
Engineering Reliable Hybrid Quantum Software: An
Architectural-driven Approach
Max Scheerer1, Jonas Klamroth1 and Oliver Denninger1

1FZI Research Center for Information Technology, Karlsruhe, Germany

Abstract
Engineering quantum software typically involves the implementation of well-known quantum algorithms
as quantum software components and their embedding into a hybrid software architecture – executed
on quantum hardware as well as classical hardware. While error models of modern microprocessors
are quite similar and error mitigation is handled by compilers, this is not true for current quantum
processors. The reliability of quantum software depends heavily on the quantum hardware used for
execution. Quantum software engineers have to consider deployment decisions to estimate the reliability
impact of quantum software components to the overall software architecture. We propose a model-based
approach for the automated analysis of hybrid quantum software at design-time, taking into account the
aforementioned reliability challenges. By extending the Palladio framework for modeling and simulating
software architectures, we built upon well-established tooling. We support quantum software engineers
making design decisions, by automatically exploring the design space including the impact of quantum
hardware.

Keywords
Quantum Architectural Description Language, Software Architecture, Quantum Computing, Hybrid
Quantum Application

1. Introduction

With the availability of small-scale quantum computers, Quantum Computing (QC) and Quan-
tum Algorithms gained a lot attraction. QC promises to speed up computationally intensive
algorithms. For instance, Shor’s algorithm [1] achieves an exponential speedup in factorizing
numbers with potential impact to RSA-based encryption. Implications of QC are not limited to
cyber security, but apply to commercial applications in, e.g., chemistry, finance and manufactur-
ing [2]. In the current Noisy Intermediate-Scale Quantum (NISQ) era, quantum computers exhibit
short decoherence times (i.e., the time to maintain a stable quantum state) and limited accuracy
of gate operations. Hence, the depth of a quantum circuit must be kept small to avoid erroneous
execution [3]. This enforces quantum software engineers to embed small quantum software
components into software architectures designed for classical hardware, actually transforming
them into hybrid quantum software architectures [4].

According to Salm et al. [5], there are two main challenges when developing QC software
for NISQ devices: (𝑖) there is a variety of available quantum computers with different physical
properties (e.g., number of qubits or decoherence times) to which a quantum algorithm can

2nd Quantum Software Engineering and Technology Workshop (QSET’21), 2021
" scheerer@fzi.de (M. Scheerer); klamroth@fzi.de (J. Klamroth); denninger@fzi.de (O. Denninger)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

29

mailto:scheerer@fzi.de
mailto:klamroth@fzi.de
mailto:denninger@fzi.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

be deployed to and (𝑖𝑖) implementations of quantum algorithms are tightly coupled to vendor
specific quantum computers and their Software Development Kit (SDK) so that they cannot be
(efficiently) executed on all quantum computers. Salm et al. developed the NISQ Analyzer to
calculate the fit between a quantum algorithm implementation and different quantum processors.

In this paper, we proposed to extend the idea behind NISQ Analyzer to exploring the overall
design space of hybrid quantum software architectures. We propose to utilize reliability es-
timations for quantum software components on different quantum processors (deployments)
to guide architectural design decisions. Our approach extends an Architectural Description
Language (ADL) known as Palladio Component Model (PCM) [6] to a quantum Architectural
Description Language (qADL), as envisioned by Zhao [7]. Based on the qADL models, we discuss
how to predict reliability properties of hybrid quantum software architectures. We built upon
a reliability prediction approach for PCM models [8], by integrating the Estimated Success
Probability (ESP) metric [9, 10, 11] to quantify the reliability of a quantum software component
w.r.t. its deployment. Finally, we discuss the integration in the PCM-based PerOpteryx tool [12]
to automatically explore the design space.

The contribution of the paper is a novel approach to support software engineers in designing
hybrid quantum software. The concepts are expected to inspire new research directions for
modeling and analyzing hybrid quantum software at design-time.

2. Preliminaries

In this section, we briefly discuss concepts of the Palladio Component Model (PCM) and present
an error model used to estimate the reliability of quantum algorithms executed on quantum
computers.

2.1. Palladio Component Model

The PCM [6] is an ADL for component-based software architectures and encompasses a set of
models that are divided into structural, behavioral and deployment viewpoints. The structural
view point consists of a Repository Model to describe all available components and their provided
and required interfaces. The provided and required interface specification induces a dependency
structure of the components, i.e., components that require a certain interface are dependent
on the components that provide it. The System Model specifies the instantiated components
of the repository model and forms the runtime model. Behavioral view point models enable
domain experts to describe usage scenarios of the system, e.g., the request rate of the system.
The intra-component behavior of a component can be modeled as control flow consisting of
sequences of abstract actions such as internal actions, branch actions and external component
calls. The deployment view point comprises models for (𝑖) describing the resource environment
(i.e., the available servers) and (𝑖𝑖) the deployment structure (i.e., the allocation of instantiated
components on servers). Figure 1 depicts an example PCM model.

The PCM is complemented by various simulation tools that enable the prediction of non-
functional quality attributes (e.g., performance or reliability) and together form the Palladio
framework. One of these tools is known as PCM-Rel [8] for predicting reliability properties of
a PCM model, i.e., the success probability of a request to the system. In a nutshell, PCM-Rel

30

Component A

Component B

Resource Container

CPU
User

<<InternalAction>>
methodInvocation

Request/s = 1

<<implements>>

Usage Model Resource
Environment

System Model

Component A

Component B

Repository Model
<<requires>>

<<provides>>

Intra-Component Behaviour Model

Allocation Model
Allocation A

Allocation B

<<deployes>>

<<on>>

<<deployes>>

<<on>>

Interface
+ method(int n): int[]

Figure 1: PCM example model

generates (based on the structural, behavioral and deployment information as well as software,
network and hardware failure annotations provided by a modelled PCM instance) an absorbing
Discrete-Time Markov Chain (DTMC). The DTMC is evaluated to predict the system’s success
probability.

Finally, the Palladio framework provides an automated design space exploration tool, called
PerOpteryx [12]. Each software architecture is associated with several degrees of freedom or
design decisions, e.g., the allocation of a component to server A or B; selection of component
implementations providing the same interface. The set of design decisions span the design
space 𝒟 that includes architectural candidates. Each candidate in 𝒟 has a different effect on
the quality attributes. Software architects must explore the design space in order to identify
the candidate that satisfies the non-functional requirements. For complex software systems,
however, 𝒟 is too large to be explored manually. Therefore, PerOpteryx provides an approach
based on evolutionary algorithms which explores 𝒟 automatically. The result of the analyses
is a set of PCM models that forms the set of Pareto-optimal candidates w.r.t. the considered
quality attributes. A software engineer can select from the Pareto-optimal set the candidate
that best balances the predicted quality attributes.

2.2. Error Model used in Quantum Computing

Nishio et al. [9] categorize quantum errors into three groups, namely Single-Qubit Gate-, Bi-Qubit
Gate- as well as State Preparation and Measurement errors. Single-qubit gate errors determine
unitary bit (e.g., |0⟩ → |1⟩) or phase flips (e.g., 𝛼 |0⟩+𝛽 |1⟩ → 𝛼 |0⟩−𝛽 |1⟩, 𝛼, 𝛽 ∈ C). Bi-qubit
gate errors are similar to single-qubit gate errors by flipping values of one or both qubits. State
preparation and measurement errors may occur during initialisation of the qubits or due to
readout errors of the qubits.

Each of the grouped quantum errors is associated with an error rate such that the Estimated

31

Success Probability can be calculated [9, 10, 11]:

𝐸𝑆𝑃 =

𝑁𝑔∏︁
𝑖=1

(1− 𝑔𝑒𝑖) ·
𝑁𝑚∏︁
𝑗=1

(1−𝑚𝑒
𝑗) (1)

where 𝑔𝑒𝑖 defines the error rate for single or bi-qubit gate and 𝑚𝑒
𝑗 the error rate or measurement,

respectively. ESP is based on two assumptions: (𝑖) each gate and measurement successfully
completes or results in a complete failure of the quantum algorithm, and (𝑖𝑖) the failures are
stochastically independent [11].

3. Approach

In this section, we discuss our proposed approach for modeling and analyzing hybrid quantum
software architectures.

3.1. Modeling Hybrid Quantum Software

To model hybrid quantum software architectures, we extend the PCM. The reason for choosing
PCM is that it is (𝑖) mature and (𝑖𝑖) provides an expressive modeling language to describe
component-based software architectures. In this section, we briefly sketch the extension of
PCM to a qADL w.r.t. the base models of PCM, namely the repository, system, resource and
allocation model.

Our approach assumes the availability of centralized platforms where quantum algorithms
and their implementations are collected, as Salm et al. [5] described them. Such a platform
is represented in PCM by the repository model. Recall from section 2.1 that the repository
model contains all components and interfaces that connects components. Because a quantum
algorithm (such as Shor) can have several implementations, we represent each implementation
as a single component that provides the same interface. Thus, on the metamodel-level of PCM,
a new component class is introduced that represents a quantum component. The attributes
of a quantum component specify besides meta-information about the algorithm (e.g., name
and description) the required SDK based on [5] (we defer the discussion for this decision to
section 3.2). Each implementation of a quantum algorithm shares the same providing interface
which specifies the input and output parameters. Note that we deliberately do not include
further quantum algorithm characteristics in the interface definition. Thus, we abstract away
details that are not relevant at architectural level, e.g., executing quantum algorithms in a
workflow-based manner [4].

In the system model of PCM, quantum components can be instantiated and assembled (w.r.t.
the providing and requiring interfaces) in the same way as classical components.

In order to describe the available hardware to which components can be deployed, PCM
provides a resource environment model. We extend the resource environment model by enabling
the modeling of quantum computers. Each quantum computer has the attributes: Number of
qubits, maximum depth (estimated by decoherence time and maximum gate time [5]), SDK and
other descriptive attributes (we also defer the discussion here to section 3.2).

32

Finally, the allocation model describes the deployment of classic components on classic
hardware and quantum components on quantum hardware. At this stage, the Object Constrained
Language (OCL) [13] can be used to enforce at metamodel level that no classic components are
deployed on quantum hardware and vice versa. Figure 2 shows a simplified example of our
proposed extensions to the four PCM models.

Component

Quantum
Component

Resource Container

CPU

System Model

Component

Quantum

Component

Repository Model

Interface
+ factorize(int n): int[]

<<requires>>

<<provides>>

name:Shor
SDK:Qiskit

Resource Environment Allocation Model

Quantum Re-
source Container

QPU

Allocation A

Allocation B vendor: IBM
SDK:Qiskit
numQubits: N
maxDepth: K

<<deployes>>
<<on>>

<<deployes>>

<<on>>

Figure 2: Example model of our proposed qADL (simplified)

Based on the extension of PCM to a qADL, we are able to model hybrid quantum software
architectures and analyze them in terms of quality attributes.

3.2. Analyzing Reliability Properties

With the proposed qADL, we can model and anlyze hybrid software architectures. Because the
qADL is based on PCM, we propose to extend one of the reliability analysis tools provided by
PCM, namely PCM-Rel. Recall from section 2.1 that PCM-Rel transforms a PCM model instance
to a DTMC based on failure annotations. In PCM-Rel, components can be annotated with
software failures, i.e., the failure probability. Similarly, we extend PCM-Rel such that quantum
components can be annotated with software failures and corresponding failure probabilities. In
PCM-Rel, failure probabilities are traditionally determined by domain experts. We propose to
estimate the failure probability of quantum components with the ESP metric from section 2.2.
However, the reliability of a quantum component depends on the quantum computer used for
execution.

Recall that our proposed qADL allows the modeling of quantum components and quantum
resource container (i.e., quantum computer) with specific attributes (name, description, required
SDK, number of qubits and maximum depth) based on the work of Salm et al. [5]. They describe

33

a method to automatically select quantum computers for a given implementation of a quantum
algorithm by checking whether the implementation is executable on a given quantum computer
w.r.t. the aforementioned attributes. To check a particular combination, they use the vendor-
specific SDK to transpile the implementation to the particular quantum computer. Based on the
transpiled hardware-specific quantum circuit, the width and depth of the implementation can
be determined and compared against the capabilities of the hardware.

For our approach, we reuse this method to obtain the transpiled circuit for a particular
quantum computer. Based on the transpiled circuit, we estimate the failure probability of
the implementation on the particular quantum computer 𝐹𝑃𝑄 by applying ESP, i.e., 𝐹𝑃𝑄 =
1 − 𝐸𝑆𝑃 . For a hybrid quantum software architecture modeled with our qADL, 𝐹𝑃𝑄 is
calculated for each quantum algorithm implementation and adjusted in the model. The adjusted
model in turn is forwarded to PCM-Rel to predict the overall reliability of the system. Please
note, that analyzing implementations of quantum algorithms is not contradicting our goal to
support quantum software engineers during design phase, as we assumed the availability of
repositories of quantum algorithms and their implementations (described in section 3.1). We
expect quantum software engineers to embed these implementations into hybrid quantum
software architectures to build applications.

3.3. Exploring the Design Space

Designing software systems includes numerous design decisions. Depending on the complexity
of the software architecture, the set of possible architectural candidates (i.e., the design space)
is very large. A software engineer, however, must explore the design space in order to identify
an architectural candidate that satisfies the non-functional requirements. In hybrid quantum
software architectures, the design space is enriched by quantum-specific design decisions,
namely the choice of an implementation for a particular quantum algorithm and the choices of
a quantum computer on which an implementation can be deployed and executed [5]. Hence,
the design space grows and makes it even more difficult for a software engineer to find the best
architectural candidate.

Therefore, we advocate the use of PerOpteryx. Recall from section 2.1 that PerOpteryx provides
a method to automatically explore the design space of PCM models. The core of PerOpteryx
forms a degree of freedom metamodel that encodes several design decisions, e.g., deployment
options of a component. We propose to extend PerOpteryx by the inclusion of quantum-specific
design decisions. Thus, a hybrid quantum software architecture is first modeled using our qADL
and design decisions (classical and quantum-specific) are encoded by a degree of freedom model
instance. Finally, PerOpteryx is applied for an automated design space exploration. Figure 3
depicts this idea.

Internally, PerOpteryx implements an evolutionary algorithm for design space exploration.
Candidates are generated by combining selections of design decisions based on evolutionary
strategies. Each candidate is evaluated by applying the analysis tools provided by the Palladio
framework. The outcome of an analysis run of PerOpteryx is the set of Pareto-optimal candidates,
from which a software engineer can select the candidate that balances the quality attributes best.
In our case, we apply our reliability prediction approach from section 3.2 to obtain reliability
estimations of several hybrid quantum software architecture model candidates.

34

Design space

Explored space Cost

R
el

ia
bi

lit
y

Pareto-front

Figure 3: Exploring a design space using PerOpetryx

PCM also provides a cost analysis tool where resource containers can be annotated with
additional costs. These cost estimates can be enriched with our reliability predictions such that
the result of a PerOpteryx run is a Pareto-optimal set of hybrid quantum software architecture
candidates that balances cost and reliability of an architecture. Thus, a software engineer is
supported in making trade-off decisions for reliability and costs.

4. Related Work

Proposed modeling approaches can be characterized by the software design level they target.
On the lowest design level – often called detailed design level – the modularisation of quantum
circuits is addressed. Ali and Yue [14] raised several questions on modeling quantum circuits
and proposed an extension of UML to model quantum circuits. In particular they used state
machine diagrams to document the state (data) encoded by entangled qubits after each gate
operation. Pérez-Castillo et al. [15] propose to extend UML to specify quantum circuits by
activity diagrams. Exman and Shmilovich [16] show that the theory of linear software models
can be used to modularise quantum programs (circuits), the same way it is used for classical
programs.

On a higher design level Pérez-Delgado and Perez-Gonzalez [17] used UML class and sequence
diagrams to distinguish between quantum and non-quantum structures of a hybrid quantum
application along with their interactions. Gemeinhardt et al. [18] discuss research questions
raised by applying model-driven engineering (MDE) to hybrid quantum applications. One of
the questions targets deployment methods for cloud-based quantum computing. While Salm
et al. [5] developed the NISQ Analyzer tool to support selecting suitable quantum processors
for deploying a quantum application, we propose to adapt the Palladio framework to model
and simulate software architectures [6] and the PerOpteryx optimizer [12] to achieve a holistic
optimization of a hybrid quantum application — considering classical and quantum software
components. Hence, we target the architectural design level.

For modeling quantum errors, Weber et al. [19] use Ishikawa diagrams to model cause-effect
relationships of quantum noise. Nishio et al. [9] introduced a compiler, optimizing the success
of a quantum algorithm by respecting the individual error rates of qubits, see section 2.2.

35

5. Conclusion and Future Work

In this paper, we proposed a model-based approach for modeling and analyzing hybrid quantum
software architectures. First we presented an qADL by extending the PCM. Moreover, we
extended the reliability analysis tool of PCM by estimating the reliability of quantum software
components using the ESP metric. Finally, we sketched how to integrate the approach in the
design space exploration tool PerOpteryx to support the decision making process of a software
engineer. Although, we discussed only reliability analysis, the proposed qADL can be extended
to analyze other quality attributes, e.g., performance.

In future work, we plan to implement and refine our approach. Also, we plan to validate our
approach by comparing the design-time predictions with runtime results of sample applications.

Acknowledgments

This work is part of the SEQUOIA project funded by the Ministry of Economic Affairs Baden-
Württemberg, Germany.

References

[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer, SIAM review 41 (1999) 303–332.

[2] F. Bova, A. Goldfarb, R. G. Melko, Commercial applications of quantum computing, EPJ
Quantum Technol. 8 (2021).

[3] M. Salm, J. Barzen, F. Leymann, B. Weder, About a criterion of successfully executing
a circuit in the nisq era: what 𝑤𝑑 << 1/𝜖𝑒𝑓𝑓 really means, in: Proceedings of the 1st
ACM International Workshop on Architectures and Paradigms for Engineering Quantum
Software, APEQS 2020, ACM, 2020, pp. 10–13.

[4] F. Leymann, J. Barzen, Hybrid quantum applications need two orchestrations in superposi-
tion: A software architecture perspective, 2021. arXiv:2103.04320.

[5] M. Salm, J. Barzen, U. Breitenbücher, F. Leymann, B. Weder, K. Wild, The nisq analyzer:
Automating the selection of quantum computers for quantum algorithms, in: Proceedings
of the 14th Symposium and Summer School on Service-Oriented Computing, Springer,
2020, pp. 66–85.

[6] R. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, Modeling and simulating software
architectures: The Palladio approach, MIT Press, 2016.

[7] J. Zhao, Quantum software engineering: Landscapes and horizons, 2020.
arXiv:2007.07047.

[8] F. Brosch, H. Koziolek, B. Buhnova, R. Reussner, Architecture-based reliability prediction
with the palladio component model, IEEE Transactions on Software Engineering 38 (2011)
1319–1339.

[9] S. Nishio, Y. Pan, T. Satoh, H. Amano, R. V. Meter, Extracting success from ibm’s 20-qubit
machines using error-aware compilation, ACM Journal on Emerging Technologies in
Computing Systems (JETC) 16 (2020) 1–25.

36

http://arxiv.org/abs/2103.04320
http://arxiv.org/abs/2007.07047

[10] S. S. Tannu, M. Qureshi, Ensemble of diverse mappings: Improving reliability of quantum
computers by orchestrating dissimilar mistakes, in: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’52, ACM, 2019, p.
253–265.

[11] J. Liu, H. Zhou, Reliability modeling of nisq-era quantum computers, in: 2020 IEEE
International Symposium on Workload Characterization (IISWC), IEEE, 2020, pp. 94–105.

[12] A. Martens, H. Koziolek, S. Becker, R. Reussner, Automatically improve software archi-
tecture models for performance, reliability, and cost using evolutionary algorithms, in:
Proceedings of the first joint WOSP/SIPEW international conference on Performance
engineering, ACM, 2010, pp. 105–116.

[13] J. Cabot, M. Gogolla, Object Constraint Language (OCL): A Definitive Guide, Springer
Berlin Heidelberg, 2012, pp. 58–90.

[14] S. Ali, T. Yue, Modeling quantum programs: Challenges, initial results, and research direc-
tions, in: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures
and Paradigms for Engineering Quantum Software, APEQS 2020, ACM, 2020, p. 14–21.

[15] R. Pérez-Castillo, L. Jiménez-Navajas, M. Piattini, Modelling quantum circuits with uml,
in: Proceedings of the IEEE/ACM 43nd International Conference on Software Engineering
Workshops, ICSEW’21, ACM, 2021, p. to appear. arXiv:2103.16169.

[16] I. Exman, A. T. Shmilovich, Quantum software models: The density matrix for classical and
quantum software systems design, in: Proceedings of the IEEE/ACM 43nd International
Conference on Software Engineering Workshops, ICSEW’21, ACM, 2021, p. to appear.
arXiv:2103.13755.

[17] C. A. Pérez-Delgado, H. G. Perez-Gonzalez, Towards a quantum software modeling
language, in: Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, ICSEW’20, ACM, 2020, p. 442–444.

[18] F. Gemeinhardt, A. Garmendia, M. Wimmer, Towards model-driven quantum software
engineering, in: Proceedings of the IEEE/ACM 43nd International Conference on Software
Engineering Workshops, ICSEW’21, ACM, 2021, p. to appear.

[19] T. Weber, M. Riebisch, K. Borras, K. Jansen, D. Krucker, Modelling for quantum error miti-
gation, in: 2021 IEEE 18th International Conference on Software Architecture Companion
(ICSA-C), IEEE, 2021, pp. 102–105.

37

http://arxiv.org/abs/2103.16169
http://arxiv.org/abs/2103.13755

	1 Introduction
	2 Preliminaries
	2.1 Palladio Component Model
	2.2 Error Model used in Quantum Computing

	3 Approach
	3.1 Modeling Hybrid Quantum Software
	3.2 Analyzing Reliability Properties
	3.3 Exploring the Design Space

	4 Related Work
	5 Conclusion and Future Work

