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Abstract
Quality assessment is essential to creating and comparing video compression algorithms. Despite the
development of many new quality-assessment methods, well-known and generally accepted codecs
comparisons mainly employ classical methods such as PSNR, SSIM, and VMAF. These methods have
different variations: temporal pooling techniques, color-component summations and versions. In this
paper, we present comparison results for generally accepted video-quality metrics to determine which
ones are most relevant to video codecs comparisons. For evaluation we used videos compressed by
codecs of different standards at three bitrates, and subjective scores were collected for these videos.
Evaluation dataset consists of 789 encoded streams and 320294 subjective scores. VMAF calculated for
all Y, U, V color spaced showed the best correlation with subjective quality, and we also showed that
the usage of smaller weighting coefficients for U and V components leads to a better correlation with
subjective quality.
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1. Introduction

A Cisco forecast [1] predicts that by 2022, 79% of the world’s Internet traffic will be video. To
reduce the cost of video storage and the burden on data-transmission channels, creation and
improvement of video-compression algorithms are under way. Video-quality measurement is
crucial in this area. The number of studies, publications, and grants allocated to the development
of new quality metrics is growing yearly. One reason why new metrics are seldom used is that
their accuracy is unreproducible on large sets of real data. Generally accepted comparisons of
compression algorithms, therefore, still employ classical methods: PSNR, SSIM, and the new
VMAF, which has gained popularity. For example, to demonstrate the effectiveness of a new
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coding standard, the pertinent committee objectively tests multiple videos using PSNR [2],
followed by subjective testing. Companies involved in developing new video codecs, as well as
their customers, have begun using VMAF, which in many studies has shown a high correlation
with visual quality [3].

All of the above methods are common ways to increase quality control; for example, owing
to its high computation speed, PSNR serves in early development stages, in which thousands of
configurations require testing. Intermediate stages employ SSIM and VMAF, since they take
longer to compute. Generally accepted comparisons typically use all these metrics—examples
include the work of Jan Ozer [4], as well as annual comparisons by Moscow State University [5].
But these metrics allow many configurations that affect the ranking of compression methods.
For instance, the PSNR and SSIM calculations can only be performed on the luminance Y
channel; another option is summation of the Y, U, and V channels. The sum can also use
different coefficients (luminance usually has a larger coefficient than other channels). Currently,
owing to a lack of recommended methods for sums and for using certain channels to calculate
metrics, interpretation of the comparison results becomes much more complicated: instead of
just 3 metrics, 20 or more may be necessary.

Many implementations of modern compression standards have special modes to increase
their output’s score on popular metrics. For example, x264 and x265 have configuration modes
for PSNR and SSIM. The libaom encoder has a VMAF tuning mode. That tuning information
is visible, but many commercial solutions contain hidden settings to increase their scores on
generally accepted metrics, potentially reducing visual quality. A subjective comparison at
Moscow State University showed that the “–tune ssim” setting improves visual quality in
addition to SSIM scores. But the video-preprocessing techniques in libaom’s “–tune vmaf”
setting can substantially reduce visual quality, as [6] demonstrated.

For this paper, we analyzed the correspondence to visual quality of various PSNR, SSIM, and
VMAF configurations. We collected a special data set for our analysis, as open data sets with
visual-quality ratings contain distortions from just one or two codecs (usually H.264 and H.265).
Therefore, our study paid special attention to assembling a set of videos encoded by various
implementations of multiple standards. In this way, we obtained videos with representative
encoding distortions. This task was under way from 2018 to 2021 through the annual subjective
video-codec comparisons of Moscow State University [5].

2. Related work

Multiple studies have compared video-quality metrics. At the same time, each metric’s correla-
tion with subjective estimates can vary greatly depending on the data set and the distortion
type. For example, the goal of [7] was to show that metrics targeting TV signals with high
resolution, high bitrate, and high frame rate (FPS) perform poorly on video with low bitrate,
low resolution, and variable FPS. The researchers confirmed this conclusion and showed that
the NTIA videoconference model [8] delivers the best accuracy, followed by the NTIA general
model [8], Watson’s DVQ [9], and VSSIM [10]. The authors of [11] compared nine metrics
on three data sets: LIVE, ECVQ, and EVVQ. The latter two were created using the JVT JM
v.10.2 encoder (based on H.264/AVC) and XviD v.1.1.0 (an open-source encoder based on the



MPEG-4 Part 2 specification). The authors concluded that the Movie and FMSE metrics perform
better than others when assessing all impairments, except when simulating transmission over
an IP network. In [12], the researchers compared various metrics using 20 FullHD sequences
from popular streaming services. Employing the x265 v2.7 encoder, they compressed these
sequences to 10 quality levels defined by gradually increasing bitrate and resolution. Their
study employed five metrics to assess the quality of the resulting videos. They concluded that
the metrics correlate much better in the SD range than in the HD range, which has noticeably
fewer compression artifacts. In this comparison, VMAF demonstrated better correlation than
PSNR, SSIM, MS-SSIM, and VIF.

Thus, finding a suitable quality metric that maximally correlates with visual assessment
is essential. The existing works on the correlation of video-quality metrics examine only a
few video codecs (mainly open implementations of H.264 and H.265). Therefore, evaluating a
metric’s relevance to a wide variety of videos containing many types of distortions remains
important. Numerous data sets are useful for comparing algorithm performance, the most
popular being Live-VQA [13] and Live-VQC [14]. Their biggest drawback when attempting to
identify the best compression-quality metrics is that they contain few compression artifacts.
Also, many new metrics that employ machine learning have been trained on these data sets.
These factors call into question the applicability of such data sets to objective metric comparisons
and make beneficial a study that uses an independent data set with a representative spectrum
of compression artifacts.

In addition to the variety of metrics, there are several ways to calculate them: using RGB or
YUV color models, using only the luminance component, or using all color panes with different
summation coefficients. The YUV color space is a common choice for image- and video-quality
measurement [15]. It enables quality measurement using only the Y (luminance) space, which
provides more visual information about an image. The U and V spaces have less impact; for
some metrics they improve overall correlation but require additional computation time. In this
paper we show the efficiency of summing different Y, U, and V components for different metrics.

3. Data collection for evaluating video-quality-assessment
algorithms

To analyze the relevance of quality metrics to codec comparisons, we collected a special data
set that includes video sequences and subjective scores. The subjective comparisons were
performed independently using different videos and a different encoders sets. Each one assessed
FullHD videos with different spatial and temporal complexities, which affect compression
quality and performance. We made our selection from a pool of more than 18,000 open-source
clips with high bitrate after analyzing more than five million source videos from the Vimeo
website. Our choice employed clustering in terms of space-time complexity. A description of the
video-selection method appears in [16]. The resulting video data sets for subjective assessments
are called CC-2018, CC-2019, CC-2020, and UGC-2020; the numbers indicate the year each one
was created. Each data set is available by request from its associated codec-comparison project
page [5].

We obtained a representative set of coding artifacts using different video-codec standards: 11



Table 1
Data sets for analyzing video-quality metrics. CC-2018, CC-2019, CC-2020 and UGC-2020 are video sets
used for subjective evaluation in MSU Codecs Comparisons in 2018, 2019 and 2020.

Video
dataset

Number of
codecs

Number of
test videos

Number of
encoded streams

Number of
responses

CC-2018 10 5 150 22542
CC-2019 11 5 165 25784
CC-2020 11 8 264 236736

UGC-2020 7 10 210 35232
Total 39 28 789 320294

H.265/HEVC encoders, five AV1 encoders, two H.264/AVC encoders, and four encoders based
on other standards (VVC, VP9, SIF, and xvc). We compressed each video at three target bitrates:
1,000 Kbps, 2,000 Kbps, and 4,000 Kbps. The choice of this range simplifies the subjective-
comparison procedure, since the video quality is more difficult to distinguish visually at higher
bitrates.

The subjective assessment involved pairwise comparisons using the Subjectify.us platform,
which employs a Bradley-Terry model to transform the results of pairwise voting into a score
for each video. A detailed description of the method appears on the website. To increase the
relevance of the results, each pair of videos received at least 10 responses from participants. The
number of subjective ratings per pair depended on the confidence intervals: more responses
were received for complex videos as well as videos that were hard to be compared.

Table 1 summarizes the data sets, which the 2018–2020 MSU codec comparisons used for
subjective evaluation.

We measured various configurations of PSNR, SSIM, MS-SSIM, VMAF, and NIQE for all
encoded videos. Our analysis considered the following versions of the PSNR algorithm:

• PSNR average MSE – when aggregating frame-by-frame scores for the entire video, we
first calculated the arithmetic mean for the MSE and then the logarithm.

PSNRavg.𝑀𝑆𝐸(𝑉, 𝑉 ) = 10 log10
𝑀𝐴𝑋2

𝐼

1
𝑛

∑︀𝑛
𝑖=1𝑀𝑆𝐸

(︁
𝑉(𝑖), 𝑉 (𝑖)

)︁
• PSNR average log – when aggregating frame-by-frame scores for the entire video, we

calculate the PSNR for each frame and then the arithmetic mean for all frames.

PSNR𝑎𝑣𝑔. log(𝑉, 𝑉 ) =
1

𝑛

𝑛∑︁
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𝑀𝐴𝑋2

𝐼
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)︁
In addition, we considered different versions of the VMAF metric:

• VMAF 0.6.1, VMAF 0.6.2, and VMAF 0.6.3.
• VMAF 0.6.1 NEG (“no enhancement gain”), which is less prone to artificial increases

through preprocessing.



• The “Phone” variant of the above four, as well as a variant that handles 4K video using
the VMAF 0.6.1 model.

For each reference method, our analysis considered the following options for calculating
the color components: we evaluated Y metrics only for the luminance channel, we evaluated
YUV4:1:1 metrics independently for the three components and averaged the result as 4*Y+U+V,
and we applied similar methods for YUV6:1:1, YUV8:1:1, YUV10:1:1, and the rarely used YUV1:1:1
as well as YUV2:1:1. Our calculations of the metric values employed the MSU VQMT version
12.1 [17].

4. Results

Because we conducted a separate subjective comparison of the videos for each year, we had to
obtain for every metric an overall correlation across the entire data set. For each metric, our
approach applied the Fisher z-transform to all correlations coefficients calculated on individual
video sequences and used the resulting values to calculate the weighted mean and confidence
interval, with the weights proportional to the number of distortions. We determined the final
correlations using the inverse transformation [18].

Fig. 1 and Fig. 2 show the Spearman and Pearson correlations. The colors indicate different
groups of metrics. The graphs reveal that VMAF variations have the highest correlation with
subjective-quality scores, and the differences between them are insignificant. Next are VMAF
NEG and MS-SSIM, also with nearly equal correlation. PSNR variants have the lowest correlation
among full-reference metrics.

4.1. Comparison of YUV summations

In all cases, YUV1:1:1 and YUV2:1:1 show worse results than the other channel-summing
methods. Different versions of some metrics (for example, MS-SSIM) exhibit nearly identical
results, but no one YUV summation is best for all metrics.

Table 2 shows the best options for summing the components of different metrics. Some
options have almost identical correlation; the table separates them by commas. For VMAF, the
best YUV-summation coefficients are 6:1:1, 8:1:1, and 10:1:1 for PSNR, and 6:1:1 and 4:1:1 for
SSIM. For MS-SSIM, nearly all methods have the same accuracy.

Fig. 3a and Fig. 3b show overall ranking of metrics with best summations only.

4.2. Comparison of VMAF and VMAF NEG

VMAF NEG showed a lesser correlation with visual quality than VMAF did (Fig. 4). Its developer,
Netflix, recommends using VMAF NEG when comparing video codecs, as it helps prevent
cheating and artificial metric increases through video preprocessing. When comparing different
versions of the same algorithm, however, as well as when algorithms are incapable of artificially
increasing VMAF, the classic VMAF yields a more accurate visual-quality estimate.



(a) VMAF v0.6.1 including VMAF NEG (b) PSNR

(c) VMAF v0.6.2 (d) VMAF v0.6.3 (e) SSIM and MS-SSIM

Figure 1: Pearson correlation between objective-metric scores and the visual-assessment rankings.
Comparison of various metrics using the YUV summation technique. The notation (e.g., 4:1:1) indicates
the coefficients that are proportional to the metric-value weights for the Y, U, and V color components.

4.3. Comparison of SSIM/MS-SSIM, PSNR average MSE, and PSNR average log

MS-SSIM correlates better with visual quality compared with classic SSIM. Different PSNR
variants correlate worse with visual quality than SSIM and MS-SSIM do, but PSNR average MSE
is slightly better than PSNR average log (Fig. 2e and Fig. 2b).



(a) VMAF v0.6.1 including VMAF NEG (b) PSNR

(c) VMAF v0.6.2 (d) VMAF v0.6.3 (e) SSIM and MS-SSIM

Figure 2: Quality comparison of various metrics using the YUV summation technique. We define
quality as the Spearman correlation between objective-metric scores and the visual-assessment rankings.
The notation (e.g., 4:1:1) indicates the coefficients that are proportional to the metric-value weights for
the Y, U, and V color components.

4.4. Metrics comparison for different encoding standards

The results for AV1-encoded streams differ from those for streams encoded using other standards.
Fig. 4 shows the difference in metric correlations between videos encoded using AV1 and those
encoded using H.265. The correlation between PSNR and visual score is much less than that



Table 2
Y, U, and V summation methods that correlate best with visual quality for different metrics.

Metric Best YUV Summing

VMAF 0.6.1

8:1:1, 10:1:1, 6:1:1

VMAF 0.6.2
VMAF 0.6.3
VMAF 0.6.1 phone
VMAF 0.6.1 neg
VMAF 0.6.1 neg phone
VMAF 0.6.1 4K
VMAF 0.6.2 phone
VMAF 0.6.3 phone

PSNR avg. MSE
6:1:1, 4:1:1

PSNR avg. log

SSIM No significant difference between summing methods

MS-SSIM Y (only luma component), 10:1:1, 6:1:1, 8:1:1

(a) Pearson correlation (b) Spearman correlation

Figure 3: Pearson correlation between objective-metric scores and rankings based on visual assessment.

for other standards. This result may be a consequence of recent encoders employing neural
networks, which restore object boundaries and thus cause pixel-by-pixel similarity violations—a
characteristic that PSNR penalizes. Multiscale metrics (VMAF and MS-SSIM) yielded the best
results for such videos. The most stable values are for metrics that evaluate H.264/AVC-encoded
streams. The correlations for all metrics, when applied to these videos, exceed 0.94.



Figure 4: Comparison of metric correlations for
video streams encoded by AV1 (saturated colors)
and a set of video streams encoded with H.265
encoders (semi-transparent columns). PSNR has
low relevance for analyzing the quality of AV1
video streams.

Figure 5: Comparison of metric correlations
for video streams encoded with low bitrate
(semi-transparent colors) and high bitrate
(saturated colors). Video streams with low
bitrate are easier to compare visually, and
the correlation between metrics and visual
scores is higher.

4.5. Metrics comparison for different bitrates

Fig. 5 shows that the relevance of metrics for high-bitrate encoded videos is less than for low-
bitrate videos. This result may be due to the difficulty of visually ranking good-quality videos,
whereas ranking low-bitrate videos that contain artifacts is easy. We can thus conclude that
VMAF reflects the visual perception of artifacts much better than do other metrics for high
bitrates.

4.6. Metric comparison for different videos

Fig. 6 shows the space-time complexity distribution and the correlation between PSNR and
VMAF for different videos. For some videos that exhibit low spatial and temporal complexity,
PSNR and SSIM differ greatly from VMAF. This difference may owe to other factors, so tracking
several metrics when measuring the performance on individual videos is better.

5. Conclusion

This article describes the results of comparing different versions of popular objective methods
with subjective quality rankings. Our analysis used numerous compression algorithms and
revealed the best variants for video-codec comparisons. We used a large-scale data set containing
789 encoded videos distorted by 39 versions of H.264, H.265, AV1, VP9, and other codecs, as well



(a) PSNR and SSIM (b) VMAF and VMAF NEG

Figure 6: Correlation of different metrics by spatial and temporal complexity.

as three bitrates. We conducted a visual analysis of the resulting sequences using Subjectify.us;
several hundred individuals participated. We analyzed many metric versions and modifications
(different methods of averaging the values between frames, accounting for color and brightness,
and so on).

Analysis of the results led us to the following conclusions:

1. VMAF and its variants exhibited higher correlation with visual quality than other metrics
did. Recent research, however, showed that if videos are specially prepared (preprocessed)
for this metric [19, 6], visual quality may decline, causing the correlation to become
negative. At the same time, for high bitrates, VMAF outperforms the results of other
metrics (its correlation is 0.7, versus 0.25–0.45).

2. When calculating metrics for all YUV color planes, different summation methods work
best for different metrics:

• For VMAF, an 8:1:1 ratio provides the best result when summing over Y, U, and V.
• For VMAF NEG, 6:1:1 is best.
• For SSIM, 6:1:1.
• For PSNR (average MSE), 6:1:1.
• For PSNR (average log), 4:1:1.

3. MS-SSIM showed better results than SSIM.
4. Modifications of PSNR (average log and average MSE) yielded no significant differences.
5. When analyzing AV1 codecs or AV1-encoded videos, no PSNR modifications are justified.
6. Some metrics that have similar average correlations may yield lower-quality results

for some videos. Therefore, when comparing the quality of video-encoding or video-
processing algorithms, it makes sense to employ several metrics while taking into account
their potentially sharp fluctuations for individual outputs.

The above results prove that comparing video-coding algorithms using objective quality
metrics is a complex process with many issues and peculiarities. Ignoring these characteristics
may lead to results that are unwarranted or, sometimes, that contradict the results of subjective



visual analysis. For that reason, codec-industry professionals recognize only well-known codec
comparisons, which should be carried out in laboratories by experienced teams in collabora-
tion with codec developers and other industry experts. These comparisons employ a correct
methodological basis and empirical confirmation of their various facets (e.g., choice of objective
quality metrics, modifications to those metrics, and methods of averaging color components).
Otherwise, given a certain selection of video data, metrics, and metric parameters, a careless or
unsuspecting researcher can easily obtain the desired comparison result rather than an objective
one.
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