
167 

 

Modeling of Random Variables on Fuzzy Intervals of Their 
Values 
 
Yuri Samokhvalov 

 
 Taras Shevchenko National University of Kyiv, Volodymyrs’ka str. 64/13,  Kyiv, 01601, Ukraine  

 

 
Abstract  
An approach to modeling random variables on fuzzy intervals of their values is proposed. 

The approach includes two stages. At the first stage, a triangular or trapezoidal fuzzy number 

is built on the basis of a fuzzy linguistic evaluation of the boundaries of the values of a 

random variable, the fuzzy coefficients of which determine the boundaries of the interval of 

values of a fuzzy variable. Such numbers are constructed using the Gaussian membership 

function. At the second stage, Monte Carlo simulation is carried out using Gaussian 

membership functions and beta distribution. In addition, declaring a random parameter by a 

fuzzy number makes it possible not only to determine the interval of its possible values when 

modeling a random variable, but also to use this parameter in fuzzy arithmetic. 
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1. Introduction 

Modern real systems and processes to one degree or another have development in time, therefore, 

they are stochastic. This means that the characteristics that describe their functioning are probabilistic 

and are random variables. The values of these quantities, as a rule, are in a certain interval, which 
sometimes has clearly defined boundaries, and more often - the boundaries are indefinite, vague. For 

example, such boundaries are inherent in parameters that are predictive in nature. Moreover, the more 

distant in time the forecasting horizon, the less its accurate, i.e. accuracy of estimates of the 

boundaries of possible values of such parameters. Therefore, in such conditions, the use of fuzzy 
intervals is preferable. Declaring model parameters in the form of a fuzzy interval is a convenient 

form for formalizing imprecise values. It is psychologically easy to give a fuzzy interval estimation, 

and the carrier of a fuzzy interval is guaranteed to contain the value of the parameter under 
consideration. Recently, fuzzy modeling has become one of the most active and promising areas of 

applied research in various fields [1-4]. In fuzzy modeling, to represent fuzzy sets, fuzzy values are 

most often used, which are the basis for constructing mathematical models using linguistic variables. 
Fuzzy Monte Carlo Simulation (FMCS) [5-9] is widely used in stochastic fuzzy models for modeling 

random variables. The main point of the FMCS considered in these works is the representation of 

parameters and variables only by triangular fuzzy numbers. However, in practice, the intervals of 

possible values of a random variable are often known. In this case, such parameters are given by 
trapezoidal fuzzy numbers. In article [10], a mechanism for fuzzy modeling of random variables by 

the Monte Carlo method based on the Gaussian membership function is proposed. This article is a 

development of these studies. It discloses a method for modeling random variables, the value intervals 
of of which are given in a fuzzy linguistic form. In this case, both the Gaussian membership function 

and the beta distribution are used. 
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2. Representation of fuzzy linguistic evalutions by fuzzy values 

As noted, under conditions of uncertainty, it is easier to specify the range of values of a random 

variable by a fuzzy linguistic evaluation. Fuzzy linguistic evaluation is understood as a numerical 

score, which is expressed using the modalities " approximately / near". 
The intervals of possible values of random variables are determined by their physical content. If 

the random variable is, for example, the diameter of the machined part, then its deviation from the 

specified value under the influence of various factors may be insignificant. That is, the values of this 
random variable are near the norm. If we consider the random variable project implementation time, 

then in this case there is a large uncertainty and it is most plausible to assert that the possible values of 

the project implementation time are approximately in a certain interval. With this in mind, we will use 

two types of fuzzy linguistic evaluations " the value is near c " or " the value is approximately in the 
range from c to d " and represent them as fuzzy values. From a linguistic point of view, a fuzzy value 

is an imprecise, indefinite numerical value of a certain parameter of a model, which is the result of its 

evaluation in the absence of complete and accurate information. Fuzzy variables include fuzzy 
numbers and fuzzy intervals. To declare such values when solving practical problems, several 

approaches can be used [11,13]. In the case of fuzzy modeling, an approach using the standard and 

combined (double) Gaussian membership function (MF) [14] (Fig. 1) was applied. 

Figure 1: Gaussian membership functions: a) - standard;  b) - combined (double) 

The standard Gaussian function is used to define fuzzy sets �̃� ≜ "the number is near 𝑐". We will 

use the Gaussian function of the form: 

𝜇𝐶(𝑥) = exp(−𝑎(𝑥 − 𝑐)2), (1) 

where  𝛼 = −
4𝑙𝑛0.5

𝑏2(𝑐)
, and 𝑏(𝑐) is the distance between the transition points. 

The combined function describes fuzzy set �̃� ≜"the number is approximately in the range from 𝑐 

to 𝑑". This function has the form: 

𝜇𝐴(𝑥) = {
𝜇𝐶(𝑥),                   𝑥 < 𝑐 

1,                   𝑐 ≤ 𝑥 ≤ 𝑑
𝜇𝐷(𝑥),                   𝑥 > 𝑑

 (2) 

where 𝜇𝐶(𝑥) is the membership function of the fuzzy set �̃� ≜“the number is near 𝑐”, and 𝜇�̃�(𝑥) is 

the membership function of the fuzzy set �̃� ≜ “the number is near 𝑑”. These functions are built in a 

similar way. 

The Gaussian function has an unbounded support, since it tends to zero asymptotically on the left 

and right. However, in practice, the carrier of this function can be considered limited by points 𝑥 =
𝑐 ± 3𝜎, at which its value is approximately equal to 0.01. Therefore, it can be assumed that the value 

of the function equal to 0.01 corresponds to the complete non-belonging of the element to the fuzzy 

c d c 

b 𝑏2 

0.5 

1 

x 

µ(x) 

𝑏1 

a) б) 

0 



169 

 

set �̃�. If we go from 𝜎 to 𝑏(𝑐) then the boundaries of this interval will be equal to 𝑐 ±
𝑘⋅𝑏(𝑐)

2
, where 

𝑘 ≈ 2.5 is the scaling factor [10]. These boundaries are the coefficients 𝛼 and 𝛽 of the triangular 

fuzzy number  𝑀1 = (𝑐, 𝛼, 𝛽).  

The fuzzy interval, described by this function, is constructed in a similar way. In this case, the 

indistinctness coefficients will be equal to 𝛼 = 𝑐 −
𝑘⋅𝑏(𝑐)

2
 and 𝛽 = 𝑑 +

𝑘⋅𝑏(𝑑)

2
. As a result, we get 

trapezoidal fuzzy interval  𝑀2 = (𝑐, 𝑑, 𝛼, 𝛽).  

Thus, depending on the type of fuzzy linguistic evaluation of the interval of possible values of a 

random variable, its boundaries will be the fuzzy coefficients 𝛼 and 𝛽, accordingly, a fuzzy triangular 

number 𝑀1 = (𝑐, 𝛼, 𝛽) or a trapezoidal number 𝑀2 = (𝑐, 𝑑, 𝛼, 𝛽). 

3. Harmonization of linguistic evaluations 

When determining the range of values of random parameters, the problem of objectivity 

(reliability) of their evaluations may arise. This is especially true for parameters that are predictive in 
nature. In this case, in order to increase the reliability of the evaluations of such parameters, a group 

examination is carried out. The results of the examination are considered to be reliable if there is good 

agreement in the evaluations of experts. The issues of harmonization of evaluations of group expertise 
were considered in many studies [15-18], among which the article [18] can be highlighted. In this 

paper, a mechanism for harmonization interval evaluations is presented. In this case, the coefficient of 

variation is used as a measure of the consistency of evaluations. This coefficient is determined 

separately for the left and right boundaries of the intervals by the formula 𝑉 = 𝑠/𝑥, where 𝑠 is the 

sample standard deviation of the evaluations; 𝑥 - their average value. 

Let (𝑐1, 𝑑1),…, (𝑐𝑘 , 𝑑𝑘) be evaluations of values c and d of interval linguistic evaluation of some 

random parameter, which are given by k experts. Then the coefficients of variation of the boundaries 
of the corresponding intervals are determined as follows: 

for left borders by the formula  

𝑉𝐿 = 𝑠𝐿/𝑥𝐿 , (3) 

where 

𝑠𝐿 = √
1

𝑘−1
∑ (𝑐𝑗 − 𝑥𝐿)2𝑟𝑗

𝑘
𝑗=1 , 𝑥𝐿 = ∑ 𝑐𝑗𝑟𝑗

𝑘
𝑗=1 , (4) 

for right borders by the formula  

𝑉𝑅 = 𝑠𝑅/𝑥𝑅, (5) 

where 

𝑠𝑅 = √
1

𝑘−1
∑ (𝑑𝑗 − 𝑥𝑅)2𝑟𝑗

𝑘
𝑗=1 , 𝑥𝑅 = ∑ 𝑑𝑗𝑟𝑗

𝑘
𝑗=1 , 

(6) 

Here 𝑟𝑖𝑗 is the weighting coefficient of the j-ith expert, moreover ∑ 𝑟𝑗
𝑘
𝑗=1 = 1.  

The practice of applying the methods of expert evaluations shows that the results of the 

examination can be considered satisfactory, if 0,2 ≤ 𝑉 ≤ 0,3, and good, if 𝑉 < 0,2. These conditions 
can be used as a criterion for the consistency of estimates and the basis for their specification. This 

approach can also be used for fuzzy point evaluation. In this case, the coefficient of variation of the 

point value is used. 

4. Calculation of the distance between the transition points 

When constructing a Gaussian function, the distance between the transition points is determined 

mainly by an expert. At the same time, the task of measuring such a distance is complicated by the 

fact that a person, as a rule, has a lack of confidence in the accuracy of his evaluation. Therefore, a 
more constructive approach is that excludes the conduct of such examinations [14]. This algorithm is 

based on experimental data, which, according to experts, reflect the transition points for numbers 
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approximately equal to 𝑇. Based on this data, formulas were obtained to calculate the distance 

between the transition points for each number 𝑇 ∈ [1, 99]. The results are shown in Table 1. 

Table 1 
The distance between the transition points 

Number 
𝑥 

The distance between the transition points 
𝑏(𝑥) 

1, 2, 3, 4, 6, 7, 8, 9 0,46 𝑥 
10, 20, 30, 40, 60, 70, 80, 90 (0,357 − 0,00163𝑥)𝑥 

35, 45, 55, 65, 75, 85, 95 
5 

15 
25 
50 

Other two-digit numbers 

(0,213 −  0,00067𝑥)𝑥 
2,8 

6,48 
6,75 
24 

1

2
(𝑏 ([

𝑥

10
] ⋅ 10 + 5) + 𝑏(𝑥 − [

𝑥

10
] ⋅ 10)) 

For the purpose of a holistic perception of the material, we present the main provisions of this 

approach. Let a fuzzy linguistic quantity “the number is near the number 𝑇” be given, where 𝑇 is a 

natural number. If 𝑇 ∈ [1, 99], then 𝑏(𝑇) could be found  according to the Table 1. Otherwise, the 

following algorithm is used. Let the least significant digit of T has an order of 𝑞. We divide the 

possible values of q into the residue classes modulo 3. As a result, we obtain three classes 𝑀𝑑 , 𝑑 ∈
{0, 1, 2}, where 𝑑 = 𝑞 𝑚𝑜𝑑 3. In this case the value 𝑏(𝑇) also depends on the class 𝑀𝑑 , to which the 

number 𝑇 belongs. Let 𝑟𝑞  be the numeral that is in the 𝑞 th place of the number 𝑇. Then: 

1. If 𝑇 ∈ 𝑀0 (for example, 300, 300000 etc.), then 𝑏(𝑇) = 𝑏(𝑥) ⋅ 10𝑞−2, where 𝑥 = 𝑟𝑞 ⋅ 10 and 

𝑏(𝑥) is taken from Table 1. 
2. If  𝑇 ∈ 𝑀1 (for example, 101, 202000, 15000 etc.), then two options are possible: 
   a) if 𝑟𝑞+1 = 0, then 𝑏(𝑇) = 𝑏(𝑥) ⋅ 10𝑞−1, where 𝑥 = 𝑟𝑞; 

   b) if 𝑟𝑞+1 ≠ 0, then 𝑏(𝑇) = 𝑏(𝑥) ⋅ 10𝑞−1 where  𝑥 = 𝑟𝑞+1 ⋅ 10 + 𝑟𝑞. 

3. If  𝑇 ∈ 𝑀2 (for example, 2030, 2140 etc.), then two options are also possible: 
   a) if 𝑟𝑞+1 = 0, then 𝑥 = 𝑟𝑞 ⋅ 10;  𝑏(𝑇) = 𝑏(𝑥) ⋅ 10𝑞−2; 

   b) if 𝑟𝑞+1 ≠ 0, then 𝑥 = 𝑟𝑞+1 ⋅ 10 + 𝑟𝑞; 𝑏(𝑇) = 𝑏(𝑥) ⋅ 10𝑞−1; 

As a result, the value 𝑏(𝑇) will be obtained. 
This algorithm can be used in the case when T is expressed as a decimal fraction. In this case, the 

algorithm is applied to the mantissa of the fraction, and then its order is taken into account. 

5. Modeling of random variables 

Modeling of a random variable using the Monte Carlo method involves drawing a specific value of 
the random variable. Consider two ways of drawing: based on the Gaussian membership function (1) 

and in accordance with a given distribution law. 

Draw based on the Gaussian function. Consider two cases. 
Case 1. Let a random variable X be given a fuzzy linguistic estimate “value is near c”. The 

membership function 𝜇𝐶(𝑥) of the fuzzy set �̃� ≜“the number is near 𝑐” and the corresponding fuzzy 

number 𝑀 = (𝑐, 𝛼, 𝛽) are constructed, which sets the boundaries 𝛼 and 𝛽 of the interval of possible 

values of the X.   

Further, the evaluation "value near c" assumes that the random variable X in the interval [𝛼, 𝛽] is 
distributed according to the normal law. Therefore, the membership function 𝜇𝐶(𝑥) can be considered 

as a density function with mathematical expectation c and variance 𝑏2(𝑐). And since max 𝜇𝐶(𝑥) = 1, 

then this function will be used in the drawing of a random variable X. 
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Let r is a random number. If 𝑟𝜖[0.01,0.5], then the value of X is the root of the equation 𝜇𝐶(𝑥) =
2𝑟 that is in the interval[𝛼, 𝑐]. If 𝑟𝜖(0.5,0.99], then the root of the equation 𝜇𝐶(𝑥) = 2(1 − 𝑟) is taken 

that belongs to the interval [𝑐, 𝛽]. 
Case 2. Let a random variable X be given a fuzzy linguistic estimate “the value is approximately in 

the range from c to d”. First, the membership functions 𝜇𝐶(𝑥) and 𝜇𝐷(𝑥) of the fuzzy sets �̃� ≜“the 

number is near 𝑐” and �̃� ≜ “the number is near 𝑑” are constructed, as well as the corresponding fuzzy 

numbers 𝑀1 = (𝑐, 𝛼1, 𝛽1) and 𝑀2 = (𝑑, 𝛼2, 𝛽2). As a result, we get the following fuzzy trapezoidal 

number 𝑀 = (𝑐, 𝑑, 𝛼1, 𝛽2). In this case, the possible values of X will belong to the interval [𝛼1, 𝛽2]. 

Then the value of the middle of the tolerance interval 𝑏 =
𝑐+𝑑

2
 is calculated and the membership 

function 𝜇�̃�(𝑥) is constructed (Fig. 2). 

 
Figure 2: Membership function 𝜇�̃�(𝑥). 

This function is defined by the expression: 

𝜇�̃�(𝑥) = {
𝜇�̃�

1 , 𝑥𝜖[𝛼1, 𝑏]

𝜇�̃�
2 , 𝑥𝜖{𝑏, 𝛽2]

, (7) 

where 𝜇�̃�
1 = 𝑒

−
(𝑥−𝑏)2

2𝜎1
2

and 𝜇�̃�
2 = 𝑒

−
(𝑥−𝑏)2

2𝜎2
2

 
are Gaussian functions. In these functions, the 

parameters 𝜎1 
and 𝜎2 

are found from the equations 𝑒
−

(𝛼1−𝑏)2

2𝜎1
2

= 0.01
 
and 𝑒

−
(𝛽2−𝑏)2

2𝜎2
2

 = 0.01. 

The function 𝜇�̃�(𝑥) constructed in this way will be used to model the random variable X on an 

interval [𝛼1, 𝛽2]. Then, as in case 1, if 𝑟𝜖[0.01,0.5], then the value of X is the root of the equation 

𝜇
�̃�
1 (𝑥) = 2𝑟, which is in the interval [𝛼1, 𝑏], and if 𝑟𝜖(0.5,0.99], then the root of the equation 

𝜇
�̃�
2 (𝑥) = 2(1 − 𝑟), which belongs to the interval [𝑏, 𝛽2]. 

The drawing in accordance with distribution law. As noted, the result of a fuzzy linguistic 

evaluation of variable X is approximated by the interval of its possible values. To describe random 

variables, the values of which are limited to a finite interval, beta distribution is mainly used [19]. The 

beta distribution is parameterized by two positive parameters 𝛼 and 𝛽, which determine its shape. Due 
to the fact that the beta distribution can have a different shape, practically all the applied probability 

distributions can be expressed in terms of this distribution. 

The standard beta distribution over the interval 𝑥𝜖[0,1] is given by the density function: 

𝑓(𝑥) =
1

𝐵(𝛼,𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1, 

(8) 

 

where 𝐵(𝛼, 𝛽) = ∫ 𝑦𝛼−1 ∗ (1 − 𝑦)𝛽−1𝑑𝑦
1

0
 - Euler's beta function. 

In this case, the distribution function is expressed through the incomplete beta function: 

(𝑥) =
1

𝐵(𝛼,𝛽)
∫ 𝑦𝛼−1 ∗ (1 − 𝑦)𝛽−1𝑑𝑦

𝑥

0
, 

moreover this function is tabulated [20].  
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𝜎1 
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In practice, of greater interest are, as a rule, beta values determined in an arbitrary interval [𝑎, 𝑏]. 
Taking into account that the function 𝐹(𝑥) is tabulated, the drawing of random variables on the 

interval [𝑎, 𝑏] will be carried out by the Neumann elimination method [21]. This method is based on 

the following theorem. 

Let the random variable X be defined on an interval [𝑎, 𝑏] and has an upper bounded density 

function f(x). Let also 𝑟1, 𝑟2𝜖[0,1]
 
be independent implementations of the base random variable ξ, also 

𝑥 = 𝑎 + (𝑏 − 𝑎)𝑟1 
and 𝑦 = 𝑀𝑟2 

where 𝑀 = max
𝑎≤𝑥≤𝑏

𝑓(𝑥).  

Then if 𝑦 < 𝑓(𝑥), then the value x is the realization of the random variable X. At the same time, 

the effectiveness of the elimination method is directly proportional to the probability of fulfilling the 

condition 𝑦 < 𝑓(𝑥), i.e. 

𝑃{𝑦 < 𝑓(𝑥)} = [𝑀(𝑏 − 𝑎)]−1. (9) 

This probability allows for the desired number of realizations of a random variable X to determine 

the number of necessary model runs. The main advantage of this method is its versatility, i.e. 
applicability for generating random variables having any computable or tabular probability density.To 

better understand such calculations, consider an example. Let us draw a random value 𝑋 ≜“project 

implementation time”. First, the range of its values is determined. Since the random variable has a 
predictive nature, therefore, in order to obtain more reliable values of the boundaries of the region, a 

group of, say, three equivalent experts is involved, whose evaluations are given in Table 2. 

Table 2 
Evaluations of intervals in days 

The project implementation time is approximately in the 
interval 

expert 1 from 87 to 123 
expert 2 from 90 to 134 
expert 3 from 93 to 145 

Using formulas (3) - (6), for the boundaries of the given intervals, we obtain the coefficients of 

variation, respectively, 0.03 and 0.08. Since the experts' assessments are reasonably well agreed, there 
is no need to refine them. Therefore, the average values of 90 and 134 are taken as the boundaries of 

the range of values of the random variable X. As a result, we obtain the collective estimate "the time 

of the project implementation is approximately in the range from 90 to 134". 

Then, the membership functions μC̃(x)
 
 and μD̃(x) of both fuzzy sets �̃� ≜“the number is near the 

number 90” and �̃� ≜ “the number is near the number 134” are constructed. To construct the function 

μC̃(x), it is necessary to calculate the distance 𝑏(90). This value is found according to Table 1 and is 

equal to 𝑏(90) ≈ 32. As a result, we get a function    𝜇C̃
(𝑥) = 𝑒

−
4𝑙𝑛0.5((𝑥−90)2

322  and a fuzzy 

number 𝑀1 = (90,50,130). The value 𝑏(134) for the function μD̃(x) is calculated by the above 

algorithm. The least significant digit of number 134 is in the ones place (q = 1), therefore 𝑟𝑞 = 𝑟1 = 7, 

𝑟𝑞+1 = 𝑟2 = 3 is a digit whose order is one higher than the order of the least significant digit of 

number 134. When dividing q by 3 in the remainder, we get 1, therefore, the number 134 belongs to 

the equivalence class M1, so d = 1. 

Since 𝑟𝑞+1 ≠ 0, then, according to clause 2b of this algorhythm, we have 𝑥 = 𝑟𝑞+1 ∗ 10 + 𝑟𝑞 =

𝑟2 ∗ 10 + 𝑟1 = 34 and 𝑏(134) = 𝑏(34), and 𝑏(34) is calculated by the formula 

𝑏(37) =
1

2
(𝑏 ([

34

10
] ∗ 10 + 5) + 𝑏 (34 − [

34

10
] ∗ 10)) =

1

2
(𝑏(35) + 𝑏(4)), 
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in which 𝑏(35) and 𝑏(35) are found in Table 1: 𝑏(35) = 6.63 and 𝑏(4) = 1.84. Then 𝑏(134) =

1

2
(6.63 + 1.84) ≈ 4. As a result, we get 𝜇D̃(𝑥) = 𝑒

−
4𝑙𝑛0.5((𝑥−134)2

42 the corresponding fuzzy 

number 𝑀2 = (134,129,139). Then the interval of possible values of the random variable X will be 
the interval [50,139]. We will model the values of a random variable X using two methods: based on 

the Gaussian function and beta distribution. According to the first method, we determine the value 

𝑏 =
90+134

2
= 112 and build the membership function (7): 

𝜇�̃�(𝑥) = {
𝜇�̃�

1 , 𝑥𝜖[50,112]

𝜇�̃�
2 , 𝑥𝜖{112,139]

, 

Where 𝜇�̃�
1 = 𝑒

−
(𝑥−112)2

2∗212  and 𝜇�̃�
2 = 𝑒

−
(𝑥−112)2

2∗92 . Then, in the process of modeling, 

if 𝑟𝜖[0.01,0.5], then the value of X is the root of the equation 𝜇
�̃�
1 (𝑥) = 2𝑟, which is in the interval 

[50,112], and if 𝑟𝜖(0.5,0.99], then the root of the equation 𝜇
�̃�
2 (𝑥) = 2(1 − 𝑟), which belongs to 

the interval [112,139]. For example, if 𝑟 = 0.4, then the value x is equal to 98, if 𝑟 = 0.7, then it is 

equal to 118. Let us now consider modeling a random variable X using the beta distribution, for 

example, with parameters 𝛼 = 2, 𝛽 = 3. In this case 𝐵(2,3) =
1

12
. Since the value X is determined on 

interval [50, 139], the density function (8) must be scaled. In the general case, for the interval [a,b] 
this function has the form 

𝑓(𝑡) = {
12

(𝑏−𝑎)4 ∗ (𝑡 − 𝑎)(𝑏 − 𝑡)2, 𝑖𝑓 𝑎 ≤ 𝑡 ≤ 𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
. 

For the interval [50, 139] density function has the form 

𝑓(𝑡) = {
12

894
∗ (𝑡 − 50)(139 − 𝑡)2, 𝑖𝑓 50 ≤ 𝑡 ≤ 139

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

and takes maximum value 𝑀 ≈ 0.02.  

Let the random numbers 𝑟1𝑖 = 0.4 and 𝑟2𝑖 = 0.7 be obtained by different generators 

(independence condition). These numbers are scaled to the interval [50, 139] and [0, 0.02]: 𝑥𝑖 = 50 +
89 ∗ 0.4 = 85.6 and 𝑦𝑖 = 1.78 ∗ 0.7 = 0.014. Then 𝑓(𝑥𝑖) = 𝑓(85.6) ≈ 0.019 is calculated. Since 

the condition 𝑦𝑖 ≤ 𝑓(𝑥𝑖) is met, the value 𝑥𝑖 = 85.6 is taken as a realization of the random variable X. 

Otherwise, this value is discarded. In this case, the efficiency of modeling by the elimination method 
on the interval [50, 139], according to (9), is directly proportional to the probability 0.56. That is, to 

obtain, for example, 1000 realizations of a random variable, it is necessary to carry out approximately 

1800 runs of the model.  

6. Conclusion  

An approach to modeling random variables on fuzzy intervals of their values is proposed. This 

approach includes two stages. At the first stage, on the basis of a fuzzy linguistic evaluation of a 

random parameter, a fuzzy number is constructed, which declares a fuzzy interval of its possible 
values. Fuzzy linguistic evaluations can be either point or interval. Depending on the type of 

evaluation, a triangular or trapezoidal fuzzy number is constructed, the fuzzy coefficients of which 

determine the range boundaries of values of the fuzzy variable. Such numbers are constructed using 
the Gaussian membership function. At the second stage, a random variable is modeled on the 

constructed interval of its values. The drawing is performed by the Monte Carlo method using 

Gaussian membership functions and beta distribution. In this case, the drawing of a random variable 

by the beta distribution function is carried out by the Neumann method. Note that the representation 
of a random parameter as a fuzzy number allows not only to determine the interval of its possible 

values, but also to use this parameter in calculations in the process of fuzzy modeling. 
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