys-
tem with the capability of self-repair. We want to scale up
one more step (dozens of plants and 18 robotic devices) and
to use a more complex scaffold. After having grown the
plants for several weeks, we plan to punch a whole into the
scaffold. The system is then expected to regrow that part
while keeping other areas (e.g., windows) unobstructed.
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