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Abstract

Testing is a crucial part in the development of a new product.
If too little testing is done, customers might discover previ-
ously undetected failures. A common approach to avoid this
is to define a test suite that contains at least one test for every
requirement. As the execution of manual tests and the imple-
mentation of automated ones is timeintensive, it is a profitable
goal to reduce the amount of tests during the specification of
the test suite whilst still covering all requirements. In this
work we provide an artificial immune system to detect redun-
dant tests. Our new approach achieves optimal results for our
industrial data sets and further we are able to reduce its run-
time and memory usage drastically compared to the existing
germinal centre artificial immune system (GCAIS).

Introduction
Testing is a timeintensive but nevertheless important part of
product development. The verification of new products be-
comes even more essential as the complexity of software is
increasing rapidly. Several studies confirm that the size of
the specified test suite has a major impact on the total de-
velopment cost (Fraser and Wotawa, 2007; Yu et al., 2008;
Hsu and Orso, 2009). Thus it is a worthy goal to reduce the
size of a test suite whilst maintaining its quality, such as its
coverage or its capability to find errors.

Several approaches are already available to reduce the size
of the test suite for certain stages of testing. For example
Spieker et al. (2018) determine a test suite based on the his-
tory of individual tests (e. g. how often did a test fail or how
long does its execution take) using a reinforcement learning
agent. The agent selects tests that are more likely to fail and
its suite has bounded execution time. Gotlieb and Marijan
(2014) try to reduce the size of the test suite before any test is
executed or implemented. In contrast to Spieker et al. (2018)
they maintain the coverage of the original test suite because
a testing history is not available yet. Each test covers a set of
requirements and their goal is to determine the minimal set
of tests that covers all requirements. In mathematics and
computer science this problem is known as the minimum
set cover problem (MSCP) (Williamson and Shmoys, 2011).
The MSCP is a NP-hard optimization problem and thus an

optimal solution is hard to find within a reasonable amount
of time.

During this work we also intend to reduce the size of the
test suite during its specification, similar to Gotlieb and Mar-
ijan (2014). However, Gotlieb and Marijan (2014) used a
branch and bound approach that has worst case exponential
runtime. On the other hand evolutionary algorithms tend
to be computational lightweights that may not offer optimal
solutions but approximations with reasonable quality and es-
pecially the MSCP has undergone heavy research from the
evolutionary computation community (Li et al., 2009; Yu
et al., 2010; Yu et al., 2014; Balaji and Revathi, 2016).

The immune system has been used an inspiration for both
computational intelligence and rule based machine learning
(Azuaje, 2003). The latter is closely related to learning clas-
sifier systems (LCS) which are frequently used in organic
computing systems. Organic computing (OC) seeks to de-
sign systems that have self-x properties (Müller-Schloer and
Tomforde, 2017) which can be found in LCS and in the im-
mune system. The former has lead to a rather new evolution-
ary metaheuristic called germinal centre artificial immune
system (GCAIS) (Joshi et al., 2014). The approach main-
tains a population that takes an analogy to self-reacting cells
that create antibodies to eradicate pathogens. GCAIS has al-
ready been successfully applied to the MSCP on Beasley’s
OR library Joshi (2017) and often had optimal or close to
optimal results. However, it turns out that GCAIS has a few
downsides that we want to tackle in this paper.

The main contributions of this paper are:

• GCAIS maintains a population of non-dominated ele-
ments which is updated every iteration. The correspond-
ing computation is also known as the calculation of the
skyline (Börzsönyi et al., 2001). Several methods exist to
calculate the skyline but they usually have higher than lin-
ear cost. We explicitly exploit the structure of GCAIS and
the MSCP and provide an approach that has linear cost in
terms of the population size and the problem size.

• The size of GCAIS’ population may explode. We intro-
duce simple population boundaries and a deletion mech-
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anism similar to genetic algorithms (GA) to avoid this is-
sue (Holland, 1992). In our experiments we show that this
does not harm GCAIS’ capability to find close to optimal
solutions. In most cases our adapted version even is able
to find an optimal one.

• We show on two industrial data sets that GCAIS can dras-
tical reduce the size of the specified test suite. Further we
can observe that the structure of test specifications differs
from the more theoretical MSCP instances of Beasley’s
OR library.

In Section 2 we introduce the MSCP in a formal way, dis-
cuss its approximability, and briefly introduce related work.
Afterwards we present GCAIS and show how to reduce its
runtime and how we keep the population in bounds (Section
3). In Section 4 we perform experiments on two industrial
data sets as well as on Beasley’s OR library and examine
memory usage, runtime and approximation quality. Further
future work is discussed in Section 5. We close the paper
with a conclusion (Section 6).

Minimum Set Cover Problem
Here we first intend to describe the MSCP in a more formal
way. Let n be the number of sets (the test cases) and m be the
number of elements (the requirements) to cover. We denote
the sets as T1, T2,...,Tn. Thus the problem to be solved can
be described as follows:

min |TS |

s.t.
⋃

i∈TS

Ti =

m⋃
i=1

Ti

TS ⊆ {1,2, ...,m}
Ti ⊆ {1,2, ...,n}

(1)

Thus we want to determine the minmal number of tests that
still cover all requirements. A set of tests is called test suite
and thus the problem is coined test suite reduction if the
undelying MSCP instance corresponds to tests (Gotlieb and
Marijan, 2014). If redundant tests can already be identified
during specification then their implementation as automated
ones or their manual execution can be avoided.

From a mathematical perspective the MSCP is one of the
more difficult NP-hard problems to solve as its worst case
approximation ratio grows logarithmically in terms of the
problem size for algorithms with polynomial runtime (Dinur
and Steurer, 2014). However, as this result concerns the
worst case there is still research ongoing to find a method
that performs well on average.

Minotra (2008) gives an overview about genetic algo-
rithms and simulated annealing methods. Balaji and Revathi
(2016) designed a particle swarm optimization method, Yu
et al. (2014) used chemical reaction optimization, and Ren

et al. (2010) developed an algorithm based on ant colony
optimization.

There are several pure mathematical approaches for solv-
ing the MSCP such as greedy algorithms, integer linear pro-
grams and rounding techniques which are guaranteed to con-
verge (Williamson and Shmoys, 2011). Gotlieb and Mari-
jan (2014) designed an algorithm called FLOWER that com-
bines a branch and bound approach with flow networks.
FLOWER always delivers an optimal solution, but on the
other hand may have exponential runtime (depending on the
problem instance).

Germinal Center Artificial Immune System
In this section we introduce the base version of GCAIS. Fur-
ther, we identify its critical parts and show how the corre-
sponding runtime and memory issues are avoided.

Base algorithm
GCAIS is a population-based, randomised search heuristic
that is based on the immune system of vertebrates. The
heuristic has been influenced by recent insights about ger-
minal centre reaction (Joshi et al., 2014). Germinal centres
(GC) are regions where the invading antigen (Ag) is pre-
sented to immune cells. If an invasion occurs, the cells pro-
duce antibodies (Ab) that try to bind the pathogen and erad-
icate it. The GCs start to grow and try to find the best Abs.
GCs communicate with each other in order to exchange their
Abs. The latter can be improved by proliferation, mutation
and selection of immune cells.

We encode solutions as binary vectors of length m. If
the entry i is one then Ti belongs to the solution and a zero
indicates that Ti is not a part of the cover. Furthermore let
|x| be the L1-norm of x (corresponds to the number of sets
used).
The metaheuristic maintains a population of non-dominated
solutions and also allows unfeasible solutions. A solution x
is said to dominate another solution y if one of the following
two condition holds:

i) |x| ≤ |y|∧ |
⋃

i∈x Ti|> |
⋃

i∈y Ti|

ii) |x|< |y|∧ |
⋃

i∈x Ti| ≥ |
⋃

i∈y Ti|

We denote this relation as x >p y. This relation is also
known as pareto dominance (Börzsönyi et al., 2001).

The initial population P consists out of the zero vector 0
(no set at all is used). In every iteration the entire popula-
tion is mutated (flipping individual bits with a probability
of 1

m ) and merged with the original one. During the merge
step every solution is eliminated that is either dominated by
a mutated solution or a solution that is already in the popu-
lation. This is repeated until a stopping criteria is met. We
summarized the method in Algorithm 1.

The for loop (line 4-7) costs O(|P|m) and can easily be
parallelized using for example OpenMP or other standard
parallelization libraries.



Algorithm 1: Germinal centre artificial immune
system (GCAIS).

input : T1,T2, ...,Tn, m
output: a solution

1 P = {0}
2 while stopping criterion is not met do
3 P’ = {}
4 for x in P do
5 y = mutate x
6 insert y to P’
7 end
8 Q = P ∪ P’
9 P = {x ∈ Q|∀y ∈ Q : ¬y >p x}

10 end
11 return best solution of P

We decided to go for such a population based approach
as usually throughout a project the requirements (and thus
the tests) may change (Nurmuliani et al., 2004). With previ-
ous approaches this would require a complete recalculation.
However, GCAIS allows infeasible solutions in its popula-
tion and would enable us to translate the previous population
to the updated problem. We hope that this self-improving
approach might reduce the runtime in the future.

GCAIS is similar to the global simple evolutionary multi-
objective optimiser (GSEMO) (Giel and Wegener, 2003)
which is another population-based approach. It differs from
GCAIS as it has several populations and only mutates one
solution per iteration and population instead of all. Fur-
ther it sends a new solution with a probability p to all other
populations. GSEMO’s populations also consist out of non-
dominated solutions.

Skyline
The for loop of Algorithm 1 is not the only costly step of
an iteration. The recalculation of P is also computationally
intense. In data engineering the calculation of the set of non-
dominated solutions is also known as the computation of the
skyline (Börzsönyi et al., 2001). It is coined skyline as in
the two-dimensional case its solutions are ”above” the others
(see Figure 1). A side effect of this visualization is that it can
be used to track the search process of GCAIS or GSEMO
during runtime. The advantage is that a series of these plots
displays the development of the population (in terms of its
diversity) and the convergence behaviour. Note, that in other
research areas the skyline is named pareto-frontier.

Several algorithms exist in order to calculate the skyline
(complexities adapted to this use case):

• Block nested loop (BNL) is the straightforward approach
that compares each solution x with all other solutions in
order to determine the skyline. It is trivial to see that this
costs O(|P|2) (Börzsönyi et al., 2001).

Figure 1: Example of a skyline. The elements of the skyline
are marked black. The gray balls represent solutions found
throughout the search that have been dominated.

• Sort filter skyline (SFS) sorts the considered solutions ac-
cording to their entropy and exploits that subsequent solu-
tions cannot dominate preceeding ones. The method has
a cost of O(|P|log(|P|)) (Chomicki et al., 2003).

• Divide and conquer (D&Q) approaches split the solutions
into chunks and calculate skyline recursively. This also
costs O(|P|log(|P|)) (Börzsönyi et al., 2001).

There are further approaches especially designed to handle
high-dimensional data or memory issues (Endres and We-
ichmann, 2017; Endres and Kießling, 2015; Endres et al.,
2015); however, as this is out of the scope of this paper, we
will not further discuss them.

The optimization problem that we try to solve is two-
dimensional (covered requirements, used tests), both dimen-
sions are discrete, and P is always a non-dominated set. We
exploit these facts to provide a skyline calculation that costs
O(n+ |P|).

We maintain a look-up table which holds an entry for ev-
ery i ∈ {0,1,2, ..,n}. The i-th entry holds all solutions of
the population that use i tests. It further holds how many
requirements are covered by the solutions (they all cover the
same number of requirements, otherwise a solution would
be dominated). Whenever we consider to insert a mutated
solution x for insertion we check the entry |x|. If the entry
covers more elements then x is not inserted, if it covers the
same amount of elements then we append the solution to the
entry. If it covers more elements then we overwrite the entry
with x and update the covered elements of the entry. Thus
an insertion costs O(1) and the insertion of the mutated pop-
ulation costs O(|P|).

After the insertion of a solution the table may contain
dominated solutions as only the entry of its cost is checked.
An inserted solution could also dominate entries of higher
cost. Thus we also need to introduce a repair method that is



called at the end of every iteration of GCAIS. We traverse
the table exactly once. We start by saving the index 1 into
a variable i and check if the current entry to look at covers
more entries. If so, we update i by its index and if not, we
delete the entry and proceed. Thus the repair method costs
O(n) and the calculation of the skyline O(n+ |P|).

We describe our skyline algorithm in Algorithm 2. The
variable table denotes the look-up table and table[i].cov is
the number of requirements covered by the solutions using i
tests. The number of requirements covered and the number
of tests used by a solution x can easily be retrieved during
the creation of the mutated population and thus does not af-
fect the cost of that method. The table should be initialized
before the main loop is entered and should be kept through-
out the search.

Algorithm 2: Skyline procedure for GCAIS using
a look-up table.

input : mutated solutions P’
1 // insertion
2 for x in P’ do
3 covered x = requirements covered by x
4 if table has no entry |x| then
5 table[|x|].cov = covered x
6 set the solutions of table[|x|] to x
7 else if table[|x|].cov == covered x then
8 append x to the solutions of table[|x|]
9 else if table[|x|].cov < covered x then

10 table[|x|].cov = covered x
11 set the solutions of table[|x|] to x
12 end
13 // repair the table
14 i = 1
15 for k in {2, ...n} do
16 if table[k].cov ≤ table[i].cov then
17 delete table[k]
18 else if table[k].cov > table[i].cov then
19 i = k
20 end

Avoiding huge populations
A difference between GCAIS and for example genetic algo-
rithms is that its population is unbounded. GCAIS keeps
the non-dominated solutions it encounters throughout its
search. The idea is that a mutated solution based on a non-
dominated solution has a higher likelihood to be an optimal
or close to optimal solution. However, this has the downside
that the population may grow rapidly. For example if all tests
cover the same amount of requirements and no requirement
is covered by more than one test, then the population even
grows exponentially.

In order to avoid an explosion of the population size, we

introduce simple population boundaries for each entry of
the look-up table. Whenever the capacity of an entry is ex-
ceeded then we delete a random solution from the entry to
make space for a new one. Unlike the skyline computation,
this may change the convergence behaviour of the algorithm
which we examine in our experimental evaluation.

There is also another approach to keep GCAIS’ popu-
lation from growing too fast. Joshi et al. (2015) used ε-
dominance instead of pareto-dominance. For the former, the
space is separated in squares of side length ε (for spaces of
higher dimensions it is separated into hypercubes). For two
solutions from different squares the ε-dominace relation is
the same as the pareto-dominance relation. If two solutions
x and y are in the same square then x ε-dominates y if and
only if:

|y|− |x|+ |
⋃
i∈x

Ti|− |
⋃
i∈y

Ti|> 0 (2)

If this approach is used then GCAIS keeps a population of
non-ε-dominated solutions instead of non-pareto-dominated
solutions. ε-dominance is more strict than pareto-dominance
and thus it makes it harder for a solution to be inserted. How-
ever, this no guarantee that the population does not grow un-
restricted.

Both approaches can easily be integrated into Algorithm
2. The boundary check and deletion of a random solution
can be incorporated into the insertion part. In order to use
ε-dominance we have to extend our repair method by incor-
porating a check if the table entries are in the same square
and deleting ε-dominated entries. This updated version has
the same worst case complexity as Algorithm 2. We describe
the new repair method in Algorithm 3.

Algorithm 3: Updated repair method if epsilon
dominance is used.

input : look-up table, ε

1 i = 1
2 for k in {2, ...n} do
3 if b k−i

ε
c== 0 then

4 // both entries are in the same square
5 d = k-i+table[i].cov - table[k].cov
6 if d > 0 then
7 // i dominates k
8 delete table[k]
9 else if d < 0 then

10 // k dominates i
11 delete table[k]
12 i = k
13 else if table[k].cov ≤ table[i].cov then
14 delete table[k]
15 else if table[k].cov > table[i].cov then
16 i = k
17 end



Evaluation
In our experiments we want to evaluate how much execu-
tion time we save due to our look-up table. Further, we in-
vestigate if the introduction of ε-dominance and population
boundaries limits the capability of GCAIS to find close to
optimal or optimal solutions. To our knowledge the former
has yet only been applied to the multiobjective Knapsack
problem (Joshi et al., 2015).

In our experiments we first focus on the main goal of this
paper: the reduction of the amount of tests. For this we
acquired two data sets from BSH Home Appliances which
is a german company that develops and produces various
home appliances such as ovens or dishwashers. Our data
sets are for two different fridge projects. In our experiments
we use cleaned versions of the data sets. We removed tests
that exclusively cover a single requirement (these tests must
be in a test suite that covers all requirements). We call these
data sets Fridge-1 and Fridge-2.

As we deem two datasets as too little, we additionally per-
form evaluations on the scpe instances of Beasley’s OR li-
brary which is frequently used for benchmarking MSCP al-
gorithms (Balaji and Revathi, 2016; Joshi et al., 2014).

During our evaluation we consider the various variants of
GCAIS next to the GSEMO algorithm. We follow the vari-
ant of Joshi et al. (2014) which was adapted to the MSCP.
We examined several parameterizations for GSEMO and
concluded that a population size of 30 and a send probabil-
ity of 30

nm are suitable choices. We also performed a fine tun-
ing of the hyperparameters of the artificial immune systems
which we will not discuss here (due to space restrictions).
We achieved reasonable results with a population boundary
of 200. For ε we consider 0, 5, 10 and 15. The base variant
of GCAIS (Algorithm 1) is parameterfree.

We repeat every experiment 100 times. Our implementa-
tion1 is in Python and we used a Dell Precision 3520 for our
experiments (Intel i7-6820HQ processor with 4 Cores and
an individual clock rate of 2.7 Ghz, 32 GB RAM).

Every algorithm is given a time budget of ten minutes.
Further, if there is no improvement in terms of the solutions
quality for 100 iterations then we interpret this as conver-
gence.

Quality Criteria
During our experiments we intend to measure the approxi-
mation quality, memory usage, and runtime. Thus we intro-
duce the following key performance indicators (KPIs):

mem save(alg) =
P(GCAIS BASE)

P(alg)
(3)

speed up(alg) =
r(GCAIS BASE)

r(alg)
(4)

1Source code and data are available here: https://github.
com/LagLukas/gcais_test_suite_reduction

approx rate(alg) =
o(alg)
OPT

(5)

where alg denotes any considered algorithm (and its cor-
responding hyperparameters). GCAIS BASE is the standard
variant of GCAIS described in Algorithm 1 and for the cal-
culation of its non-dominated population we use the BNL
method. P(alg) is the maximum size of an algorithm’s pop-
ulation during a run and r(alg) is its total runtime (until con-
vergence is reached). OPT is the optimal value and o(alg)
is the algorithm’s output. The optimal values for the consid-
ered data sets of Beasley’s OR library are known and for the
industrial data sets we determined them via brute force.

The mem save key performance indicator (Equation 3)
measures the relative size of an algorithm’s population with
regards to GCAIS BASE. We use the standard variant as all
other GCAIS variants intend to either bound the population
or to increase the likelihood of deleting solutions (e. g. ε-
dominance). Thus we have a common baseline for all meth-
ods. Further, the population size is the main factor for mem-
ory usage of the considered algorithms.

Our speed up KPI (Equation 4) is an analogy to paral-
lel computing. There the speed up is the quotient of a par-
allel program’s runtime and the runtime of the sequential
one (Kumar, 2002). Thus it measures how fast the paral-
lel method is compared to the sequential one. Instead we
evaluate how much faster an algorithm is compared to the
standard GCAIS version.

Our third KPI is the approximation rate (Equation 5)
which indicates how close the produced solution is to be-
ing optimal and a value of one corresponds to an optimal
solution.

All three KPIs should be seen in context to each other. For
example a brute force search always leads to an optimal so-
lution but will have an exponential runtime and on the other
hand an algorithm that just takes all tests has the worst ap-
proximation ratio but the best speed up and memory usage.
Hence the goal is to find an approach that leads to reasonable
values in all three categories.

Industrial Datasets
The results of our experiments are displayed in Table 1. Our
first dataset (Fridge-1) is rather easy to solve for the con-
sidered methods compared to our second one. The epsilon
dominance variants, the bounded variant and the base variant
of GCAIS always achieve optimal results. Also, GSEMO
has close to optimal results. However the combination of a
bounded population and epsilon dominance is rather detri-
mental as these versions produce worse solutions than the
version without it. We can see certain differences in the
memory usage and the speed up. The bounded version of
GCAIS only uses about a tenth of the memory of its base
variant and is about fourteen times faster. Yet GESMO is
even faster but only achieves close to optimal results and re-
quires more memory.

https://github.com/LagLukas/gcais_test_suite_reduction
https://github.com/LagLukas/gcais_test_suite_reduction


(a) GCAIS base variant (b) GCAIS with epsilon dominance

(c) GCAIS with bounded population (d) GSEMO

Figure 2: Population sizes ±σ for the Fridge-1 dataset.

(a) GCAIS base variant (b) GCAIS with epsilon dominance

(c) GCAIS with bounded population (d) GSEMO

Figure 3: Population sizes ±σ for the Fridge-2 dataset.



Table 1: KPIs for the experimental results (averaged values ±σ). A - character indicates that the parameter was not used. We
marked the best values of algorithms that always found optimal solutions bold. The best values of individual KPIs are marked
in italics. The horizontal line separates our approaches to the ones we are comparing to.

Fridge-1 population boundary (per entry) ε mem save speed up approx rate
GCAIS 200 5 22.77±0.0 1.28±0.19 1.29±0.2
GCAIS 200 10 22.77±0.0 1.54±0.19 1.34±0.17
GCAIS 200 15 28.47 ± 0.0 2.11±0.16 1.38±0.16
GCAIS 200 - 10.35 ± 0.0 14.14 ± 0.02 1.0 ± 0.0
GCAIS - 5 0.03±0.03 0.77±0.16 1.0 ± 0.0
GCAIS - 10 0.03±8.95 0.75±0.16 1.0 ± 0.0
GCAIS - 15 0.03±16.27 0.73±0.15 1.0 ± 0.0

GCAIS BASE - - 1.0 1.0 1.0 ± 0.0
GSEMO - - 1.66±0.78 16.81 ± 0.13 1.03±0.05

Fridge-2 population boundary (per entry) ε mem save speed up approx rate
GCAIS 200 5 8.49±0.0 0.32±0.38 3.62±0.46
GCAIS 200 10 10.9±0.0 0.51±0.48 3.82±0.47
GCAIS 200 15 12.49 ± 0.0 0.84±0.33 3.96±0.3
GCAIS 200 - 5.11 ± 0.01 3.58 ± 0.08 1.0 ± 0.0
GCAIS - 5 0.14±3.4 0.88±0.14 2.7±0.13
GCAIS - 10 0.18±3.14 0.88±0.14 2.66±0.28
GCAIS - 15 0.23±2.47 0.96±0.23 2.8±0.19

GCAIS BASE - - 1.0 1.0 1.0±0.02
GSEMO - - 9.89±0.01 47.33 ± 0.01 2.94±0.15

Table 2: Experimental results for Beasley’s OR library. The best values are marked bold. Each KPI is displayed ±σ.

KPI algorithm scpe1 scpe2 scpe3 scpe 4 scpe5
mem save GSEMO 1.62±0.15 1.62±0.13 1.39±0.2 1.1±0.3 1.91±0.15
mem save bounded GCAIS 4.23 ± 0.01 4.54 ± 0.01 4.68 ± 0.02 4.31 ± 0.02 4.54 ± 0.01
speed up GSEMO 2.56 ± 0.15 2.22 ± 0.15 1.69±0.28 1.26±0.41 3.37 ± 0.15
speed up bounded GCAIS 1.73±0.18 1.36±0.24 2.56 ± 0.14 2.04 ± 0.2 1.87±0.21

approx rate GSEMO 1.46±0.16 1.53±0.1 1.49±0.12 1.43±0.14 1.53±0.1
approx rate bounded GCAIS 1.06 ± 0.04 1.01 ± 0.03 1.09 ± 0.03 1.04 ± 0.05 1.08 ± 0.04
approx rate GCAIS BASE 1.11±0.04 1.08±0.06 1.11±0.05 1.07±0.05 1.14±0.06

Our other dataset (Fridge-2) is tougher to solve for the
considered metaheuristics as only the bounded GCAIS vari-
ant without epsilon dominance always achieves optimal re-
sults. Once more the results show that this variant can
drastically cut down memory usage and runtime. GSEMO
has an even shorter runtime and memory usage but on the
other hand only achieves approximation rates of about three.
These differences between GSEMO and our bounded ver-
sion of GCAIS are due to GSEMO’s convergence to an in-
ferior solution. GCAIS does not get stuck (as it always finds
optimal solutions) and thus the population continues to grow
as does the runtime.

On both datasets we could observe that in our case the
epsilon dominance has a detrimental effect on the popula-
tion size and therefore on the runtime. Combined with a
bounded population these effects disappear but the method

is unable to find optimal solutions. Hence we could not ob-
serve the same positive effects of the usage of epsilon dom-
inance as Joshi et al. (2015) did for the Knapsack problem.
The pure bounded version always achieved optimal results
and achieved high values in our other KPIs as well.

Most of the observed differences can be explained by tak-
ing a look at the population growth and size which we visu-
alized in Figures 2 and 3. The base variant and pure epsilon
dominance variants of GCAIS show an exponential growth
for Fridge-1 and on the other dataset we can observe a simi-
lar observation for epsilon equal to 5. For the other two vari-
ants the runtime ran out and thus we do not fully see an ex-
ponential growth. GSEMO’s population size grows linearly
for Fridge-1 and more or less logarithmically for Fridge-2.
Our bounded GCAIS version has, as expected, a constant
population size (after several iterations). The jumps in the



graphs are due to newly found solutions that dominate other
solutions in the population which get deleted. These differ-
ent growths are one of the causes for the differences in speed
up as all of the considered algorithms have a runtime which
depends on this magnitude.

The growths in terms of population size can be explained
by taking a look at the structure of our datasets and the prob-
lem itself. Our test specifications consist out of test cases
that have similar sizes and only slightly overlap in terms
of the requirements which they cover. Also, the two di-
mensions (covered requirements and used tests) are integers
and there are only limited valid values. Thus there can be
many solutions that cover the same amount of requirements
and use the same tests and it is hard to find solutions which
dominate large portions of the population. If the tests would
highly differ in their size then it would be easier to find dom-
inating solutions which would lead to smaller populations.

Next to our visual evaluation and the discussion of the
raw values of Table 1, we perform additional statistical test-
ing to confirm our observations. We test each KPI and each
dataset individually. Our null hypothesis is that the algo-
rithms do not differ on one dataset regarding one KPI. This
can be verified using a Friedman test. On all different null
hypotheses we observed p-values below 10−10 which we re-
gard as significant. Thus we conclude that the algorithms
differ in terms of the KPIs.

Overall we are able to reduce the size of original test
suites by over 30 percent.

Beasley’s OR Library
Due to the results on the industrial datasets and the spatial re-
strictions we focus solely on the base variant of GCAIS, the
bounded variant without epsilon dominance, and GSEMO
during this experiment. We evaluate the scpe1 to scpe5 in-
stances of Beasley’s OR library.

We displayed the experimental results in Table 2. Once
more the population boundaries for GCAIS lead to a cut
down in terms of memory and runtime. Further, they reveal
that our adapted version of GCAIS did not lose its capability
to find close to optimal or optimal solutions on these more
theoretical instances. In all cases our version was even su-
perior to the base variant. However, in three out of five cases
GSEMO was once more faster than our bounded version as
it once more converged towards a suboptimal solution.

We verified our observations about the bounded GCAIS’
superiority in terms of memory usage and approximation
quality using one-sided Wilcoxon signed-rank tests. The p-
values were below 0.05 which we regard as significant.

Further, on these datasets the population of the base vari-
ant of GCAIS does not grow as much as during our evalua-
tion of the industrial datasets. This explains why the mem-
ory savings are lower. The smaller populations thus lead to
a smaller runtime which unfolds in smaller speed ups for
the other algorithms. The reason for the smaller popula-

tions is that GCAIS detects dominating solutions more eas-
ily, which keep the population in bounds. Hence we think
that the problem structure of test specifications differs from
these more theoretical MSCP instances.

Future Work

From an engineering perspective we intend to roll out our
version of GCAIS in the company. We further want to gather
more datasets from different test levels to verify our ap-
proach. We take special interest in the evolution of the re-
quirements and tests over the lifetime of a project. Thus we
could examine if the reuse of past populations is an advan-
tage.

Our next scientific goal is to apply the GCAIS approach
to the adaptive test case selection problem (ATCS) (Spieker
et al., 2018). Its goal is to find a test suite that maximizes a
test metric such as coverage whilst maintaining a test suite
that has a bounded duration (for its execution). In the case
of coverage, the problem becomes a variant of the weighted
MSCP and GCAIS could be applied. In this case the prob-
lem landscape varies even more over time as newly written
test cases are being added and their duration might change
over time (as the software to be tested might be changed).
A reuse of GCAIS’ population might lead in this case to a
self-improving system as it is continuously adapted and op-
timised towards the new testing environment.

Conclusion

We introduced a test suite reduction problem which is a vari-
ant of minimum set cover problem (MSCP). Its goal is to find
a test suite of minimal size that still covers all requirements.
A state of the art approach for the MSCP is the germinal
centre artificial immune systems (GCAIS) which has been
heavily benchmarked on rather theoretical instances.

GCAIS maintains a population of non-dominated solu-
tions whose calculation cost is quadratic. We apply a sim-
ple datastructure and an incremental update approach that
allows us to reduce the cost to a linear one.

Our experiments revealed that on our test specifications,
the populations of the standard variant of GCAIS explode
which leads to a high memory consumption and longer run-
times. Thus we adapted GCAIS by applying fixed popu-
lation capacities. Our improved variant could not only cut
down runtime and memory usage compared to the standard
variant, it was also able to find optimal or close to optimal
solutions on our industrial data as well as on the more theo-
retical instances of Beasley’s OR library.
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