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Abstract  
A method for predicting threats in complex distributed systems is proposed, based on the 

intelligent analysis of large data arrays on the results of monitoring changes in water level 

in water bodies and air temperature at the measurement point, which makes it possible to 

increase the efficiency of planning and implementing measures to fend off such and similar 

threats. The method is based on general approaches and mathematical models previously 

used by the authors to develop adaptive algorithms for controlling gas turbine engines, 

which is especially relevant in the context of the increasingly widespread introduction of 

automatic means for monitoring the state of complex distributed systems and the 

exponential growth in the number of data used to support decision-making. The choice of 

the future value of the water level at the measurement point is carried out based on the 

results of processing the data accumulated for all previous flood periods on the compliance 

of the water level and its changes per day with the values of air temperature and its changes 

for the same day. The results of an experimental assessment of the accuracy of predicting 

the water level in the water bodies of the Republic of Bashkortostan in the flood period of 

2021 are presented, which confirm the applicability of the proposed forecasting method to 

support decision-making to fend off threats in complex distributed systems from a sharp 

rise in water.  
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1. Introduction 

The increasing use of new, highly automated means of monitoring the development of biophysical 

processes in complex distributed systems (CDS), in which the possibility of quickly obtaining and 

processing a large number of parameters characterizing their state is realized, it becomes possible to 

use (with appropriate processing and adaptation) well-proven models and management methods 

(including tasks of monitoring, predicting the state and fending off threats) by technical systems. 

The authors of this article have extensive experience in developing and using statistical methods for 

processing a large number of measured parameters for controlling such complex technical systems as 

gas turbine engines (GTE) [1, 12-14]. The analysis of the development of some threats in the CDS, 

which include a large number of objects that are different in nature and significantly remote from each 

other, showed the possibility of using these data analysis methods to formally describe the dependence 

of the parameters determining the state of the CDS on the most significant factors and subsequent threat 

forecasting based on the revealed dependence. 
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 As an example, let's consider one of the most common types of threats to the security of the 

population and territory in the Republic of Bashkortostan – the spring flood (which is more often called 

a flood), which consists in flooding and underflooding of individual territories and objects located on 

them due to the rise of water in water bodies due to snow melting. The size of the flooded territories 

(their boundaries, area and depth) depends on the water level in water bodies, measured at stationary 

posts of Roshydromet, as well as at increasingly widely used automatic monitoring stations owned by 

local authorities. The height of the water rise at each of these observation posts (at a specific point in 

the territory) depends on many natural and man-made factors. The main natural factors include: water 

reserves in the soil, the depth of freezing of the soil, water reserves in the snow, the area and depth of 

snow cover, air temperature and other meteorological parameters, natural ice jams and forest 

blockages. Technogenic factors include: planned or emergency water discharges from hydraulic 

structures located upstream above the measurement point, construction of engineering structures on 

the water bodies themselves (bridges, water crossings of pipelines, etc.) or near them (dams, artificial 

reservoirs, embankments, etc.), ice congestion (resulting from human activity). Some of these factors 

have a long-term impact on the possibility of water rising, and the other part is short-term. 

2. A method for predicting threats in complex distributed systems based on 
the intelligent analysis of large data arrays (on the example of the problem 
of predicting changes in the water level in water bodies) 

Earlier in their works the authors of this article proposed one of the possible approaches to 

predicting future changes in the water level, based on changing artificial neural networks for intelligent 

analysis of the measured values of only the water level. In this paper, we consider the problem of 

operational assessment of changes in the water level (forecast) for one day ahead, under the influence 

of the most significant factors at stationary observation posts. At each of these posts, the water level is 

measured daily h, and at each of these posts, the water level is measured daily and the task of the 

operational forecast is to measure at a specific time 𝑡𝑖 for each post, determine the future value (for the 

next moment in time 𝑡𝑖+1) the water level, which we will denote hp. It should be noted here that the 

predicted (future) value of the water level ℎ𝑝𝑖+1 differs from the value actually measured in a day ℎ𝑖+1, 

therefore, a special designation is introduced for it   

                                                                    ℎ𝑝𝑖+1  ≠  ℎ𝑖+1  .                                                                (1) 
In this paper, it is proposed to determine the future value of the water level based on the analysis of 

its changes in similar conditions in the past, while it is assumed that the main factor influencing a sharp 

rise in the water level (namely, it poses a threat to the objects of the CDS) is a sharp warming, that is, 

a large (sharp) change in air temperature per day. In other words, the change in the water level at a 

particular measurement point most significantly depends on how much the air temperature has changed 

at this point. Given that the modern system of meteorological observations and weather forecasting 

gives a fairly accurate forecast of air temperature changes for 1-3 days ahead, to identify the 

dependence of the water level on changes in air temperature and then use the identified dependence to 

predict the water level, these predicted values can be used as an actual change in air temperature. 

It is proposed to select the future value of the water level ℎ𝑝𝑖+1  based on the results of processing 

the data accumulated for all previous flood periods on the compliance of the water level and its changes 

per day with the values of air temperature and its changes for the same day. The analyzed data are 

measured at equidistant time points 𝑡𝑖 air temperature values  𝑇𝑖 and the water level ℎ𝑖 [2]. Since the 

forecast consists in determining the future value, that is, the value of the change in the water level is 

calculated ℎ𝑝𝑖 =  ℎ𝑖 +  ∆ℎ𝑖 depending on the temperature change 𝑇𝑃𝑖 =  𝑇𝑖 + ∆𝑇𝑖 then, for the 

implementation of the proposed method of forecasting additional, changes in the water level ∆ℎ𝑖  and 

temperature ∆𝑇𝑖 are calculated  

                                     ∆ℎ𝑖 =  ℎ𝑖+1 − ℎ𝑖,   
                                     ∆𝑇𝑖 =  𝑇𝑖+1 − 𝑇𝑖.                                                   (2) 

The action of various natural and man-made factors, examples of which were given above), 

differently leads to a change in the water level at the measurement point in accordance with changes 



in temperature at the same point during the same day, and for forecasting it is necessary to determine 

the statistical dependence ∆ℎ𝑖, from the corresponding values ℎ𝑖, 𝑇𝑖, ∆𝑇𝑖 in the form of some function  

                                                        ∆ℎ = 𝑓(ℎ, 𝑇, ∆𝑇),                                                               (3) 

and the use of this dependence in the future to determine (calculate) future hp values.  

Let's represent all the values of the parameters ℎ, 𝑇, ∆ℎ 𝑎𝑛𝑑  ∆𝑇 measured at each individual 

observation post for the previous time period as a set  

                                                         𝑊 = {𝑊𝑖}𝑖= 1,𝑝 ,                                                                (4) 

where is each element of the set 

 

                                                           𝑊𝑖 = {ℎ𝑖, 𝑇𝑖, ∆ℎ𝑖, ∆𝑇𝑖}𝑖= 1,𝑝                                                       (5) 

it represents the measured values of the parameters at the i-th moment of time 𝑡𝑖, p is the total number 

of observations.  

The ranges of possible changes in each of these parameters are divided into a fixed number of 

segments  ℎ0, ℎ1, … , ℎ𝑀1;  
𝑇0, 𝑇1, … , 𝑇𝑀2;  

                                                       ∆ℎ0, ∆ℎ1, … , ∆ℎ𝑀3;                                                              (6) 

                                                            ∆𝑇0, ∆𝑇1, … , ∆𝑇𝑀4 ,                              
where 𝑀1, 𝑀2, 𝑀3, 𝑀4 is the number of segments of the partition of the possible values of the 

corresponding parameter. 

Based on the analysis of data from long-term observations of the flood situation (that is, sets (4) and 

(6)), a new set is constructed 

 

                                                 𝑁 = {𝑁𝑗𝑘𝑙𝑚}
𝑗=1,𝑀1 ,𝑘=1,𝑀2 ,𝑙=1,𝑀3 ,𝑚=1,𝑀4  

  ,                                          (7) 

each element of which shows the number of elements of the set (4) satisfying the following conditions: 

ℎ𝑗−1 < ℎ𝑖 ≤ ℎ𝑗; 
𝑇𝑘−1 < 𝑇𝑖 ≤ 𝑇𝑘; 

                                                            ∆ℎ𝑙−1 < ∆ℎ𝑖 ≤ ∆ℎ𝑙;                                                            (8) 

∆𝑇𝑚−1 < ∆𝑇𝑖 ≤ ∆𝑇𝑚, 

when running through the index i of all possible values, 𝑖 =  1, 𝑝 [3-6]. 

In other words, the number 𝑁𝑗𝑘𝑙𝑚 represents the rate of change of water level ∆ℎ that fall in the 

interval [∆ℎ𝑙−1, ∆ℎ𝑙] that occurred while the values of the parameters ℎ, 𝑇 𝑎𝑛𝑑 ∆𝑇, respectively 

trapped in segments [ℎ𝑗−1, ∆ℎ𝑗], [𝑇𝑘−1, 𝑇𝑘], [∆𝑇𝑚−1, ∆𝑇𝑚]. 
At the prediction stage, the current values of the parameters ℎ𝑖 𝑎𝑛𝑑 𝑇𝑖 are measured at each specific 

moment of time 𝑡𝑖. As already noted above, modern methods of forecasting air temperature allow 

predicting changes in air temperature with acceptable accuracy, so at this point in time, the future 

predicted value is known 

                                                ∆𝑇𝑝𝑖 =  𝑇𝑃𝑖+1 − 𝑇𝑖,                                                           (9) 

which we will consider actual, that is, we suppose 

                                                                   ∆𝑇𝑖 = ∆𝑇𝑝𝑖.                                                                (10) 

Next, the numbers of the segments of the partition (6) are determined, in which the current values 

ℎ𝑖 , 𝑇𝑖, ∆𝑇𝑖  fall, that is, the current values of the indices𝑗𝑇 , 𝑘𝑇 , 𝑚𝑇 are determined, for which 

  𝑗𝑇: ℎ𝑖 ∈ [ℎ𝑗𝑇−1, ℎ𝑗𝑇 ],   

                                                      𝑘𝑇: 𝑇𝑖 ∈ [𝑇𝑘𝑇−1, 𝑇𝑘𝑇],                                                        (11) 

𝑚𝑇: ∆𝑇𝑖 ∈ [∆𝑇𝑚𝑇−1, ∆𝑇𝑚𝑇]. 
A new set N1⊂N is formed from the elements of the set N 

                                                       𝑁1 = {𝑁1𝑙}
𝑙=1,𝑀3 ,                                                            (12) 

                                                 𝑁1𝑙 =  𝑁𝑗𝑇𝑘𝑇𝑙𝑚𝑇
, 𝑙 = 1, 𝑀3                                                    (13) 

which is the set of frequencies of occurrence of ∆ℎ  at the values of the other three parameters satisfying 

the relations (11). As the predicted value of the water level change, it is proposed to choose the middle 

of the segment of the partition from (6) by ∆ℎ for which the frequency of occurrence of such a value 

∆ℎ is the greatest, that is, the segment satisfying the condition is selected as the current value of the 𝑙𝑇 

index 



                                              𝑙𝑇: 𝑁1𝑙𝑇
= max 𝑁1𝑙 , 𝑙 = 1, 𝑀3,                                                 (14) 

as the predicted value of the water level change, the following is selected 

                                                       ∆ℎ𝑝𝑖 =  
1

2
(∆ℎ𝑙𝑇−1, ∆ℎ𝑙𝑇),                                                      (15) 

and the predicted value of the water level at the next time  𝑡𝑖+1 is determined by a simple ratio 

                                                     ℎ𝑝𝑖+1 = ℎ𝑖 + ∆ℎ𝑝𝑖.                                                             (16) 

Upon the occurrence time of the next control water levels are measured actual values of 𝑇𝑖+1, ℎ𝑖+1 

are computed and actual values ∆𝑇𝑖 𝑎𝑛𝑑 ∆ℎ𝑖 that allows you to adjust the value of one element of the 

set N, the corresponding segments of the split ranges of parameters (8), which hit the actual value of 

the item (ℎ𝑖 , 𝑇𝑖 , ∆ℎ𝑖, ∆𝑇𝑖), by increasing its value by one. This means that the frequency of occurrence 

of the four values (ℎ𝑗𝑇
, 𝑇𝑘𝑇

, ∆ℎ𝑙𝑇
, ∆𝑇𝑚𝑇

)  increases by one. 

 

ℎ𝑖 ∈ [ℎ𝑗𝑇−1, ℎ𝑗𝑇 ];  

                                                           𝑇𝑖 ∈ [𝑇𝑘𝑇−1, 𝑇𝑘𝑇];                                                         (17) 

 ∆ℎ𝑖 ∈ [∆ℎ𝑙𝑇−1, ∆ℎ𝑙𝑇]; 
 ∆𝑇𝑖 ∈ [∆𝑇𝑚𝑇−1, ∆𝑇𝑚𝑇]; 

                                                    𝑁𝑗𝑇𝑘𝑇𝑙𝑇𝑚𝑇
= 𝑁𝑗𝑇𝑘𝑇𝑙𝑇𝑚𝑇

+ 1                                                 (18) 

and for each subsequent prediction, a set N with updated values of its elements is used, that is, in the 

process of conducting a flood situation, the process of training the forecasting model continues. 

3. Experimental verification of the applicability of the proposed forecasting 
method for planning and conducting measures to counter threats 

The accuracy of the forecast using this forecasting method was studied during the flood in the 

Republic of Bashkortostan in 2021. For each stationary observation post of the Federal 

Hydrometeorological Service (there are 41 of them in the Republic), on the basis of archival data on 

the observation of water level and air temperature values (about 12 thousand values of each parameter 

in total) and calculated values of daily changes in these parameters (also about 12 thousand values of 

each of them), a set N was built according to the above algorithm. The number of segments of splitting 

the possible values of each of the parameters was assumed to be equal 10: 𝑀1 = 𝑀2 = 𝑀3 = 𝑀4 =
10. On each i - th day of a flood situation, the beginning of which is characterized by a significant rise 

in the water level, based on the measured values ℎ𝑖 𝑎𝑛𝑑 𝑇𝑖 and value forecast ∆𝑇𝑝𝑖, carried out the 

forecast values ∆ℎ𝑝𝑖 and calculation ℎ𝑝𝑖+1 by the ratio (16). [7-8]. 

These values of ∆ℎ𝑝𝑖  𝑎𝑛𝑑 ℎ𝑝𝑖+1  for each of the observation posts were transmitted to the Ministry 

of Emergency Situations, where they were used for planning and carrying out measures to fend off the 

flood threat to the population and territory (including all infrastructure and industrial facilities) [9-10]. 

On the next i+1-th day, when the actual value of ℎ𝑖+1was obtained, the weighted average quadratic 

error of the forecast was calculated 

                                                      𝐸𝑖+1 =  
(ℎ𝑝𝑖+1−ℎ𝑖+1)2

ℎ𝑖+1
.                                                         (19) 

At the end of the flood, the average forecast error for the entire flood was calculated for each 

observation post 

                                                        𝐸 =  
1

𝑝
∑ 𝐸𝑖

𝑝
𝑖=1 ,                                                                 (20) 

where p is the number of days of monitoring the flood situation. An example of the correspondence of 

the forecast and actual values of the water level at one of the observation posts is shown in Figure 1. 

For this example, the average forecast error was E=0.031, which is in good agreement with other 

forecasting methods and is applicable to support decision-making on planning and conducting 

measures to fend off threats from a flood situation.  

As noted at the beginning of this article (in the introduction), the main motive for the use of methods 

of intelligent processing of large data arrays, which have shown their high efficiency in managing 

complex technical systems (for example, aviation gas turbine engines), was the increasingly 

widespread use of highly automated monitoring tools for the development of processes dangerous to 

the population and territories in the CDS. All this has a direct bearing on the control of the development 



of the flood situation. To date, the main source of information for the early detection and parrying of 

flood threats is the stationary posts of the hydrometeorological service, which measure the necessary 

parameters once a day, and often by non – automated methods with low accuracy. That is, a relatively 

small amount of not quite accurate data is used to support decision-making, and in these conditions, 

the use of the proposed approaches is limited by the small amount and low accuracy of the available 

data. 

This year, the pilot operation of automatic flood control stations was carried out, and next year it is 

planned to put them into commercial operation with the gradual decommissioning of "manual" 

monitoring tools. At the same time, continuous dynamic control of all necessary parameters is carried 

out and the possibility of their continuous use arises, similar to how it has been happening for a long 

time for technical objects and systems. In this case, the amount of data used will increase by several 

orders of magnitude (from one value per day to 24-240 or more), which will lead to even greater 

efficiency and demand for the methods proposed in this article. 

A significant increase in the number of data available for analysis and processing will improve the 

accuracy of the forecast by increasing the numbers 𝑀𝑗 , 𝑗 = 1,4, since this will reduce the length of the 

segment determined by the ratio (14) for calculating the predicted value from the ratios (15) and (16). 

At the same time, the time required for the actual calculation of the forecast will practically not change 

even with a significant increase in the amount of analyzed data, since the forecast itself is still 

calculated by the ratios (14-16). The computational load will increase only at the stage of training the 

prediction model, that is, calculating the elements of sets N and N1, due to checking a large number of 

inequalities (8). In other words, the time for training the model will increase (in the above experiment 

it was about 10 minutes), but there will still be less time for implementing measures to parry the 

predicted threats, that is, it will still be quite acceptable [11]. 

 

Figure 1: Changes in the forecast and actual values of the water level at the hydrological post No. 
76275, Belaya River, Arsky Kamen  

 

4. Conclusion 

The proposed method of intellectual analysis of data on the results of monitoring and forecasting 

the development of a flood threat in complex distributed systems, which is a development of the 



previously proposed adaptive method of controlling gas turbine engines, showed a fairly high accuracy 

of predicting the water level in reservoirs. The use of this method by the relevant authorities for the 

early detection and prediction of flooding of territories and economic and vital objects located on them 

will allow for more effective planning and implementation of measures to fend off this type of threats, 

and similar ones. The timeliness of the development and implementation of such methods of intelligent 

analysis of large arrays of measurement information is confirmed by the increasingly widespread use 

of automatic means for monitoring the state of the CDS and their individual objects and subsystems, 

which leads to an exponential increase in the number of data used to support decision-making. 
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