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Abstract—After an era of huge propagation within the field 
of mobile communications, digitalization has been spreading 
during the latest years at an accelerating speed to automotive 
technology and business. Following the developments 
experienced earlier in the mobile communications branch, 
open solutions and platforms are emerging in the 
automotive industries, challenging the traditional proprietary 
systems. Like in mobile communications, open platforms 
enable development of a wide variety of novel applications and 
systems that speed up the digitalization of the automotive and 
traffic ecosystems and offer the developers new attractive 
business opportunities. One of such open approaches is the 
Eclipse Kuksa framework developed in a consortium of 
European research institutions and automotive industries. 

In this study, we explored how the Kuksa framework could 
be used as a technology basis for an automotive data system 
combining in-vehicle functionality to cloud-based services.  The 
study was carried out as a part of the SMAD research project 
of the University of Oulu aiming at an intelligent moving 
test platform for research of autonomous vehicles built on top 
of a Toyota Rav4 hybrid car. Our study covered subsystems of 
the Kuksa framework, the in-vehicle subsystem, cloud 
subsystems and the data communications between them. 

Our results indicate that the Kuksa framework is a feasible 
basis for the development of open, intelligent automotive data 
systems, though with a considerable learning needs. The results 
and experiences of our study provide besides additional 
knowledge for our continuing research on automotive software, 
also new, valuable contribution to the Eclipse Kuksa 
community and the practitioners planning to deploy open 
approaches in their automotive software development. 

Keywords—automotive software, open systems, cloud services, 
internet-of-vehicles, Eclipse Kuksa 

I. INTRODUCTION

Following the developments of smart mobile 
device business and technology, open solutions have 
gained increased interests in  the automotive 
industry [43]. Started in 2016, the University of Oulu 
conducted research of the open solutions for automotive 
industries in a three-year research project ITEA 3 
APPSTACLE (open standard APplication Platform for 
carS and TrAnsportation vehiCLEs) [1], which further 
continued as Eclipse Foundation development project, 
Eclipse Kuksa [2]. A key contribution of these projects was 
an application development and testing framework called 
Eclipse Kuksa [3]–[7], according to the traditional 
wooden drinking cup of northern Finland’s hunters and 
fishermen. 

The Kuksa framework introduced an in-vehicle software 
platform, an internet-of-things cloud platform, a cloud-based 

 

IDE and an application store that was connected to an 
automotive with a specific hardware interface, providing 
software developers with an integrated environment for 
developing, testing, and offering for use in automotive 
applications. 

In 2019, University of Oulu started a new research project, 
SMAD (Smart and mobile testbed for automated and assisted 
driving), funded by the European Regional Development 
Fund, aiming at creating an intelligent moving test platform 
for automotive research [8]. During this two-and-a-half-year 
project, eight research units of University of Oulu, built a 
broad palette of research and test infrastructures for 
supporting autonomous driving research, utilizing two Toyota 
Rav4 Hybrid cars as moving carriages of the test platform [9]. 

Open solutions were seen as an important option also in 
the research of autonomous driving, and Kuksa was opted as 
the framework for software and application development of 
the SMAD project. Being outside the scope of the SMAD 
project, the application store of Kuksa was left fully out of the 
focus of this research. Kuksa IDE was covered only to the 
extend necessary to address the targets set in the SMAD 
project plan. 

In this paper, we report the work conducted on Kuksa 
framework in SMAD project; the results of implementing a 
moving test platform utilizing Kuksa, gained experiences 
regarding to Kuksa, and contributions to Eclipse Kuksa 
community. In this research, we define Kuksa framework as a 
combination of a vehicle-level software in connection to 
Kuksa development and testing hardware and the data 
communications and cloud services software defined and built 
in the APPSTACLE and Eclipse Kuksa projects. From the 
perspective of Kuksa framework we define the intelligent 
moving test platform, the SMAD environment, as a Toyota 
Rav4 Hybrid car connected to Kuksa cloud platform utilizing 
mechanisms provided by Kuksa framework. 

The research was conducted by deploying the methods of 
the Design Science Research (DSR) as defined by Hevner et 
al. [10], Hevner [11] and Hevner & Chatterjee [12]. 

In Section II, an overview on Kuksa framework is 
summarized. In Section III, the research problem is defined. 
In Section IV, the research methodology is presented. In 
Section V, building of the SMAD-specific Kuksa is presented. 
In Section VI, the results and experiences are presented. In 
Section VII, the conclusions are drawn. 

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



II. SUMMARY OF KUKSA FRAMEWORK

In this section a short summary of Eclipse Kuksa 
framework subsystems, referenced in Fig. 1 as platforms,  the 
in-vehicle subsystem [4] and cloud subsystem [5], is presented 
to the extent that was relevant for the SMAD project targets 
[9]. Application store functionality of cloud subsystem [13] 
and Kuksa integrated development environment subsystem 
[6] are excluded from this summary. In addition, a short
summary of data communication between in-vehicle
subsystem and cloud subsystem is presented.

A. In-vehicle subsystem

Kuksa framework in-vehicle subsystem, a gateway for
connecting to in-vehicle devices and data sources, is 
composed of both software and hardware that integrate into a 
vehicle. It provides in- and ex-vehicle data access 
mechanisms, application platform and secure gateway to the 
cloud [14]–[16].  As depicted in Fig. 2, Kuksa in-vehicle 
subsystem architecture is three-layered, including an OS 
layer, a middleware layer, and an application layer.  

Application layer provides a sandboxed and secure 
runtime environment for 
Kuksa in-vehicle specific 
applications such as over-
the-air update functionality. 
Custom applications 
deployed in the in-vehicle 
subsystem are run on this 
layer. Middleware layer 
provides libraries and APIs 
to enable interaction and 
communication with in-
vehicle subsystem hardware, 
the vehicle itself and cloud 
subsystem. OS layer with the 
use of Automotive Grade 
Linux Unified Code Base -
Linux distribution [17] (later 
referenced in this study only 
as AGL UCB) of 
Automotive Grade Linux -
project [18] (later referenced 
in this study as AGL) 
provides typical operating 

system services and scheduling, and 
for example, device drivers needed to 
interact with the hardware in-vehicle 
subsystem is deployed to. Kuksa in-
vehicle specifications recommend that 
OS should be booted by hardware 
supported secure boot mechanism 
[14]. 

Utilizing in-vehicle subsystem 
requires use of  AGL UCB supported 
hardware or that a custom build of 
AGL UCB is done in order to make it 
compatible with the hardware in-
vehicle subsystem is being deployed 
on; different CPU architectures need 
to be taken into account and although 
drivers for hardware needed for ex- 
and in-vehicle communication could 
be distributed and loaded separately, 
our interpretation is that in-vehicle 

subsystem documentation suggests that drivers should be 
distributed together with AGL UCB in manner of custom 
build [19]. Similarly, in-vehicle subsystem specific software, 
software requirements of custom software and applications, 
and the applications themselves can be distributed with AGL 
UCB, by including them in the target environment specific 
custom AGL UCB build. By our interpretation, Kuksa in-
vehicle subsystem documentation implicitly recommends 
packaging all but custom applications into a custom AGL 
UCB build [19] [20]. Packaging the operating system, drivers 
for hardware, in-vehicle subsystem software, and software 
requirements of applications into a single software image, 
enables to update whole software stack of in-vehicle 
subsystem over-the-air [20].  

AGL utilizes OpenEmbedded build framework [21] and 
Yocto project [22] resources and best-practices to enable 
modularity and customizability of AGL UCB builds [23]. 
Kuksa in-vehicle subsystem utilizes the same build tool of 
OpenEmbedded, BitBake [24], to include in-vehicle 
subsystem specific software in-vehicle specific custom build 
of AGL UCB [19]. 

Fig. 1. Kuksa architecture [2] 

Fig. 2. Kuksa in-vehicle subsystem layer architecture [16], [71] 



Regarding hardware, Kuksa in-vehicle subsystem 
specification in [14] lists two hardware platforms for in-
vehicle subsystem, but technically in-vehicle subsystem 
software does not require that a specific type of hardware, e.g. 
from a specific vendor or with a specific CPU architecture is 
used to provide hardware part of in-vehicle subsystem. 
However, software specifications of in-vehicle subsystem 
implicitly set some requirements to hardware, such as the 
capability to run AGL UCB and recommendation for 
hardware supported secure boot. 

Kuksa offers free and open schematics for a development 
and testing hardware board build around capabilities offered 
by Raspberry Pi Computing Module [7]. Device includes a 
wireless network card interface and SIM card slot for 4G or 
5G connectivity and a CAN bus compatible interface chip, 
STN2120 [25], to 
enable 
communications 
with control units of 
a car through car’s 
on-board diagnostics 
(OBD) port. Device 
can be extended with 
peripherals through 
USB connectors. 
Rendered image of 
the device is 
presented in Fig. 4. 

B. Cloud subsystem

Kuksa cloud subsystem is comprehensively summarized
by Banijamali et al in following way: 

The Eclipse Kuksa cloud platform (EKCP) sends and 
receives different types of messages from and to various sources, 
such as vehicles, devices, and third-party services. In general, 
messages include “telemetry messages” that depict data 
stemming from vehicles, devices, and sensors and “commands 
and controls messages” that are dedicated to the vehicles and 
device management components [26, p. 460]. 

Kuksa is not limited to cloud centered communication 
model, as its in-vehicle subsystem can be extended to support, 
for example vehicle-to-infrastructure (V2I) and vehicle-to-
vehicle (V2V) communication [14] [27]. However, Kuksa 

cloud subsystem should be 
viewed as cloud centric IoT 
architecture [28] and given its 
automotive context it can be seen 
as an internet-of-vehicles 
architecture (IoV). In general, 
IoT architecture such as Kuksa 
cloud subsystem consists of the 
following building blocks 
according to the different 
reference architectures studied in 
APPSTACLE [29]: 

 Message gateway: A
component for sending and
receiving data to and from an
arbitrary amount of (constrained)
devices via different kind of

protocols. 
As this component is the central 

point of interaction with the cloud backend, the 
message gateway transforms data after ingress to 
events and act as broker by redirecting the events to 
other components for further processing. Eclipse Hono 
service [30] presented in Fig. 3 realizes responsibilities 
of this component in Kuksa. 

 Data storage and management: A component for
persisting data within different types of databases. In
Kuksa, InfluxDB [31] and Mongodb [32] presented in
Fig. 3 are used to provide functionality of this
component.

 Data analytic and visualization: Components for
analyzing existing data including big data analyses and
visualizing data in a suitable and valuable way. In
Kuksa, Grafana service [33] presented in Fig. 3 is used
for visualization. Apache Flink service [34] is used as
the big data analysis component presented in Fig 3.

 Device management: A component for device
management allows to authenticate, configure and
control, monitor, maintain, and update devices. Eclipse
hawkBit service [35] presented in Fig. 3, together with
Eclipse Hono provide functionality of this component
in Kuksa.

 Application and service integration: Components that
support the development and provision of applications
and services within the cloud backend. In general, all
components of Kuksa cloud subsystem provide some
functionality that enables Kuksa to provide
responsibilities of this component; for example,
Eclipse Ditto service [36] presented in Fig. 3 enables
use of digital twins and Eclipse Hono supports wide
variety of communication protocols.

 Security: Components that realize authentication,
authorization, privacy, and a secured communication.
In Kuksa, Keycloak service [37] presented in Fig 3 and
Eclipse Hono provide this functionality.

Fig. 3. Architecture of Kuksa cloud subsystem [15] 

Fig. 4. Rendered image of Kuksa 
hardware dongle 



Although Kuksa cloud subsystem does not strictly require 
specific runtime system, available Kuksa cloud subsystem 
deployment documentation [38] and [39] imply that Kuksa 
cloud subsystem is meant to be deployed in a cloud-native 
fashion to a Kubernetes [40] cluster using Helm [41] 
deployment tool or alternatively to OpenShift [42]. 
Deployment examples included in Kuksa cloud subsystem in 
[38] instruct how subsystem can be deployed to Azure 
Kubernetes Service (AKS) [44] using various automation 
scripts utilizing Azure CLI tool [45]. Additional Kuksa cloud 
subsystem related deployment documentation is available 
through documentation of some of its components such as 
Eclipse Hono in [46]. Hono documentation explicitly 
mentions that deployment to Kuberenetes runtime is the only 
deployment model Hono officially supports. Similarly, as 
Kuksa cloud subsystem, Hono deployment examples in [46] 
instruct how Hono can be deployed to AKS, utilizing Azure 
CLI and, in addition to Kuksa documentation, Azure Resource 
Manager (ARM) templates. 

C. Data communications between Kuksa in-vehicle and 
Kuksa cloud subsystems 

 Data communication between Kuksa in-vehicle and 
Kuksa cloud subsystems happens via gateway components, 
which essentially provide remote service interfaces for 
connecting vehicles and devices to cloud subsystem (cloud 
subsystem gateway) and enable data transfer from vehicles 
systems, i.e. CAN bus (in-vehicle subsystem gateway) [39]. 
Eclipse Hono, which is the cloud subsystem gateway 
component, uses AMQP 1.0 protocol to broker messages 
between in-vehicle and other Kuksa cloud subsystem 
components and external applications. This communication is 
considered to be egress or northbound traffic from point-of-
view of Hono.  

For communication between in-vehicle subsystem and 
Hono, i.e. ingress or southbound connections, MQTT, HTTP, 
CoAP, AMQP 1.0 and LoRa protocols are supported. Hono 
provides support for southbound protocols via protocol 
adapters and northbound connections via AMQP 1.0 to 
Dispatch router component as depicted Fig. 5. 

Southbound connection requests, i.e. devices connecting 
to Hono protocol adapters are authenticated by Hono device 
registry, or rather its credentials service. Authentication of 
northbound communication requests are delegated to 

Authentication service of Hono. 
Hono’s internal components use 
the same Authentication service 
to authenticate and authorize 
each other. Authentication 
mechanisms for authentication 
of devices supported by Hono 
are hashed passwords, Pre-
Shared Keys (PSK) for 
Transport Layer Security (TLS) 
connections and X.509 
certificates [47]. Authentication 
mechanism depends on the used 
communication protocol; not all 
protocols support all 
authentication mechanisms. 
Kuksa utilizes Keycloak for user 
authentication of App Store 
functionality [48]. 

III. PROBLEM DEFINITION 

While defining the targets of the SMAD project [8], the 
M3S, as one of the eight research teams, figured out several 
intelligent services utilizing Eclipse Kuksa framework [3]–
[7], such as distant monitoring of the vehicle and on-line 
functionality and software update to the vehicle. 

During the project it became evident, that Kuksa 
framework, as developed in the APPSTACLE [1] and Eclipse 
Kuksa [2] projects, was not an off-the-shelf product, but a 
research framework developed and integrated by several 
project consortium members to address various member-
specific targets. Wide use of open-source software packages 
had enabled the APPSTACLE consortium members to set up 
and finetune slightly different combinations of software 
components and services and to our best knowledge, none of 
them would directly (i.e. without customization of the 
framework and its components) fit to the target setting of the 
SMAD project, including the test Toyotas and their technical 
details, the data communications solutions, and the intelligent 
services planned in the SMAD project plan [9]. 

With this reasoning we understood that our research will 
focus on both implementation of the test platform and finding 
out how one can utilize Kuksa framework; how Kuksa 
framework needs to be customized, in order to utilize it in 
realizing the intelligent moving test platform of SMAD 
project, the SMAD environment. Since main outcome of 
SMAD project is the SMAD environment we decided to focus 
our research questions to build process of this test platform. 

RQ1: How to build an intelligent moving test platform 
utilizing the Kuksa framework? 

RQ2: How to customize the Kuksa framework for a case-
specific, intelligent automotive data system? 

RQ3: What are the obstacles of utilizing the Kuksa 
framework for a case-specific, intelligent automotive data 
system? 

Description of SMAD project targets and details how 
Kuksa framework was customized to implement the SMAD 
environment, will be presented in chapter 5. 

  

Fig. 5. Component view of Eclipse Hono architecture [30] 



IV. RESEARCH METHODS 

Because of the target setting of the SMAD project aiming 
at building a test platform, we decided to utilize the Design 
Science Research (DSR) approach as defined by Hevner et al. 
[10], Hevner [11] and Hevner & Chatterjee [12]. 

Hevner, [11] defines a three-cycle model of Design 
Science model, as presented in Fig. 6. 

In the relevance cycle, the entities of the application 
domain, people, organizational systems, technical systems 
and, and the related problems and opportunities are utilized as 
the basis for the requirement identification and field testing of 
the artifacts and processes built and evaluated in the DSR 
process. 

In the rigor cycle, foundations of the DSR process, 
scientific theories & methods, experiences & expertise, and 
meta-artifacts are used for grounding the results of the DSR 
process, which, in turn provide the knowledge base with 
additional knowledge and experiences. 

When mapping Hevner’s three-cycle model of DSR we 
were able to identify the following mappings to our problem 
domain, validating our research methodology selection: 

1) The application domain consisted of the M3S research 
team and its researchers, having a task to find solutions to the 
problems defined in section 3. The requirements for the 
artifacts to be built and the validation criteria were naturally 
derived from the problem domains of the SMAD test 
platform [9]. 

2) The knowledge base consisted of the Kuksa 
framework documentation, of the experiences and expertise 
gained in the APPSTACLE project in our university, and of 
the documentation and code of the open-source software and 
services of the Kuksa framework. 

3) The artifact to be built and evaluated by following the 
DSR process was an integrated Kuksa from a Toyota test car 
to the cloud services relevant for addressing the target setting 
of the SMAD project. 

V. BUILDING SMAD-SPECIFIC KUKSA 

To support realization of the intelligent moving test 
platform, i.e. the SMAD environment, we built a Kuksa 
system addressing the problem domain presented in section 3. 
While building such SMAD-specific Kuksa we utilized, 
besides the overall idea of Kuksa framework, the sub-systems 
and solutions that were designed and built in the 
APPSTACLE [1] and Eclipse Kuksa [2] projects. In the 
following sections, we describe how the work was carried out 
deploying Hevner’s three-cycle process model [11]. 

A. Identifying the requirements, the relevance cycle work 

Focus of SMAD project was on two larger themes; 
research of autonomous driving itself and on various aspects 
needed to enable and support autonomous driving, and 
implementation of a moving development and testing 
platform, i.e. the SMAD environment, to support future 
research on autonomous vehicles. Research topics range from 
connectivity and communication research, such as 5G 
network connectivity and vehicle-to-everything (V2X), to 
ubiquitous integration of car to smart transportation systems.  

Implementation of the SMAD environment was less 
research oriented, but still very much a research task; to our 
best knowledge no such system exists, and as such there are 
lot of unknows to deal with when implementing such system. 

Implementation of the SMAD environment would happen 
simultaneously with the research activities and SMAD 
environment would be used to support research when 
possible. 

Following requirements were extracted by us from SMAD 
project description [9]: 

 SMAD environment needs to enable future research 
and development of use cases such as vehicle as a 
sensor, online functionality and software updates of 
the vehicle, traffic situation updates and route booking. 

 SMAD environment will provide both the hardware 
and the software to support automotive research. It will 
provide the vehicles to which needed research 
instruments will be installed to. 

 The vehicles themselves are also research instruments 
and as such, SMAD environment needs to provide 
means to gather data from various sensors and systems 
of the vehicles. 

 SMAD environment needs to provide means to interact 
with the vehicle and support interacting with the 
research instruments installed in the vehicle when 
applicable. 

 SMAD environment needs to be able to integrate to 
instruments and systems outside of the vehicle. 

In essence, SMAD environment is complex system where 
communication between various elements, both inside and 
outside of the system’s core, is the central functionality 
provided by the SMAD environment. To enable this, core of 
SMAD environment is depicted as a system consisting of 
cloud environment and a software environment installed to 
vehicles. Research instruments in the vehicle will connect to 
the cloud backend via means provided by the in-vehicle 
software environment. In-vehicle environment will enable 
installation of software research artifacts to the vehicle and 
since systems and sensors of the vehicle must also be utilized 
by the test platform and research instruments, in-vehicle 
environment must provide means to do so. This changes the 
nature of in-vehicle environment from software only 
environment to system which also provides hardware 
capabilities to interact with the vehicle and research 
instruments connected to the vehicle. External systems and 
services will integrate to SMAD environment through the 
cloud environment, apart from V2X communication, where 
vehicle and its environment could in some cases interact 
directly without connection to cloud environment. 

Fig. 6. Hevner’s three-cycle model of Design Science Research [11]. 



SMAD environment is a service that will be utilized by 
researchers and companies doing automotive related software 
research and development. From a service point- of-view 
following requirements were deducted for SMAD 
environment core based on SMAD project description: 

 SMAD environment core and its software and services 
must be managed according to best practices suitable 
for chosen deployment model. 

 SMAD environment core needs to be operated and 
maintained, in best case as a production grade service. 
Design of the system must take this into account. 

 Operation metrics of the SMAD environment core 
need to be gathered and monitored in order to identify 
service level degradation. 

 Software development and maintenance of SMAD 
environment core components must be trustworthy; 
utilized development processes must provide, for 
example, traceability of software and its dependencies, 
consistent and repeatable compilation results, version 
control and other best practices. 

B. Utilizing the results of the APPSTACLE and Eclipse 
Kuksa projects, the rigor cycle 

Eclipse Kuksa framework was identified as a key enabler 
for building SMAD environment core and for research targets 
of the SMAD project, but as described in section 3, we 
identified that Kuksa framework would have to be customized 
in order to utilize it in context of SMAD project. We started 
our SMAD work by identifying parts of Kuksa framework 
architecture that must be modified or parts that could left out 
to build a customized, SMAD-specific Kuksa system to 
realize SMAD environment core, better suited to SMAD 
project targets. We identified three areas for change along the 
system-level architecture of Kuksa framework: the in-vehicle 
subsystem, the cloud subsystem, and the data communications 
between the subsystems. Each subsection describes how 
corresponding subsystem of Kuksa framework was to be 
adapted to form a SMAD-specific Kuksa. Table I presents a 
summary of design decisions which reflect how SMAD-
specific Kuksa will differ from Eclipse Kuksa. 

1) In-vehicle subsystem 
AGL UCB [17], OS choice of Kuksa in-vehicle 

subsystem, includes lot of functionality such as application 
framework [49] and human-machine interface framework 
(HMI) [50] which were not needed in SMAD project; no 
SMAD project task required implementation of graphical user 
interface in the in-vehicle subsystem and software that will be 
run in in-vehicle subsystem would not benefit from the use of 
application framework, since security features provided by 
application runtime of in-vehicle system can be utilized 
without utilizing application framework itself. Apart from 
HMI and application framework most of the generic operating 
system functionality provided by AGL UCB and its 
underlying use of OpenEmbedded [21] resources were seen as 
a necessity for SMAD-specific Kuksa. AGL UCB is stable 
and maintained operating system, which through use of 
BitBake [24] build tool offers flexibility to make use-case 
specific changes to the OS. With this reasoning, it was decided 
that application framework and HMI framework of AGL UCB 
would not be used in SMAD-specific Kuksa. However, it was 
also decided that, if time permits, application framework 
could be evaluated and used if evaluation revealed that 

application framework would benefit SMAD project targets. 
Customization of AGL UCB would happen with BitBake tool. 

Most of the functionality provided by middleware layer of 
Kuksa in-vehicle subsystem is not needed in SMAD project. 
However, some functionality such as vehicle abstraction layer 
(VAL) [51] were identified to be useful, as it provided an 
easy-to-use and ready-made implementation for transforming 
vehicle manufacturer specific CAN bus messages to GENIVI 
Alliance Vehicle Signal Specification (VSS) [52] data model. 
By this rationale only vehicle abstraction layer of Kuksa in-
vehicle subsystem was decided to be included in SMAD-
specific Kuksa. 

Kuksa development and testing hardware [7] was selected 
as the hardware platform for SMAD-specific in-vehicle 
subsystem, since we had one available from APPSTACLE 
project. Other hardware platforms could be utilized in the 
future. Kuksa development and testing hardware does not 
contain necessary hardware for secure boot and as such, using 
a secure boot loader as defined by [14] was not a viable option. 
To address the need of boot time security, which provides the 
base for runtime security, we identified that secure boot like 
functionality could be achieved on Kuksa development and 
testing hardware via use of special SD memory card such as 
Swissbit PS-45, which when used with a custom bootloader, 
allows to store secure boot key material protected by on-
demand decryption and write-protection of  SD-card partitions 
[53]. Given that SMAD is time constrained project and we did 
not have previous experience on utilizing Swissbit PS-45 or 
similar products, we decided that we will first implement a 
version of SMAD-specific Kuksa without secure boot 
capabilities on development and testing hardware of Kuksa 
and if project schedule allows, we will either try to implement 
a secure boot mechanism based on Swissbit SD-card or test 
SMAD-specific Kuksa in-vehicle subsystem on another 
hardware platform which supports secure boot out-of-the-box. 

2) Cloud subsystem 
SMAD project tasks did not involve any digital twin 

related activities, so Eclipse Ditto [36] service was decided to 
be removed from SMAD-specific Kuksa. If future use-cases 
of SMAD environment involve digital twin activities, support 
for Eclipse Ditto service could implemented into SMAD-
specific Kuksa. 

Similarly, Kuksa Appstore service [13] was also outside 
of context of SMAD project and it was decided to be left out 
from SMAD-specific Kuksa. Application management 
practices for in-vehicle subsystem, similar to those of Kuksa 
Appstore could be implemented to SMAD-specific Kuksa in 
the future. 

Since development SMAD-specific Kuksa will continue 
after SMAD project, we had the opportunity to narrow down 
the expected use of Eclipse hawkBit [35] compared to Kuksa. 
It’s importance and usefulness in over-the-air (OTA) updates 
of in-vehicle system is without question, but in first version of 
SMAD-specific Kuksa, it will only be used to perform OTA 
updates of whole software image of in-vehicle subsystem, i.e. 
update the AGL UCB distribution combined with all 
necessary software of the SMAD-specific in-vehicle 
subsystem. As with Kuksa, hawkBit service would be used to 
update and install new, user specific software on in-vehicle 
subsystem, but this feature would be developed in the future, 
after SMAD project. 



With similar justification of future development activities, 
we decided that during SMAD project, SMAD-specific Kuksa 
won’t provide data gathering or data visualization features. 
Instead, an example integration to external data gathering 
system using northbound AMQP connection of cloud 
subsystem would be done. During SMAD project an external 
integration is better option, as we do not know if SMAD 
environment should even offer data gathering as an integrated 
service. We would find this out during SMAD project. 
Development of data gathering and visualization features 
integrated services might happen in the future, outside of 
SMAD project. For now, data gathering would only involve 
gathering of operational data of cloud subsystem components. 
Grafana service would be used for visualization of this data. 

At start of SMAD project, we did initial investigation on 
deployment of Kuksa cloud subsystem. It seemed that 
deployment of various Kuksa cloud subsystem services was 
not uniform; deployment instructions, examples, and models 
of cloud subsystem services differed from each other and 
automated set up of infrastructure seemed lacking [38]. We 
decided to implement our own, more uniform infrastructure 
deployment automation. All infrastructure-as-a-service (IaaS) 
related automation would utilize Terraform tool [54] and 
Helm tool [41] deploying to Kubernetes cluster [40] set up at 
the selected IaaS cloud service. Necessary secrets, storage and 
authentication and authorization management would be 
implemented using Terraform and Helm, using other tools 
only when strictly necessary. Some automation scripts 
utilizing Helm and Terraform had already been done in 
context of Kuksa cloud services deployment [38]. 
Infrastructure set up part of these scripts was not adequate, but 
service deployment part of the scripts could have been used in 
SMAD. However, scripts deployed unnecessary components 
for SMAD-specific Kuksa in interlinked way, which might 
have required lot of changes to the deployment scripts, to 
deploy a SMAD-specific Kuksa with them. We decided to use 
these scripts for reference when needed. 

 

TABLE I.  SUMMARY OF DESIGN DECISIONS FOR SMAD-SPECIFIC 
KUKSA 

Since Eclipse Hono [30] was identified to be key enabler 
for SMAD related work, we decided to focus our initial effort 
on deployment of Hono. Deployment of other services of 
SMAD-specific Kuksa, would be adopted based on our 
experienced gained with Hono deployment. From 
investigation of Hono deployment scripts and documentation 
[47] we learned that there is quite good monitoring and tracing 
support available in Hono, but this was not mentioned in 
Kuksa documentation. 

3) Data communication 
Data communication options for devices connecting to 

cloud subsystem provided by Kuksa were more than adequate 
for SMAD. In SMAD-specific Kuksa we would only utilize 
mutual transport layer security [55], i.e. mTLS, protected 
MQTT protocol for communications between vehicle and 
Kuksa cloud subsystem. From security point-of-view, this 
meant that support for unnecessary protocols would need to 
be disabled in Hono. In case we would see a need to expand 
selection of supported protocols this could be done by 
enabling disabled protocol adapters or if needed, implement 
new ones. 

Regarding to communication between Kuksa cloud 
subsystem and external applications, Kuksa supports only 
AMQP 1.0 protocol. We identified that this limitation might 
affect usefulness of Kuksa for potential users of SMAD 
environment. After further investigation of Eclipse Hono 
architecture it was decided that we won’t add support for other 
protocols for northbound connections during SMAD project. 
This would be too big task and since Hono is under active 
development we wanted to see if new development would 
bring support for new protocols. 

V2X research activities were included in SMAD project 
targets, but it was not clear if this V2X research would benefit 
from use Kuksa in-vehicle subsystem and to what extent we 
could even add support for direct vehicle-to-vehicle (V2V) 
and vehicle-to-infrastructure (V2I) into in-vehicle subsystem. 
To address this, we decided that V2V or V2I would not be 
included in SMAD-specific Kuksa at all. 

# Decision Rationale Remarks 
In-vehicle subsystem 

1 
AGL HMI and application framework will be 
removed. 

No use for HMI since no GUI in SMAD. No added 
security value from application framework. 

Evaluate other benefits of application 
framework if time permits. 

2 
SMAD-specific AGL UCB  customized with 
BitBake tool. 

BitBake build process provides software 
traceability 

- 

3 Only Kuksa.val be included from Kuksa 
No added value gained from other Kuksa 
middleware. 

- 

4 No secure boot in 1st version Kuksa hardware doesn’t support secure boot 
If time permits evaluate Swissbit PS-45 
secure boot like solution 

Cloud subsystem 

5 
Eclipse Ditto and Kuksa Appstore will be 
removed. 

No use in SMAD project context. 
If digital twin use cases arise in the future, 
Ditto support will be implemented.  

6 
Only operational metrics will be gathered. 
Visualisation of metrics using Grafana 

SMAD Kuksa integrates into external data analysis 
services. Hono monitoring supports Grafana. 

- 

7 
1st version focuses on custom deployment 
scripts for Hono instead Kuksa 

Hono identified to be most important component. 
Custom deployment needed 

Terraform and Helm will be used to 
implement deployment automation. 

8 
hawkBit will be used to install only complete 
SMAD-specific AGL UCB images. 

Schedule restrictions prevent implementing OTA 
support for individual applications. 

OTA install of individual application will 
be implemented in future. 

Data communication 

9 Only mTLS MQTT support in 1st version Mutual TLS increases security. 
Other protocols will be supported in 
future. 

10 Devices authenticate with X.509 certificates 
Improves security, enables identity management of 
devices 

Smallstep CA and tooling will be used. 

11 
Identity management integrated into AGL 
UCB build process 

Improves security and traceability when compared 
to manual identity management activities 

- 

12 
No additional northbound protocols will be 
implemented. 

Hono is actively developed. More northbound 
protocols might come with new Hono versions. 

- 

13 Keycloak will be removed Only Kuksa Appstore utilized Keycloak 
Keycloak support could be implemented in 
future, for non-Appstore purposes. 



Authorization and authentication in Kuksa are handled by 
Keycloak [37] and Hono services. Eclipse Kuksa reference 
implementation implies that Appstore is the only service 
utilizing Keycloak and Appstore service is not going to be 
included in SMAD-specific Kuksa, we decided that Keycloak 
will removed. We did identify need for authentication service 
such as Keycloak might arise in the future, especially on 
authentication of northbound AMQP connections. Apache 
Qpid, the AMQP message broker used in Kuksa has good 
support for multiple types of authentication mechanisms as 
documented by [56]. As with the decision to remove data 
gathering support from cloud subsystem, we would gain more 
information about requirements for northbound connection 
authorization during SMAD project. This also supported the 
decision to remove Keycloak from SMAD-specific Kuksa at 
least for now. 

We decided that device authentication of SMAD-specific 
Kuksa happens via X.509 certificates, as we could do identify 
management and access control of devices with certificate 
management practices. Neither Kuksa or Eclipse Hono define 
or recommend any practices or tooling for X.509 certificate 
management, so we considered that Smallstep CA software 
[57] was a good candidate for certificate management in 
SMAD-specific Kuksa. Smallstep CA provides tooling [58] to 
issue client certificates for devices and utilize Smallstep CA 
certificate authority and possible intermediate certificates in 
Hono to manage authorization of devices. We envisioned that 
we will integrate identity management of devices into SMAD-
specific in-vehicle subsystem build process; we would 
generate a unique certificate signing requests (CSR) during 
the build, include the CSR in the built image and once the 
device flashed with the resulting is powered on it would 
exchange the CSR to a proper X.509 client certificate issued 
for this specific device. 

C. Building and evaluating SMAD-specific Kuksa, the 
design cycle 

We started development of SMAD-specific Kuksa by 
defining an implementation plan based on requirements 
deducted from SMAD project proposal, description of Kuksa 
framework based on APPSTACLE project deliverables, 
documentation and source code available for Eclipse Kuksa 
reference implementation [4], [5], [7], and our design 
decisions described in chapter 5.2 and  summarized in Table 
I. 

As we started our first implementation effort, we run into 
issues which forced us to rethink our implementation plan 
from a minimum-viable-product (MVP) point-of-view [59]. 
Based on refined implementation plan we implemented a 
SMAD-specific MVP cloud subsystem and MVP in-vehicle 
subsystem and integrated our test vehicle to the MVP 
subsystems. Each subsection describes how corresponding 
implementation effort was done. 

1) Implementation plan 
Our initial plan was to first implement the cloud 

subsystem, verify that the implementation works and then 
continue to implement in-vehicle subsystem. If possible, 
software from in-vehicle subsystem would be used to verify 
that cloud subsystem works as expected and during 
development of in-vehicle subsystem, cloud subsystem would 
be utilized to identify possible problems in the integration of 
the two subsystems. 

To verify our SMAD-specific Kuksa implementation, we 
needed to define a suitable test case. We first defined the 
overall objective of test case; enable transfer of data read from 
sensors of the vehicles first to cloud subsystem and then to an 
application reading the data from the cloud subsystem. At this 
point, we did not exactly know what protocols we would use 
for data transfer between in-vehicle and cloud subsystem and 
we did not know what data we would read from the car or what 
software would be used to read the data. Given the number of 
unknowns, the test case would be built incrementally. Test 
case would first verify cloud subsystem implementation; data 
can be sent to southbound APIs and same data can be read 
from northbound APIs. Then the test case would verify in-
vehicle subsystem implementation; this essentially meant 
verifying that our in-vehicle subsystem could send data to our 
cloud subsystem. In addition, test case would also be used to 
verify integration of in-vehicle subsystem to our test vehicle; 
this meant verifying that data can be read from vehicles 
sensors utilizing our in-vehicle subsystem implementation 
software and hardware. 

Given the requirement to aim for production grade 
operation and maintenance we decided to focus on 
implementing robust IaaS set up and service deployment 
automation. Self-hosted Kubernetes was not an option for us 
and as we generally wanted to avoid tight vendor locking with 
any cloud provider, we decided to clearly separate IaaS and 
service deployment automation from each other. There would 
be strict separation of concerns; IaaS set up automation would 
utilize Terraform tool and based on our experience gained on 
implementing the IaaS set up automation, Helm tool or 
combination of Terraform and Helm would be used for service 
deployment. Service deployment would not depend on the 
selected IaaS provider and in case there is a need to deploy 
SMAD test platform to some other cloud provider than the 
initially selected Microsoft Azure, this would only mean  
implementation of new IaaS set up automation. Service 
deployment should work as it works on any Kubernetes 
cluster despite the underlying infrastructure. As we were 
drafting the implementation plan, we learned that SMAD-
specific Kuksa is going to be utilized in university study 
courses. This introduced a need to make our deployment 
automation support a use-case where multiple cloud 
subsystems would be deployed to Azure on-demand and 
destroyed after the corresponding university course had 
ended. 

2) 1st implementation effort – Refined implementation 
plan 

After initial implementation plan had been defined, we 
progressed towards actual implementation by first creating 
minimal Terraform automation to set up Azure Kubernetes 
Cluster (AKS) [44] and then started developing our SMAD-
specific deployment automation using Kuksa deployment 
documentation as reference. We soon realized that this would 
be too big task with high risk of failure. As we had observed 
before deployment instructions and scripts of Kuksa seemed 
complex and lacking and modifying them from SMAD-
specific Kuksa without having a working deployment as a 
reference point for modifications, could be very time-
consuming process.  

We decided that deployment scripts would be 
implemented incrementally following the incremental 
implementation of our test case; we would not try implement 
deployment automation for complete SMAD-specific cloud 



subsyste, in one go, but rather implement absolutely minimum 
required to evaluate our test case and as test case evolves our 
deployment scripts would evolve. We felt that this approach 
would be best supported by defining a minimum viable 
product (MVP), which defined only the strictly necessary to 
realize our overall test case objective. This meant that 
functionality such as identity management with X.509 
certificates, support for OTA update of in-vehicle subsystem 
software image and use of mTLS was postponed until MVP 
would be finished. 

3) 2nd implementation effort – cloud subsystem 
As Eclipse Hono was identified as the most important 

component in the MVP of SMAD-specific Kuksa we started 
closer investigation of Hono and its deployment 
documentation. In contrast to Kuksa, Eclipse Hono 
documentation was generally very comprehensive, and its 
deployment documentation gave a clear instructions on how 
one deploys Hono. Once we successfully deployed Hono on a 
local development instance of Kubernetes, we felt confident 
that at this point no further investigation of Hono was 
necessary. Hono documentation gave detailed and explicit 
instruction on deploying Hono on AKS, which to us meant 
that we could focus our efforts on implementing Terraform 
scripts for cloud infrastructure set up and then work out 
possible small incompatibilities with deploying Hono on AKS 
infrastructure set up by our automation scripts. Hono 
deployment would eventually work, IaaS automation was 
more unknown. Given that we were committed to incremental 
building, following requirements of SMAD-specific Kuksa 
MVP, we decided that we would implement set up of access 
control, container registry, persistent volume management, 
secrets management and other production grade features only 
to extent required to support out current MVP 
implementation. 

After we successfully deployed Hono on AKS set up by 
our Terraform scripts, we needed to implement our test case. 
Since at this point test case would only be able test the 
minimum viable implementation of SMAD-specific Kuksa 
cloud subsystem, i.e. Hono, and we had committed to use in-
vehicle subsystem software for evaluation of cloud subsystem, 
we decided that our test case would replicate some parts of a 
newly released kuksa.val demo [60]. By re-creating key parts 
of the demo as we would advance to in-vehicle subsystem 
implementation and vehicle integration, we could iteratively 
develop our test case as we had planned. We deployed 
kuksa.val software stack on laptop and user mocked GPS data 
which kuksa.val transformed the GPS data into GENIVI VSS 
messages and sent them to Hono instance in AKS using 
MQTT protocol. Node-RED [61] dashboard received the 
messages from Hono over AMQP protocol and displayed 
them in a web browser UI. Implementation of our test case 
was fast and relatively easy as we extensively re-used source 
code available from [51]. We successfully verified our cloud 
subsystem implementation and progressed to implement 
SMAD-specific in-vehicle subsystem. 

4) 3rd implementation effort – in-vehicle subsystem 
Implementation of in-vehicle subsystem started with 

examination of AGL UCB and its build process. We tried to 
replicate build of Kuksa specific AGL UCB image and failed. 
Build instructions of Kuksa in-vehicle subsystem in [19] made 
an outdated reference to AGL UCB version not available 
anymore. This reference was easily fixed, and we successfully 
built an AGL UCB image. However, even though we had 

successfully built an AGL UCB image with Kuksa in-vehicle 
software included, we could not get this image to start on 
Kuksa development and testing hardware. The image started 
on Raspberry Pi 3 device, but since we had the impression that 
it should start on Kuksa development and testing hardware, 
we, despite successfully building an image, could not trust that 
we had built a working image; essentially we didn’t have a 
working reference point to compare changes we were about to 
make. Since considerable amount of time was used to get to 
this point, we did not want to continue troubleshooting the 
build process of AGL UCB, as we were not confident that we 
would find out why the image was not starting in timely 
manner. Failing to do so waste considerable amount of SMAD 
project development effort. We decided to follow MVP 
approach and remove need for AGL UCB and BitBake and 
use a ready-made Raspberry Pi OS [62] (formerly Raspbian). 
We made clear separation between AGL UCB and BitBake; if 
time permits, build a Raspberry Pi OS based SMAD-specific 
in-vehicle subsystem image with BitBake and keep the 
repeatability and software traceability offered by BitBake. 
Use of AGL UCB and use BitBake would be implemented 
later, possible as future development. It is worth noting that 
by examining and troubleshooting the build process, we 
gained valuable experience about BitBake and customization 
of AGL UCB architecture. We also experimented with build 
process additions using QEMU [63], Packer tool [64] and 
Packer builder ARM -plugin [65] and defined support for 
device specific customizations in a pre-deployment process 
and an initialization process, i.e. first boot customization 
process, which allows integration of the planned identity 
management processes to build process of SMAD-specific in-
vehicle subsystem. This information would be utilized in 
future development of SMAD-specific Kuksa. 

After we changed AGL UCB to Raspberry Pi OS it was 
very straightforward to install kuksa.val into in-vehicle 
subsystem and successfully verify our SMAD-specific in-
vehicle subsystem MVP implementation. Details in Table II 

5) 3rd implementation effort – in-vehicle subsystem 
After implementing our in-vehicle subsystem MVP we 

decided integrate test vehicle to SMAD-specific subsystems. 
In essence, the integration meant that we would need to 
implement everything required to evaluate the test case we 
defined at the beginning of implementation. Since data 
transfer from cloud subsystem to external application and 
from in-vehicle subsystem to cloud subsystem were verified 
to be working, our main goal was to read data from sensors of 
test vehicle. 

We decided to use vehicle’s existing CAN busses to access 
sensor data of the vehicle. Kuksa development and testing 
hardware contains an integrated CAN bus interface IC 
(integrated circuit), STN2120 [25], we decided to utilize that 
for interacting with the vehicle. Kuksa development and 
testing hardware is designed to utilize standard on-board-
diagnostic connector (i.e. OBD connector) and as such it 
would be connected OBD connector of Toyota for CAN bus 
interaction. 

We evolved our test case accordingly. Instead of mocked 
GPS data live data from CAN bus would be read and send to 
cloud subsystem as suitable GENIVI VSS message.  

For the software level interaction with CAN bus, we 
needed to consider utility of our MVP in context of whole 
moving test platform. MVP is not a throwaway prototype and 



we choices we make now should be useful when the system is 
developed further. We considered two options, ELM 
command protocol [66, p.10] and SocketCAN protocol [67]. 
kuksa.val contained some example code for interacting with 
CAN bus interface chip using ELM command protocol and as 
STN2120 supports this protocol, example code from 
kuksa.val could be used to fetch data from CAN busses of 
Toyota. ELM command protocol is a request-response 
protocol aimed for onboard diagnostics (OBD) of vehicles. It 
can be used for general purpose interaction over CAN bus, but 
protocol is designed to support especially OBD use-cases. 
When using ELM command protocol to interact with a CAN 
bus, one requests the CAN bus interface IC to send or receive 
specific CAN frames. There is also a special monitoring mode 
where the IC tries to capture all CAN frames in the bus. 
Communication with the IC happens over serial port using 
ELM specific AT commands. SocketCAN, in contrast to ELM 
protocol, can be seen as a subclass of standard network 
interface like an Ethernet or a Wi-Fi connection. Interface 
used to interact with the CAN interface, e.g. serial or USB 
port, is abstracted away and SocketCAN exposes CAN 
interfaces as network interfaces through use of Berkeley 
sockets API and Linux network stack. CAN interface, when 
interfaced through SocketCAN, can be utilized with 
abundance of features and tools available for interacting with 
Linux network stack. There are lot of open-source software 
libraries for communicating over ELM command protocol, 
but we felt that SocketCAN with well-known and mature 
interface provided by Berkeley sockets and Linux network 
stack, provides more interoperability over various vendors and 
products. Communication model of SocketCAN differs 
greatly from ELM command protocol, since by design one 
does not request specific messages from the CAN interface IC 
but filtering of CAN frames happens via functionality 
provided by Linux kernel. ELM command protocol is a half-
duplex protocol, which means that simultaneous receiving and 
sending of CAN frames is impossible. SocketCAN does not 
have such restriction as long as the underlying CAN bus 
interface IC supports full-duplex communication. 

We decided to utilize SocketCAN but unfortunately 
vendor support for SocketCAN in ICs that utilize ELM 
protocol is, to our best knowledge, non-existing and STN2120 
was not an exception. There is an open-source implementation 
of Linux kernel driver, elmcan [68], which exposes ELM 
protocol using CAN bus interface devices through 
SocketCAN protocol exists. This implementation, forced by 
limitations of the ELM protocol utilizing ICs, has many 
shortcomings compared to CAN bus interface IC with vendor 
provided SocketCAN support. This essentially meant that if 
we were to use the STN2120, we could not utilize SocketCAN 
in a trustworthy way. To overcome this, we decided that we 
will evaluate trustworthiness and performance of STN2120-
elmcan combination by comparing output of CAN bus 
readouts done with STN2120-elmcan to readouts done with 
Kvaser Leaf II CAN bus interface [69]. Kvaser provides 
vendor level SocketCAN support, and we felt that it offers a 
practical reference point to evaluate performance and 
trustworthiness (i.e. correctness of interaction with CAN bus) 
of CAN traffic reading with STN2120-elmcan combination. 

Since our test case required to send GENIVI VSS 
messages to cloud subsystem, we had to transform the sensor 
data contained in a CAN frame to a GENIVI VSS message. 
SocketCAN does not decode content of CAN frames it 
receives or sends; CAN frame decoding into meaningful 

messages happens outside of SocketCAN, in the software 
utilizing SocketCAN. As kuksa.val already provided means to 
decode CAN frames to human-readable format with CAN bus 
database files (i.e. DBC files) and to transform the message to 
GENIVI VSS messages via manual mapping, it was a natural 
choice to use kuksa.val for CAN frame decoding. Since DBC 
files are typically vehicle manufacturer or even vehicle model 
specific we needed to obtain or implement our own suitable 
DBC file for decoding CAN bus traffic of the test Toyotas. 
Opendbc project of comma.ai [70] contained a Toyota specific 
DBC file suitable to be used for our MVP implementation.  

When we tried utilizing STN2120 with kuksa.val we 
immediately found out that we cannot communicate with the 
STN2120. In our research on Kuksa described in section 5.2, 
we utilized Kuksa development and testing hardware 
documentation to determine the capabilities of the device and 
now during the implementation we used STN2120 data sheet 
to find out how communication with STN2120 should be 
done. STN2120 datasheet contained some remarks about 
correct communication baud rates, which we tested without 
success. It was clear that STN2120 on our Kuksa development 
and testing hardware had been configured to use different 
baud rate from those mentioned in STN2120 datasheet. At the 
time of troubleshooting, Kuksa development and testing 
hardware documentation didn’t contain information about 
software configuration of the hardware and even with 
significant search effort we couldn’t find correct baud rate 
setting. We reverted to deduce correct baud rate by monitoring 
serial communication lines of STN2120 with an oscilloscope 
during power up of the IC. We later learned by chance that 
correct baud rate setting could have been found from 
configuration files of kuksa.val. Once we had a correct baud 
rate, we successfully configured elmcan to interface with 
STN2120.  

After communications problems with STN2120 were 
solved we started interacting with the Toyota through OBD 
connector. After first test we realized that OBD connector in 
our test Toyota was probably directly wired to gateway 
module which prevented us from reading CAN frames 
containing data from vehicle’s sensors. Although we could not 
find a definitive information on this matter, we strongly feel 
that Toyota only supports ISO 14229-1, i.e. unified diagnostic 
services (UDS) protocol to communicate with the gateway 
module. This essentially meant that we would have to fetch 
vehicle sensor data in request-response manner, and we could 
not utilize kuksa.val CAN frame decoding functionality 
easily. Implementing UDS support would be too big effort 
since we wanted to finish our MVP implementation and verify 
our complete test case during SMAD project. As an alternative 
approach, we connected Kuksa development and testing 
hardware directly into CAN busses available in Toyota wiring 
harness, bypassing the gateway module between OBD 
connector and CAN busses. This way we could observe CAN 
bus traffic without explicitly requesting specific sensor values 
with UDS protocol. 

Once necessary wiring harness modifications were done, 
we indeed observed much more CAN bus traffic than from 
OBD connector and kuksa.val CAN frame decoding 
functionality produced meaningful human readable sensor 
data. 

We did initial comparison of CAN bus readouts made with 
STN2120 through elmcan SocketCAN implementation and 
Kvaser Leaf. We could see that CAN Frames received with 



elmcan appear in the same order as the corresponding CAN 
Frames appear when received with Kvaser Leaf. Thorough 
comparison of trustworthiness of using STN2120 through 
elmcan SocketCAN implementation and Kvaser Leaf was left 
to further studies. 

Table II summarizes our implementation process by 
describing functionality provided by the MVP SMAD-
specific Kuksa system after each implementation effort. 

Due to challenges we faced in the implementation process 
in-vehicle build process customization, identity management 
with X.509 certificates, support for OTA update of in-vehicle 
subsystem software image and use of mTLS will left for future 
development. 

TABLE II.  EVOLUTION OF SMAD-SPECIFIC KUKSA MVP 

Cloud subsystem In-vehicle subsystem 

After cloud subsystem implementation effort (chapter 5.3.3) 

Eclipse Hono, deployed to AKS 
using custom made automation 
scripts, receives mocked device 
telemetry messages through 
MQTT and sends the messages 
to external application over 
AMQP 

Kuksa.val deployed to a laptop 
sends mocked GPS data as GENIVI 
VSS messages to cloud subsystem 
over MQTT protocol through LAN 

connection. 

After in-vehicle subsystem implementation effort (chapter 5.3.4) 

Eclipse Hono, deployed to AKS 
using custom made automation 
scripts, receives mocked device 
telemetry messages through 
MQTT and sends the messages 
to external application over 
AMQP. 

Raspberry Pi OS deployed to Kuksa 
development and testing hardware. 

Kuksa.val, installed to Kuksa 
development and testing hardware, 
sends mocked GPS data as GENIVI 
VSS messages to cloud subsystem 
over MQTT protocol through LAN 

connection. 

After test vehicle integration effort (chapter 5.3.5) 

Eclipse Hono, deployed to 
AKS using custom made 
automation scripts, receives 
device telemetry messages 
through MQTT and sends the 
messages to external 
application over AMQP. 
 

Raspberry Pi OS deployed to Kuksa 
development and testing hardware. 

Kuksa.val, installed to Kuksa 
development and testing hardware, 
sends live data read from vehicle 

sensors over SockerCAN as 
GENIVI VSS messages to cloud 
subsystem over MQTT protocol 

through LAN connection. 

VI. RESULTS AND LESSONS LEARNED 

Building the SMAD-specific Kuksa system for the SMAD 
environment was started on the basis of available Eclipse 
Kuksa framework documentation [3]–[7] but there were a 
number of unknow details as presented in section 5.3.1. Some 
of the components of Kuksa framework turned out to be 
unnecessary in the context of the SMAD project, and some 
relevant components required modifications to address 
SMAD-specific needs. During the implementation of SMAD-
specific Kuksa, we also identified some shortcomings in the 
Kuksa framework documentation, which lead us to drastically 
change our design during the implementation.  

The design changes during implementation caused further 
that we were not able to build a moving test platform within 
the timeline of the SMAD project to the extent defined in the 
SMAD project plan. However, we were able to build a 
baseline Kuksa solution to be used in the projects following 
SMAD. The incremental approach and focusing on 
implementing an MVP [59] to evaluate our test case turned 
out to be a correct way to progress, as presented in section 
5.3.2.  

As Eclipse Hono [30] was identified as the most important 
component in the MVP, we started closer investigation of 
Hono and its deployment documentation [47]. In contrast to 
Kuksa framework, Hono documentation was generally very 
comprehensive, and its deployment documentation gave clear 
instructions on how one deploys Hono. We succeeded in 
implementing deployment automation and the container 
registry, persistent volume management, secrets management, 
other production grade features only to extent required to 
support the SMAD-specific cloud subsystem MVP 
implementation, and the test case relevant for the MVP, as 
presented in section 5.3.3. 

For the implementation of the SMAD-specific in-vehicle 
subsystem, a closer examination of AGL UCB [17] and its 
build process was necessary. We successfully built an AGL 
UCB image with Kuksa in-vehicle software included, but we 
didn’t manage to start this image on Kuksa development and 
testing hardware. Due to the project’s timeline we decided to 
omit use a ready-made Raspberry Pi OS image instead, 
because the hardware was not tied to a specific version of 
Linux. After change from AGL UCB to Raspberry Pi OS it 
was straightforward to implement the rest of the SMAD-
specific in-vehicle subsystem MVP and successfully verify it. 
We will utilize build process and tools of [17] in future 
development of SMAD-specific in-vehicle system.  

After our in-vehicle subsystem MVP was built, we 
integrated the solution to a test vehicle. The vehicle 
integration had a set of low-level technical problems to be 
solve, as presented in section 5.3.5. We did manage to 
successfully integrate SMAD-specific subsystems with test 
vehicle using Kuksa development and testing hardware. 

As a summary, our results and experiences indicate that 
despite its documentation shortcomings, the Eclipse Kuksa 
open-source framework provides new users and projects with 
a usable basis for building case-specific solutions for vehicle-
to-environment communication and control, combining in-
vehicle solutions, data communications, and cloud services. 

VII. DISCUSSION AND CONCLUSIONS 

In this study, we explored how to build a case-specific, 
intelligent automotive data system utilizing the Eclipse Kuksa 
framework [4], [5], [7] developed in ITEA 3 APPSTACLE [1] 
and Eclipse Kuksa projects [2]. The study was carried out as a 
part of the SMAD research project of the University of Oulu 
by following the guidelines of Design Science Research 
(DSR) as defined by Hevner et al. [10], Hevner [11] and 
Hevner & Chatterjee [12]. The key target of the SMAD project 
was to build an intelligent mobile test platform for automotive 
research of our university and, thus, this study was a kick-off 
for possible deployment of the Kuksa framework in our future 
research on open automotive software systems. 

By following the guidelines of DSR we were able to build 
minimum-viable version of automotive data system, the 
SMAD-specific Kuksa, addressing a set of requirements of an 
intelligent moving test platform as defined in the SMAD 
project plan. We estimate that current implementation fulfills 
criteria for Technology Readiness Level 3 as some original 
project requirements were dropped, for schedule and resource 
circumstance of the project. Section 5 presents the building 
process in detail providing an answer to the research question 
RQ1. Our work-in-progress implementation of SMAD-
specific Kuksa MVP can be found in [72]. 



Kuksa turned out to be an open and modular framework, 
customizable for a target system that was different from the 
ones developed in the APPSTACLE project. Needed 
customizations varied between different parts of the 
framework. As an answer to research question RQ2 we 
summarize our design decisions in table I. 

Building a novel, case-specific automotive data system 
based on the Kuksa framework can be estimated to be 
demanding, though the framework was technically modular 
and customizable. This was expectable result as the 
framework was built in a distributed manner in the 
APPSTACLE project - a research project with 21 partners 
having various research interests and targets. The biggest 
obstacles for deployment (RQ3) were our limited initial 
experience and knowledge of the framework, shortages in the 
Kuksa documentation, and technical problems we 
encountered during implementation as presented in detail in 
section 5. 

The easiest part to reuse turned out to be the cloud system, 
mostly of excellent documentation of Eclipse Hono and 
dropping out the most challenging use cases of the SMAD 
project plan. In-vehicle subsystem in combination with Kuksa 
hardware turned out to be the most difficult. That was 
expectable because the custom-build hardware and use of 
AGL UCB, were novel for our researcher team. 

Although we didn’t actively participate in Eclipse Kuksa 
community in course of this study, we feel that becoming an 
active member of Eclipse Kuksa community, would have 
helped us in our SMAD-specific Kuksa implementation, as we 
would have been able to ask details not covered by Eclipse 
Kuksa documentation. Active role in Kuksa community might 
have also helped us to coordinate our work with ongoing 
development effort of Eclipse Kuksa community and possibly 
contribute back to community more than we now did alone. 
We feel that active community of an open-source project 
fosters active and productive development effort, and this 
would foster evolution of Eclipse Kuksa framework. 

We summarize the results of our study by noting that 
Kuksa is a customizable framework, deployable in different 
case-specific automotive data systems, but requiring lots of 
low-level technical knowledge on how to configure, build and 
use its open-source software packages. Customization needs 
of Kuksa are strongly context dependent, generalized 
requirement guidelines for customization might be achievable 
with further studies. 

Our targets for future research on the Kuksa framework 
cover solving of the technical problems that were left unsolved 
in the SMAD project, examining scalability of the built 
system, and improving transferability of our experiences. 
Once ready, SMAD-specific Kuksa will be utilized to support 
our and other future research on automotive software. 

ACKNOWLEDGMENT 

This study was funded by European Regional 
Development Fund, Oulu Civil Engineering Foundation, 
BusinessOulu and Finnish Transport and Communications 
Agency. Part of the described work has been done in context 
of Arctic 5G project.  We want to thank all colleagues and 
partners who worked in the SMAD project, especially student 
group N. Lunden, J. Holmi, J. Kosola, M. Saarinen and S. 
Wickström, who worked with us on implementing monitoring 
and tracing support for SMAD-specific cloud subsystem. 

REFERENCES 
[1] APPSTACLE Project, “APPSTACLE project page”, ITEA3, 

[Online], Available: https://itea3.org/project/appstacle.html , 
[Accessed: Apr. 11, 2021]. 

[2]  “Eclipse KUKSA community website”, Eclipse Foundation, 
[Online], Available:  https://www.eclipse.org/kuksa/ , [Accessed: 
Apr. 12, 2021]. 

[3]  “Eclipse Kuksa documentation”, Eclipse Foundation, [Online],  
Available: https://www.eclipse.org/kuksa/documentation/ , 
[Accessed: Apr. 22, 2021]. 

[4] eclipse/kuksa.invehicle, Eclipse Foundation, 2021, [Software], 
Available: https://github.com/eclipse/kuksa.invehicle , [Accessed: 
Apr. 18, 2021]. 

[5] eclipse/kuksa.cloud, Eclipse Foundation, 2021, [Software], Available: 
https://github.com/eclipse/kuksa.cloud , [Accessed: Apr. 18, 2021]. 

[6] eclipse/kuksa.ide,  Eclipse Foundation, 2020, [Software], Available: 
https://github.com/eclipse/kuksa.ide , [Accessed: Apr. 18, 2021]. 

[7] eclipse/kuksa.hardware,  Eclipse Foundation, 2021, [Software], 
Available: https://github.com/eclipse/kuksa.hardware , [Accessed: 
Apr. 23, 2021]. 

[8] “SMAD project homepage”, [Online], Available: 
https://www.smad.fi/ , [Accessed: Apr. 16, 2021]. 

[9] “SMAD project proposal”, [Online], Available: 
https://www.eura2014.fi/rrtiepa/projekti.php?projektikoodi=A74419
&lang=en , [Accessed: Apr. 22, 2021]. 

[10] A. Hevner et al., “Design Science in Information Systems Research”, 
Manag. Inf. Syst. Q., vol. 28, p. 75, Mar. 2004. 

[11] A. Hevner, “A Three Cycle View of Design Science Research”, 
Scand. J. Inf. Syst., vol. 19, Jan. 2007. 

[12] A. Hevner and S. Chatterjee, “Design Science Research in 
Information Systems”, Des. Res. Inf. Syst., pp. 9–22, 2010, doi: 
10.1007/978-1-4419-5653-8_2. 

[13] eclipse/kuksa.cloud – Appstore, Eclipse Foundation, 2020,  
[Software], Available: 
https://github.com/eclipse/kuksa.cloud/tree/master/kuksa-appstore , 
[Accessed: Apr. 18, 2021] 

[14] APPSTACLE project, “Deliverable 1.1 - Specification of In-car 
Software Architecture for Car2X Applications”, [Online], Available: 
https://itea3.org/project/appstacle.html , [Accessed: Apr. 11, 2021] 

[15] R. Höttger, “Driving the Future Connected Vehicle with Eclipse 
Kuksa“, Eclipse IoT Day Grenoble 2019, [Presentation], Available: 
https://wiki.eclipse.org/Eclipse_IoT_Day_Grenoble_2019 , 
[Accessed: Apr. 22, 2021]. 

[16] M. Wagner, J. Tessmer, “An Introduction to Eclipse Kuksa”, Webinar 
on Eclipse Kuksa, 2019, [Presentation] Available: 
https://at.projects.genivi.org/wiki/pages/viewpage.action?pageId=349
63516#Cloud&ConnectedServices-
History&MinutesofBoFdiscussions , [Accessed: Apr. 22, 2021]. 

[17] “AGL Unified Code Base”, Automotive Grade Linux, [Online] 
Available: https://www.automotivelinux.org/software/unified-code-
base/ , [Accessed: Apr. 22, 2021]. 

[18] “Automotive Grade Linux project homepage”, Automotive Grade 
Linux, [Online], Available: https://www.automotivelinux.org/ , 
[Accessed: Apr. 22, 2021]. 

[19] “eclipse/kuksa.invehicle - AGL build instructions”, Eclipse 
Foundation, 2019, [Online], Available: 
https://github.com/eclipse/kuksa.invehicle/blob/master/agl-
kuksa/README.md, [Accessed: Apr. 16, 2021] 

[20] “eclipse/kuksa.invehicle - Firmware-over-the-air update”, [Online], 
Eclipse Foundation, 2019, Available: 
https://github.com/eclipse/kuksa.invehicle/blob/master/kuksa-
appmanager/wiki/fota.md , [Accessed: Apr. 16, 2021]. 

[21] “OpenEmbedded homepage”, [Online], Available: 
https://www.openembedded.org , [Accessed: Apr. 22, 2021]. 

[22] “Yocto Project homepage”, [Online], Available: 
https://www.yoctoproject.org/ , [Accessed: Apr. 22, 2021]. 

[23] “Build Process Overview - AGL Documentation”. Automotive Grade 
Linux, [Online], Available: 
https://docs.automotivelinux.org/en/master/#0_Getting_Started/2_Bui
lding_AGL_Image/0_Build_Process/ , [Accessed: Apr. 22, 2021]. 



[24] openembedded/bitbake,  OpenEmbedded, 2021, [Software], 
Available: https://github.com/openembedded/bitbake, [Accessed: 
Apr. 19, 2021]. 

[25] “STN2120: OBD-II, SW-CAN, MS-CAN Interpreter IC”, OBD 
Solutions, [Online], Available: 
https://www.obdsol.com/solutions/chips/stn2120/ , [Accessed: Apr. 
22, 2021]. 

[26] A. Banijamali, P. Jamshidi, P. Kuvaja, and M. Oivo, “Kuksa: A 
Cloud-Native Architecture for Enabling Continuous Delivery in the 
Automotive Domain”, in Product-Focused Software Process 
Improvement, vol. 11915, X. Franch, T. Männistö, and S. Martínez-
Fernández, Eds. Cham: Springer International Publishing, 2019, pp. 
455–472. 

[27] APPSTACLE project. “Deliverable 2.1 - SotA Research with regard 
to Car2X Communication, Cloud and Network Middleware and 
corresponding Security Concepts”, ITEA3, [Online], Available: 
https://itea3.org/project/appstacle.html , [Accessed: Apr. 11, 2021]. 

[28] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of 
Things (IoT): A vision, architectural elements, and future directions”, 
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 
2013, doi: 10/f427k4. 

[29] APPSTACLE project,  “Deliverable 3.1 - Specification of Data 
Management, Cloud Platform Architecture and Features of the 
Automotive IoT Cloud Platform”, ITEA3, [Online], Available: 
https://itea3.org/project/appstacle.html , [Accessed: Apr. 11, 2021]. 

[30] Eclipse Foundation, “Eclipse Hono”, 2021, [Software], Available: 
https://www.eclipse.org/hono/ , [Accessed: Apr. 11, 2021]. 

[31] “InfluxDB Time Series Platform”, InfluxData, 2021, Available: 
https://www.influxdata.com/products/influxdb/ , [Accessed: Apr. 22, 
2021]. 

[32] “MongoDB”, MongoDB, 2021, [Software], Available: 
https://www.mongodb.com , [Accessed: Apr. 22, 2021]. 

[33] “Grafana”, Grafana Labs, 2021, [Software] Available: 
https://grafana.com/grafana/ , [Accessed: Apr. 22, 2021]. 

[34] “Apache Flink: Stateful Computations over Data Streams”, Apache 
Foundation, [Software], Available: https://flink.apache.org/ , 
[Accessed: Apr. 22, 2021]. 

[35] Eclipse hawkBit Project, “Eclipse hawkBit”, Eclipse Foundation, 
2021, [Software], Available: https://www.eclipse.org/hawkbit/ , 
[Accessed: Apr. 22, 2021]. 

[36] “Eclipse Ditto”, Eclipse Foundation, 2021, [Software], Available:  
https://www.eclipse.org/ditto/ , [Accessed: Apr. 22, 2021] 

[37] “Keycloak”, 2021, [Software], Available: https://www.keycloak.org/ 
[Accessed: Apr. 22, 2021]. 

[38] eclipse/kuksa.cloud – Deployment, Eclipse Foundation, 2020, 
[Online], Available: 
https://github.com/eclipse/kuksa.cloud/tree/master/deployment , 
[Accessed: Apr. 18, 2021] 

[39] A. Banijamali, P. Kuvaja, M. Oivo, and P. Jamshidi, “Kuksa: Self-
adaptive Microservices in Automotive Systems”, in Product-Focused 
Software Process Improvement, Springer International Publishing, 
2020, pp. 367–384, doi: 10/gjpm6d. 

[40] “Kubernetes - Production-Grade Container Orchestration”, 
Kubernetes, 2021, [Software], Available: https://kubernetes.io/ , 
[Accessed: Apr. 22, 2021]. 

[41] “Helm”, 2021, [Software], Available: https://helm.sh/ , [Accessed: 
Apr. 22, 2021]. 

[42] “OKD - The Community Distribution of Kubernetes that powers Red 
Hat OpenShift.”, [Software], Available: https://www.okd.io/ , 
[Accessed: Apr. 22, 2021]. 

[43] “Bosch pursues an open source strategy to transform IoT”, Bosch, 
2018, [Online], Available: https://blog.bosch-si.com/bosch-iot-
suite/bosch-pursues-an-open-strategy-to-transform-iot/ , [Accessed: 
May 24, 2021]. 

[44] “Azure Kubernetes Service (AKS) | Microsoft Azure”, Microsoft, 
2021, [Online], Available: https://azure.microsoft.com/en-
us/services/kubernetes-service/ , [Accessed: Apr. 23, 2021]. 

[45] Azure/azure-cli, Microsoft Azure, 2021, [Software], Available: 
.https://github.com/Azure/azure-cli , [Accessed: Apr. 22, 2021] 

[46] Eclipse Hono Project, “Deployment :: Eclipse Hono”, [Online], 
https://www.eclipse.org/hono/docs/deployment/ , [Accessed: Apr. 22, 
2021]. 

[47] Eclipse Hono Project, “Documentation :: Eclipse Hono”, [Online], 
Available: https://www.eclipse.org/hono/docs/ , [Accessed: Apr. 22, 
2021]. 

[48] eclipse/kuksa.cloud – Appstore, 2021, [Online], Available: 
https://github.com/eclipse/kuksa.cloud/tree/master/deployment/helm , 
[Accessed: Apr. 18, 2021]. 

[49] “agl-distro:app-framework [Automotive Linux Wiki]”, Automotive 
Grade Linux, [Online], Available: 
https://wiki.automotivelinux.org/agl-distro/app-framework , 
[Accessed: Apr. 23, 2021]. 

[50] “hmiframework [Automotive Linux Wiki]”, Automotive Grade 
Linux, Available: https://wiki.automotivelinux.org/hmiframework 
,[Accessed: Apr. 23, 2021]. 

[51] eclipse/kuksa.val, Eclipse Foundation, 2021, [Software], Available: 
https://github.com/eclipse/kuksa.val [Accessed: Apr. 17, 2021] 

[52] “GENIVI Vehicle Signal Specification”, GENIVI, [Online], 
Available: https://genivi.github.io/vehicle_signal_specification/ 
[Accessed: Apr. 11, 2021]. 

[53] “Secure Boot with PS-45u DP – Swissbit”, Swissbit, [Online], 
Available: https://www.swissbit.com/en/products/security-
technology/security-products/secure-boot/ [Accessed: Apr. 13, 2021]. 

[54] “Terraform by HashiCorp”, HashiCorp, 2021, [Software], Available: 
https://www.terraform.io/ , [Accessed: Apr. 23, 2021]. 

[55] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS) Protocol 
Version 1.2”, [Online], Available: https://tools.ietf.org/html/rfc5246 , 
[Accessed: Apr. 23, 2021]. 

[56] “Apache Qpid - Authentication Providers”, Apache Foundation, 
[Online], Available: https://qpid.apache.org/releases/qpid-broker-j-
7.0.7/book/Java-Broker-Management-Managing-Authentication-
Providers.html , [Accessed: Apr. 15, 2021]. 

[57] “Smallstep step-ca”, Smallstep, 2021, [Software], Available: 
https://smallstep.com/docs/step-ca , [Accessed: Apr. 15, 2021]. 

[58] smallstep/cli, Smallstep, 2021, [Software], Available: 
https://github.com/smallstep/cli , [Accessed: Apr. 23, 2021]. 

[59] E. Ries, “The Lean Startup: How Today’s Entrepreneurs Use 
Continuous Innovation to Create Radically Successful Businesses, 
Illustrated edition”. New York: Currency, 2011. 

[60] “Eclipse Kuksa.val DBC Feeder Demo”, Eclipse Foundation, 2020, 
[Video], Available: 
https://www.eclipse.org/kuksa/blog/2020/08/18/2020-08-18-dbc/ , 
[Accessed: Apr. 23, 2021]. 

[61] “Node-RED”, JS Foundation, 2021, [Software], Available: 
https://nodered.org/ , [Accessed: Apr. 23, 2021]. 

[62] The Raspberry Pi Foundation, “Raspberry Pi OS”, Raspberry Pi 
Foundation, [Software], Available: 
https://www.raspberrypi.org/software/ , [Accessed: Apr. 23, 2021]. 

[63] “QEMU”, 2021, [Software], Available: https://www.qemu.org/ , 
[Accessed Apr. 23, 2021]. 

[64] “Packer by HashiCorp”, HashiCorp, 2021, [Software], Available: 
https://www.packer.io/ , [Accessed: Apr. 23, 2021]. 

[65] M. Kaczanowski, mkaczanowski/packer-builder-arm, 2021, 
[Software], Available: https://github.com/mkaczanowski/packer-
builder-arm , [Accessed: Apr. 23. 2021]. 

[66] “ELM327 datasheet”, ELM electronics, [Online], Available: 
https://www.elmelectronics.com/products/dsheets/ , [Accessed: Apr. 
23, 2021]. 

[67] “SocketCAN specification”, Available: 
https://www.kernel.org/doc/Documentation/networking/can.txt , 
[Accessed: Apr. 23, 2021]. 

[68] norly, norly/elmcan. 2019, [Software], Available: 
https://github.com/norly/elmcan, [Accessed: Apr. 23, 2021]. 

[69] “Kvaser Leaf Light HS v2”, Kvaser, [Online], Available: 
https://www.kvaser.com/product/kvaser-leaf-light-hs-v2/ , [Accessed: 
Apr. 23, 2021]. 

[70] commaai/opendbc, comma.ai, 2021, [Online], Available: 
https://github.com/commaai/opendbc , [Accessed: Apr. 23, 2021]. 

[71] M. Wagner and S. Schildt, “Innovation durch Offenheit: Das Open 
Source Connected Vehicle Framework Eclipse Kuksa”, [Innovation 
through Openness - The Open Source Connected Vehicle Framework 
Eclipse Kuksa], Bordnetz Kongress, Sep. 29, 2018 

[72] SMAD software repository, 2021, [Software], Available: 
https://github.com/smaddis, [Accessed: Apr. 24, 2021]. 


