
Algorithm for Implementing Logical Operations on Sets  
of Orthogonal Polygons 
 

Maxim Godovitsyn 
1, Julia Zhivchikova 

1, Nickolay Starostin 
1 and Anton Shtanyuk 

2 

 
1 Nizhny Novgorod State University n.a. N.I.Lobachevskiy, 23 Gagarin Avenue, Nizhny Novgorod, 603022, Russia 
2 Nizhny Novgorod Technical State University n.a. R.E. Alexeev, 24 Minin Street, Nizhny Novgorod, 603155, 

Russia 

 

Abstract  
As part of the development CAD for design rule checks (DRC), it is necessary to use logical 

operations on orthogonal polygons that form the layout of an integrated circuit. Such operations 

as union, intersection, subtraction are performed over layers that contain orthogonal polygons. 

These operations are subject to stringent execution time requirements. The traditional 

representation of polygons in the form of bitmaps does not provide a quasi-linear dependence 

of time on the processed data size and requires development of new algorithms and polygon 

representation approaches. This paper contains a description of a modified sweeping line 

obscuring algorithm that achieves O(N log N) time. The algorithm uses three properties of the 

polygon: the separation of inner region from outer region by the edge, the belonging of edges 

to the set of either vertical or horizontal edges, and dissection of the layer plane into rectangular 

fragments which belong to either inner or outer region of the polygon. Procedures of input 

polygon contour representations that are dissected into sets of vertical and horizontal edges are 

described. As a result of performing logical operations, polygon edges of the resulting layer 

are formed. These edges, in turn, are converted into contour representations. The results of a 

computational experiment confirming the nature of the time dependences determined 

theoretically are presented. We propose the structure of a software system for DRC, built with 

the use of programming languages C++ and Lua. 

 

Keywords 
CAD, DRC, logical operations, orthogonal rectangles, polygons, sweeping line modified 

algorithm, IC 

 

1. Introduction 

The IC designing main task is obtaining a workable crystal layout, which will be used to create a 

template for fabrication. Before transferring the designed solutions to production, it is important to 

perform a cycle of obtained layout verification [1]. Verification is understood as a set of checks which 

successful passing provides the possibility of correct chip production on the particular manufacturing 

enterprise equipment  and it’s correspondence to the established parameters. Such checks include: 

design rule checking,  layout versus schematic checking, electrical rule checking, parasitic extraction, 

etc. 

The first stage of verification (DRC) consists in checking the layout for accordance with the design 

rules, which are described by the system of norms, restrictions, rules and procedures regulating 

permissible mutual arrangement of topological elements and topological structures, taking into account 

design features and possibilities of technological process.  

 

 
GraphiCon 2021: 31st International Conference on Computer Graphics and Vision, September 27-30, 2021, Nizhny Novgorod, Russia 

EMAIL: maxim.godovicyn@gmail.com (M. Godovitsyn); zhivchik96@mail.ru (J. Zhivchikova); nvstar@iani.unn.ru (N. Starostin); 

ashtanyuk@gmail.com (A. Shtanyuk) 
ORCID: 0000-0001-8238-0665 (M. Godovitsyn); 0000-0003-4584-9414 (J. Zhivchikova); 0000-0003-1415-7511 (N. Starostin); 0000-0003-

1809-7173 (A. Shtanyuk) 

 
©️  2021 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  



 

There are two phases in almost any verification procedure: the first one is the search of topological 

elements and specific areas, the last one is  the check for design rules compliance directly. 

Layout verification is usually performed using specialized CAD software. The most popular one is 

Calibre DRC [2,3], developed by the American company Mentor Graphics, purchased in 2017 by 

Siemens. There is a particularly acute question about the development of domestic CAD with similar 

functionality to Calibre DRC at present. Such program could solve several problems at once, including 

independence from foreign manufacturers, own distribution and licensing conditions. A domestic CAD 

program can comply with the Russian manufacturer’s and customer’s norms and rules for integrated 

circuits. 

This paper focuses on describing the developed algorithms to perform logical operations (union, 

intersection, subtraction) with layers containing orthogonal polygons. These logical operations are 

actively used at the stage of search for topology elements and specific areas. Moreover  procedures for 

device recognition in the IC layout are implemented on their basis [4]. The algorithms that implement 

logical operations are subject to strict requirements on computational costs, which in terms of time and 

memory should not exceed quasi-linear estimates. 

2. Description of logical operations on the layers 

We consider the integrated circuit layout, which is described by a set of orthogonal polygons. An 

orthogonal polygon is understood as a flat polygon with a boundary in the form of an orthogonal 

polyline, consisting of straight segments parallel to one of the axes of the crystal plane only [6]. The 

whole set of layout polygons is distributed in layers. A topological layer is understood as a set of 

pairwise non-intersecting orthogonal polygons. Any polygon key characteristic is belonging to a 

particular topological layer. 

Depending on the presence of "holes" in the inner region of a polygon, it’s boundary can be single-

connected or multi-connected. Figure 1 shows examples of orthogonal polygons: a) simplest rectangles; 

b) polygon with a single connected boundary; c) polygon with a complex single connected boundary; 

d) polygon with a multi-connected boundary formed by "holes" in the polygon inner region.   

 

 
Figure 1: Orthogonal polygons examples 
 

Conceptually, the verification procedures consist in recognition, search, separation of topology 

elements into specialized layers which various metrics are computed for and the obtained values are 

checked for compliance with norms and restrictions for. Any inconsistencies with the rules detected in 

the layers get into the verification reports, which serve as a basis for the subsequent error correction  in 

the layout. 

The basic mechanism for recognition, searching and selecting topology elements are the logical 

operations. The list of logical operations used to verify the norms of the design rules is given in Table 

1. Each of the above operations takes two polygon layers as input. The result of a logical operation is a 

new layer containing a set of polygons. Figure 2 shows examples of the logical operations over two 

polygons result. 

 

 

 

 

  



Table 1 
Logical operations list for DRC 

Operation Name Result 

OR Union Area describing polygons  
related to the polygons of 
either the first and/or second 
layers. 

AND Intersection Area describing polygons 
related to the polygons of the 
first and second layers 
simultaneously. 

NOT Subtraction Polygons describing the 
polygon areas of the first layer, 
except for the overlapping 
areas of the second layer. 

XOR Exclusive OR 
 

Polygons describing areas of 
the first or second layer 
polygon, except for the 
overlapping areas of the first 
and second layer. 

 

 
Figure 2: Examples of the logical operations with layers results 

 

3. Contour representation and layer interior areas calculating procedure 

It is proposed to describe the polygon by the coordinates of the polyline nodes (boundary nodes). 

Such a representation will be called contour representation, which is de facto standard representation 

for the layout at the verification stage [7]. In contour representation any topological layer is described 

by simple enumeration of all contours that form polygon boundaries. Each contour begins with an 

arbitrary starting node and ends with a finite node, which always coincides with the starting node. Such 

a representation is compact - the memory cost depends linearly on the number of nodes or edges of the 

layer contours. 

Note that contour representation allows for variation in the input data representation: first, variation 

is possible in the choice of contour start nodes; second, any contour can be bypassed in two directions; 

third, variation is apparent in specifying the contour order in the enumeration. As an illustration, let us 

give an example of the polygon in Figure 3, which admits many variations of contour representation; 

for example, let us give two of them: 
 

1: (0,2), (0,4), (4,4), (4,3), (1,3), (1,2), (2,2), (2,1), (4,1), (4,3), (5,3), (5,0), (1,0), (1,2), (0,2) 

2: (0,2), (1,2), (1,0), (5,0), (5,3), (4,3), (4,1), (2,1), (2,2), (1,2), (1,3), (4,3), (4,4), (0,4), (0,2)   

 



 
Figure 3: Example of a polygon with a complex boundary 

 

Another problem of contour representation is that logical operations require information not about 

the boundaries, but about the inner regions of polygons. Thus, in view of all the above, using of contour 

representation in the algorithms for performing logical operations may be ineffective without solving 

these problems. 

To resolve these issues, we will use the "sweeping line" scheme [5].  The idea is to exploit three 

properties of a polygon. First, any edge of a polygon boundary always separates the interior region of 

the polygon from the exterior. Second, any edge of an orthogonal polygon is either vertical or 

horizontal. Third, if the plane is dissected by straight lines according to the vertical and horizontal edges 

into rectangular fragments, then any such fragment will belong entirely to either the interior or the 

exterior region of the polygon. 

 Consider the horizontal edges of the polygon only. Arrange the edges in ascending (not descending) 

order of Y coordinate values, and form a queue. Then we extract from the queue the set of edges that 

have the same Y – such edges will be located on the same horizontal line. These edges of the form 
(𝑎, 𝑌) − (𝑏, 𝑌) can be represented as half-intervals (𝑎 ≤ 𝑋 < 𝑏), where 𝑎 and 𝑏 are coordinate values 

along the 𝑋 axis. By the definition of the layer, such half-intervals will never intersect even for the case 

of a polygon with a complex one-coherent boundary. As a result, on the horizontal line for a given value 

of Y we obtain segments of "switching" inner areas of the polygon to outer and vice versa outer to inner. 

It is enough to have a system of semi-intervals marking the inner regions of the polygon obtained at the 

previous value of Y to implement such “switching”.  

Using the example shown in Figure 4, consider the workflow of the procedure for calculating the 

layer inner regions.  

The initial data is an ordered set of horizontal edges 𝐻 = ((1,0)-(5,0), (2,1)-(4,1), (0,2)-(1,2), (1,2)-

(2,2), (1,3)-(4,3), (4,3)-(5,3), (0,4)-(4,4)).  

Let us denote by 𝐼𝑝𝑟𝑒𝑣 – the system of intervals describing the polygon inner area immediately above 

the previous horizontal line. At the initial stage𝐼𝑝𝑟𝑒𝑣 = ∅. 

For 𝑌=0 we extract a single edge (1,0)-(5,0) from 𝐻. Form 𝐵 – a system of semi-intervals describing 

the boundaries for the current horizontal line: 𝐵 = {[1,5)}. Calculate 𝐼 – a system of intervals describing 

the inner area of the polygon directly above the current horizontal line by the  following formula    

 𝐼 = 𝐵 XOR 𝐼𝑝𝑟𝑒𝑣. Here XOR – is an operation of exclusive OR over sets of intervals; the result of the 

operation is a new set containing those semi-intervals which belong to strictly one of the sets (either to 

the first or to the second one) only. For 𝑌=0 we obtain 𝐼 = {[1,5)}.  𝐼𝑝𝑟𝑒𝑣 = 𝐼 and proceeds to the next 

iteration. 

For 𝑌=1 we extract (2,1)-(4,1) from 𝐻. Form  𝐵 = {[2,4)}. Compute 𝐼 = {[2,4)} XOR {[1,5)} = 

{[1,2), [4,5)}. We take 𝐼𝑝𝑟𝑒𝑣 = 𝐼 and proceed to the next iteration. 

For 𝑌=2 we extract edges (0,2)-(1,2) and (1,2)-(2,2) from 𝐻. Form  𝐵 = {[0,2)}. Compute 𝐼 =
{[1,2), [4,5)} XOR {[0,2)} = {[0,1), [4,5)}. We take 𝐼𝑝𝑟𝑒𝑣 = 𝐼 and proceed to the next iteration. 

For 𝑌=3 we extract edges (1,3)-(4,3) and (4,3)-(5,3) from 𝐻. Form  𝐵 = {[1,5)}. Compute 𝐼 =
{[0,1), [4,5)} XOR {[1,5)} = {[0,4)}. We take 𝐼𝑝𝑟𝑒𝑣 = 𝐼 and proceed to the next iteration. 

For 𝑌=4 we extract edges (0,4)-(4,4) from 𝐻. Form  𝐵 = {[0,4)}. Compute 𝐼 = {[0,4)} XOR {[0,4)} 

=∅. We take 𝐼𝑝𝑟𝑒𝑣 = 𝐼 and proceed to the next iteration. 
The set 𝐻 is empty, exit. 



  

 
Figure 4: Schematic of the algorithm for calculating the layer’s inner regions 

 

Thus, the procedure for calculating the layer inner regions can be represented as the following 

scheme:    

 

Procedure "A" 
 

1. Initial data: 𝐻 is an ordered set of horizontal edges; 

2. Take 𝐼𝑝𝑟𝑒𝑣 = ∅; 
3. If 𝐻 is empty, then exit;  

4. From 𝐻 we extract edges with minimum 𝑌 value; 

5. Form 𝐵 – half-intervals describing the boundaries of the polygon for a given 𝑌; 

6. Compute 𝐼 = 𝐵 XOR 𝐼𝑝𝑟𝑒𝑣; 

7. Take 𝐼𝑝𝑟𝑒𝑣 = 𝐼; 

8. Go to item 3. 

 

If we take into account that we can use implementations of algorithms based on the classical interval 

tree [11] as functions providing work with half-intervals, then the computational complexity of this 

procedure in memory and in time is estimated as 𝑂(𝑁 𝑙𝑜𝑔 𝑁), where 𝑁 – is the number of horizontal 

edges of layer polygons. 

Returning to the problems of contour representation, we note that the presented scheme has the 

following features. First, it does not depend on the variability in the representation of initial data (not a 

contour, but a reordered set of edges is fed to the input). Second, it provides consistent computation of 

polygon regions with acceptable (quasi-linear) computational costs. 

4. Generalized procedures for calculating the results of logical operations with 
layers 

As noted above, the logical operation input is two layers described in the contour representation. 

The result of a logical operation is a new layer also described in the contour representation. The problem 

with contour representation is that the result of logical operations requires information not about the 

boundaries, but about the polygon inner regions. This problem has been solved using the procedure 

"A", presented in detail in the previous paragraph. Let us show how to construct on its basis a 

generalized algorithm for calculating the result of various logical operations with two layers. 

The main idea consists in synchronous parallel calculation of the first and second layers inner regions 

on the basis of procedure "A". In doing so for each case of "sweeping" line displacement there are 

calculation of layer inner regions, execution of logical operation and calculation of the final layer inner 

regions, calculation of transitions (correspond to polygon boundaries) from inner regions to outer ones 

and vice versa from outer to inner ones, formation of polygon boundaries. 

Here is the procedure "B" for calculating the result of a logical operation in the form of horizontal 

boundary edges of the final layer polygons. 

 

 

 

 

 

  



Procedure «B» 
 

1. Initial data:  

𝐻1 is an ordered set of horizontal edges of the layer 1;  

𝐻2 is an ordered set of horizontal edges of the layer 2; 

2. Take:  

𝐼1
𝑝𝑟𝑒𝑣

= ∅ – intervals of the inner region of layer 1 above the sweeping line; 

𝐼2
𝑝𝑟𝑒𝑣

= ∅ – intervals of the inner region of layer 2 above the sweeping line; 

𝐼𝑝𝑟𝑒𝑣 = ∅ – intervals of the inner region of resulting layer  above the sweeping line;  

𝐻 = ∅ – horizontal edges of the resulting layer; 

3. If |𝐻1| + |𝐻2|=0, then exit;  

4. Let 𝑌1 – minimum 𝑌 for edges from 𝐻1; 

5. Let 𝑌2 – minimum 𝑌 for edges from 𝐻2; 

6. Compute 𝑌 = min{𝑌1, 𝑌2}; 

7. If 𝑌 = 𝑌1, then  

a. Extract edges with the value 𝑌 from 𝐻1 ; 

b. Form semi-intervals 𝐵1; 

c. Compute 𝐼1 = 𝐵1 XOR 𝐼1
𝑝𝑟𝑒𝑣

; 

d. Take 𝐼1
𝑝𝑟𝑒𝑣

=𝐼1; 

8. If 𝑌 = 𝑌2, then  

a. Extract edges with the value 𝑌 from 𝐻2 ; 

b. Form semi- intervals 𝐵2; 

c. Compute 𝐼2 = 𝐵2 XOR 𝐼2
𝑝𝑟𝑒𝑣

; 

d. Take 𝐼2
𝑝𝑟𝑒𝑣

=𝐼2; 

9. Calculate the result of a logical operation  𝐼 = 𝐼1
𝑝𝑟𝑒𝑣

 OPERATION 𝐼2
𝑝𝑟𝑒𝑣

; 

10. Compute 𝐵 = 𝐼 XOR 𝐼𝑝𝑟𝑒𝑣 – the set of semi-intervals corresponding to the boundaries of the 

polygon-result of the logical operation; 

11. Transform semi-intervals 𝐵 into edges and include them in the set 𝐻.  

12. Take 𝐼𝑝𝑟𝑒𝑣 = 𝐼; 

13. Go to item 3. 

 

Note that the result of Procedure "B" is the set H of horizontal edges of the resulting polygon. Let 

us give the procedure "C" for obtaining vertical edges, which is similar in its essence to the procedure 

for horizontal edges. 

 

Procedure  «C» 

1. Initial data:  

𝑉1 is an ordered set of vertical edges of the layer 1;  

𝑉2 is an ordered set of vertical edges of the layer 2; 

2. Take: 

𝐼1
𝑝𝑟𝑒𝑣

= ∅ – intervals of the inner region of layer 1 to the right of the sweeping line; 

𝐼2
𝑝𝑟𝑒𝑣

= ∅ – intervals of the inner region of layer 2 to the right of the sweeping line; 

𝐼𝑝𝑟𝑒𝑣 = ∅ – intervals of the inner region of resulting layer to the right of the sweeping line 

𝑉 = ∅ – vertical edges of the resulting layer; 

3. If |𝑉1| + |𝑉2|=0, then exit;  

4. Let 𝑋1 – min value 𝑋 for edges from  𝑉1; 

5. Let 𝑋2 – min value 𝑋 for edges from 𝑉2; 

6. Compute 𝑋 = min{𝑋1, 𝑋2}; 

7. If 𝑋 = 𝑋1, then 

a. Extract edges with the value 𝑋 from 𝑉1 ; 

b. Form semi-intervals 𝐵1; 

c. Compute 𝐼1 = 𝐵1 XOR 𝐼1
𝑝𝑟𝑒𝑣

; 

d. Take 𝐼1
𝑝𝑟𝑒𝑣

=𝐼1; 



8. If 𝑋 = 𝑋2, then 

a. Extract edges with the value 𝑋 from 𝑉2 ; 

b. Form semi-intervals 𝐵2; 

c. Compute 𝐼2 = 𝐵2 XOR 𝐼2
𝑝𝑟𝑒𝑣

; 

d. Take 𝐼2
𝑝𝑟𝑒𝑣

=𝐼2; 

9. Calculate the result of a logical operation  𝐼 = 𝐼1
𝑝𝑟𝑒𝑣

 OPERATION 𝐼2
𝑝𝑟𝑒𝑣

; 

10. Compute 𝐵 = 𝐼 XOR 𝐼𝑝𝑟𝑒𝑣 – the set of semi-intervals corresponding to the boundaries of the 

polygon-result of the logical operation; 

11. Transfer semi-intervals 𝐵 into the edges and include them in the set 𝑉.  

12. Take 𝐼𝑝𝑟𝑒𝑣 = 𝐼; 

13. Go to item 3. 

 

It should be noted that procedures "B" and "C" are described in a generalized form - the abstract 

logical operation is executed in procedure items 9. Replacing the virtual logical operation 

"OPERATION" on the set of intervals with one of the concrete operations "OR", "AND", "NOT" or 

"XOR" gives the procedure of performing a concrete logical operation which provides the computation 

of all edges of the polygon.    

5. Procedure for constructing a contour representation 

Formally, the result of successive procedures "B" and "C" is not a contour representation, but only 

the set of all edges of the layer. To obtain contour representation it is necessary to compute all contours 

[8]. This problem is reduced to the well-known problem of calculating simple cycles in a graph, which 

can be solved by simply traversing in depth [12] the edge graph built on the found nodes and edges of 

layer polygons.    

The computational complexity of the traversal procedure is linear with the number of edges of the 

layer polygons and is estimated as 𝑂(𝑁). However, the edge graph procedure is computationally more 

expensive, but does not exceed the estimate as 𝑂(𝑁 𝑙𝑜𝑔 𝑁) both in terms of running time and peak 

memory consumption [10]. 

6. General algorithm of logical operations on layers 

As a result, we get the following scheme for calculating the result of logical operations on the layers: 

  

1. Initial data: contour representation of layer 1 and layer 2; 

2. Extract 𝐻1 and 𝐻2 horizontal edges of layer 1 and layer 2 

3. Sort the elements of the sets 𝐻1 and 𝐻2 by 𝑌; 

4. Perform the procedure «B», get a set of horizontal edges 𝐻;  

5. Extract 𝑉1 and 𝑉2 vertical edges of layer 1 and layer 2; 

6. Sort the elements of the sets 𝑉1 and 𝑉2 by 𝑋; 

7. Perform the procedure «C», get a set of vertical edges 𝑉;  

8. Construct an edge graph using the elements from 𝐻 and 𝑉; 

9. Find all simple cycles in the depth of an edge graph 

10. Save all found cycles to the contour representation of the final layer.     

 

Accumulating information on the complexity of the individual steps of the algorithm, it can be noted 

that the overall computational complexity of the presented scheme for calculating the results of logical 

operations on the layers in the contour representation depends only on the number of edges of the layer 

polygons and is estimated as 𝑂(𝑁 𝑙𝑜𝑔 𝑁) in terms of running time and memory consumption [9]. 

  



7. Software for DRC 

The implementation of algorithms and procedures presented in the work were included in the plug-

in library of functions for working with topological description layers, which, in its turn, is a part of the 

developed system of verification of DRC. This library is implemented in C++, using the C++17 

standard. The implementation of the library involves containers from the standard library of C++ 

templates: vector, set, and algorithms for processing data in the containers. 

The general architecture of the system of DRC is shown in Figure 5. In accordance with the 

architecture, the verification system includes the following components: an interpreter of the Lua 

language - allows to execute the program of automatic verification; a library of functions for working 

with layers, which contains functions for performing logical operations; a block of work with GDSII 

files; a block of work with the database of layers, which contains a block of work with reports. 

It should be noted that the input data verification system are the GDSII file of the integrated circuit 

topology and the verification script. Output data are database of resulting layers and reports of 

verification algorithms work. Thus, the following possibilities are provided for the verification script: 

reading layers from the GDSII file; processing layers using functions from the library of functions for 

working with layers; saving layers to the layer database; saving logs and debugging information to the 

verification algorithm operation reports repository. 

The presented architecture of the developed software provides ample opportunities in terms of 

expandability of the verification system functionality, which is provided by the large descriptive power 

of the Lua language within the imperative approach, as well as a wide range of opportunities to increase 

the functionality of the dynamically connected library of functions. 

 

 
 

Figure 5: Software architecture for DRC 
 

 



8. Results of the computational experiment 

To test the functions of the library of operations on polygons, we have prepared test data, which is 

a set of coordinates of the vertices of the contours of polygons for two layers. The data were loaded into 

the testing application, and two Poly objects were created based on them, over which the operations of 

union, intersection, subtraction, and exclusive OR were performed. During the experiment, the size of 

the test data varied from 2000 to 40000 edges making up the contours in one layer. 

Macbook Pro with an Intel Core i5 processor, 2.7 GHz, and 8 GB of memory was used for testing. 

The results of time measurements for various operations are shown in Table 2, and their visualization 

is shown in the Figure 6. 

 

Table 2 
Time Results 

polygon edges 
number 

OR (|) time, sec AND (&) time, sec NOT (-) time, 
sec 

XOR (^) time, c 

2000 0.2 0.1 0.1 0.2 
6000 0.4 0.1 0.3 0.4 

10000 
14000 
18000 
22000 
26000 
30000 
34000 
38000 
40000 

1.0 
1.3 
1.7 
2.4 
2.8 
3.5 
4.0 
4.5 
4.7 

0.3 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
1.0 
1.1 

0.6 
0.8 
1.1 
1.5 
1.7 
2.1 
2.3 
2.8 
2.9 

1.0 
1.3 
1.8 
2.4 
2.8 
3.5 
4.0 
4.6 
4.9 

 

 

 
Figure 6: Dependencies of operation time on the number of polygon edges in the layer 

 

The analysis of the obtained dependences allows us to assert that the estimate of the time costs of 

the operations corresponds to the theoretically obtained estimates. The absolute difference in the time 

spent on different operations can be explained by the fact that the number of resulting edges at different 

operations will be different, which leads to different recovery times for the resulting contours. The most 

time-consuming operations in this sense are OR and XOR, but the intersection operation AND is 

performed in the least time. 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

Operation's time, sec.

OR, XOR AND NOT



The disadvantage of this implementation is the relatively high absolute time of operations, which 

requires library code  optimization. 

9. Conclusion 

Thus, within the framework of the project on creation of a domestic CAD for DRC, a library was 

developed that implements logical operations on the layers that form the topological description of a 

chip. This library uses a modification of the sweeping line algorithm and properties of orthogonal 

polygons, which allowed to avoid the quadratic dependence of time on the number of edges in polygons 

and to achieve quasi-linear dependence both in time and memory consumed by operations. Further work 

on the library involves the implementation of calculations of various metrics, checks the obtained values 

for compliance with norms and constraints. Any detected inconsistencies with the rules in the layers 

will be collected in the verification reports, which serve as the basis for the subsequent correction of 

errors in the topology. 

10.  References 

[1] А. Shtanyuk, А. Semenov, The problem of integrated circuit topology analysis based on gdsii files, 

in: Proceedings of the symposium on Engineering and Information Technology, Economics and 

Management in Industry, Volgograd, 2020. pp. 334-336. (In Russian). 

[2] Calibre Design Solutions, 2016. URL: https://eda.sw.siemens.com/en-US/ic/calibre-design. 

[3] А. Lohov, The Mentor Graphic company's main caliber, Electronics: Science, Technology, 

Business 2 (2006) 64-69. (In Russian). 

[4] M. I. Shamos, D. Hoey, Geometric intersection problems, in: 17th Annual Symposium on 

Foundations of Computer Science, 1976, pp. 208-215. doi: 10.1109/SFCS.1976.16. 

[5] J. Nievergelt, F. Preparata, Plane Sweep Algorithm for Intersecting Geometric Figures, 

Communications of the ACM 25 (1982) 739-747. doi: 10.1145/358656.358681.  

[6] F. Preparata, M. I. Shamos, Computational geometry: an introduction, Springer-Verlag, 1985.  

[7] J. O’Rourke, Computational Geometry in C, Cambridge, University Press, 1998. 

[8] J.M. Keil, Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Handbook of 

Computational Geometry, pp. 491–518, Elsevier, Amsterdam, 2000.  

[9] T. M. Chan, Klee's Measure Problem Made Easy, in: IEEE 54th Annual Symposium on 

Foundations of Computer Science, 2013, pp. 410-419, doi: 10.1109/FOCS.2013.51. 

[10] M. J. Katz, M. H. Overmars, M. Sharir, Efficient hidden surface removal for objects with small 

union size, Comput. Geom. Theory Appl. 2(4) (1992) 223–234. DOI: 10.1016/0925-

7721(92)90024-M 

[11] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Section 10.1: Interval Trees, in: 

Computational Geometry, Second Revised Edition, Springer-Verlag, 2000, pp. 212–217. 

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd. ed.,  MIT 

Press and McGraw-Hill, 2001. 

 


