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Abstract 
Sorting numbers in an array are one of the most basic problems that we learn to solve and have 
always proved useful. Though there are many algorithms for sorting in 1 dimensional array of 
numbers, there are not many algorithms which can be applied to 2 dimension or higher 
dimension arrays. In this paper, we will discuss a new algorithm for sorting 2-dimensional 
array and will see how it can be modified to sort n-dimensional array. 
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1. Introduction 

Sorting have been one of the oldest solved problems but conventionally limited to 1 dimensional 
array of numbers. But with growing complexities with matrices, tensors and multidimensional arrays, 
we might face situations where we need to sort a collection of numbers which are in form of a n-
dimensional matrix. We normally do it by converting the multidimensional array into 1 dimensional 
array, apply the known sorting algorithms to it and restore the array into its previous form. But the 
question comes can we do it without transforming the array into a 1-dimensional array with a time 
complexity which will not be worse than the worst time complexities of the known algorithms? Yes, 
we definitely can. We will see how we can sort a 2D matrix and then we will extend the algorithm to 
multidimensional array.  
 

 
Figure 1: Starting state on the left and target state on the right. 

2. Related Works 
 

Sorting is one of the very first problem that we learn. There are many sorting algorithms proposed 
and some of the widely accepted ones include bubble sort, selection sort, insertion sort, quick sort [1], 
merge sort [2] to name a few. These algorithms are fit for linear collection of data but mostly not for 
complex data structures like tensors or multidimensional arrays. Among this, bubble sort, insertion sort 
and selection sort have the overall time complexity of O(n2). Quick sort has an average case time 
complexity as Ɵ(nlogn) but have a worst time complexity of O(n2). On the other hand, merge sort has 
both average and worst time complexity of O(nlogn) but it uses extra space with worst case space 
complexity as O(n). Many authors like Oyelami et. al. [3,4] have proposed modifications over the 
existing algorithms by still they are confined to one-dimension arrays only.  
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But very few works have been done in the field of multidimensional arrays. One of the interesting 

works have been presented by Sandeep Sen et. al. [5,6]. They proposed a new algorithm called shear 
sort which sorts a 2-D array by alternatingly sorting the rows and columns. The authors used it to sort 
networks. Other works on 2-dimensional sorting was done in the field of VLSI and networks by 
Thompson and Kung [7], Nissimi and Sahni [8], Hans-Warner et. al. [11] which mainly uses bitonic 
sort [9] or odd even merge sort [10] using parallel computing. Douglas [12] tried to implement bubble 
sort in 2-dimension array. Hanan Samet [13,14] discussed the applications of multidimensional sorting 
in real world like in graphics, game theory, etc. 

 

3. Algorithm 
 
We take a window of 2x2 for a 2-dimensional matrix of size m x n. So, the window will have the 

elements (i,j), (i,j+1), (i+1,j) and (i+1,j+1) for all 0<=i<m and 0<=j<n. We start from the top left corner. 
In doing so, we have four numbers under the window. We sort the four numbers and then rearrange the 
four numbers within the window such that the smallest number is on the top left of the window, next 
smallest number on the top right, next on the bottom left and the largest number on the bottom right of 
the window. Now we slide the window one place to the right along the row and will repeat the process 
until the we reach the end of the row, i.e., top right cell of the window is the last cell along the row. We 
repeat this for all the rows. This total process forms one pass. We again start form the top left corner of 
the new matrix until we have done max(m,n) passes. There will be some corner cases like when the 
window moves to the end of a row or column, i+1 (or j+1) will be out of index range. For simplification, 
we use mod number_of_rows and mod number_of_columns to locate the elements under the window. 
A depiction of the process is shown in Fig. 2 and Fig. 3. 
 

 
Figure 2: First pass of the algorithm. 

 

 
Figure 3: Second pass of the algorithm.  

4. Pseudo Code 
 
function window_sort(array[][], r, c): 
//array[][] is the given array 
// r is the number of rows 
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// c is the number of columns 
    flag := 0 
    for x := 0 to max(r,c) do: 
        for i := 0 to r-1 do: 
            for j := 0 to c-1 do: 
 
                k := (i+1) % r 
                l := (j+1) % c 
                a := min(i,k) 
                b := max(i,k) 
                c := min(j,l) 
                d := max(j,l) 
 

     window := [array[i][j], array[i][l], array[k][j], array[k][l]] 
     window := sort(window) 
 
     if array[a][c] ≠ window[0] or array[a][d] ≠ window[1] or array[b][c] ≠ window[2] or 

array[b][d] ≠ window[3] and flag = 0 do: 
         flag := 1 
   end if 
 

    array[a][c] := window[0] 
    array[a][d] := window[1] 
    array[b][c] := window[2] 

   array[b][d] := window[3] 
 

            end for 
        end for 
 
        if flag = 0 do:   
            break loop 
        else do: 
            flag = 0 
        end if 
 
    end for 
end function 
 

5. Time and Space Complexity Analysis 
 
When sorting the numbers in the window, we are every time sorting four number and place them at 

their respective positions in the window. It will take O(1) time. At every pass, we are sliding the window 
m*n times and this takes O(m*n). We are repeating the above steps for getting the array sorted and it 
will take a maximum of max(m,n) passes since a misplaced element needs to be moved a maximum of 
this distance to be placed in its right place. We may even stop the execution if there is no rearrangement 
during a pass by using a flag variable. Thus, the total time complexity in the worst case is 
O(m*n*max(m,n)). This can also be written as O((max(m,n))3) in the worst case. Since, we did not use 
any additional space, space complexity is O(1). 
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6. Extension to N-Dimension Arrays 
 

Let us extend this to 3-D array first with dimensions d1, d2 and d3. We take the window size as 2 x 
2 x 2. The window will be in a shape of smaller cube where the 3-D array will be a bigger cube. The 
total number of elements under the window to be sorted first is 8. For now we can take the sorting time 
of the elements under the window be constant, i.e., O(1) as the number of elements under the window 
to be sorted is constant every time. Now, we move the smaller window cube over the whole array cube 
such that the (0,0,0) element of the smaller window cube coincides will all (i,j,k) of the bigger array for 
all 0<=i<d1, 0<=j<d2, 0<=k<d3. Thus, the time complexity of each pass will be O(d1 x d2 x d3). We 
have to do max(d1, d2, d3) passes as this will be the longest distance that a misplaced element have to 
be moved to its correct place. So, the total time complexity will be O(d1 x d2 x d3 x max(d1, d2, d3)). 
But as the dimension increases, the size of the window increases and hence the number of elements to 
be sorted each time. If we have n dimensions, the window size will be 2n and hence, we need to sort 2n 
elements each time. 

 
Let us generalize for n-D array, we can choose the window size as 2 x 2 x 2 x… upto n times. Here, 

the total number of elements in the window will be 2n. Now, we can use the best existing algorithm for 
sorting the elements in the window and getting it to their proper positions within the window which will 
take O(n x logn) for n elements. In this case, this will take in the worst case, we have 2n elements, hence 

 
O(2n x log2n) 
or, O(2n x n x log2) 
or, O(2n x n) 
 
Then we can follow the above explained procedure to first sort within the window and then slide the 

window. If di, for i from 1 to n, are dimension sizes of the n dimensions, then the total worse case time 
complexity of the given algorithm is   

 
O(2n x n) x O(max(d1,d2,…,dn)^(n+1)) 
 
When this array is implemented for 1-D array, it will be similar to Bubble sort. But as it will go in 

higher dimension, its complexity will be better compared to other general sorting algorithm. 
 

7. Conclusion 
 

We know that most of the 1D sorting algorithms including quick sort [1] has worst time complexity 
O(n2). If we sort the 2-D array of size m x n by transforming it into a linear array, the number of 
elements become m*n and thus the time complexity becomes O(m2 x n2). On the other hand, the above 
proposed algorithm can do it more efficiently. Only merge sort [2] can do it differently with worst time 
complexity O(m x n x log(m x n)) but it will use extra space with space complexity O(m x n). 
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