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Abstract. In this article, we propose a pipeline to mine interpretable
knowledge from electronic health records (EHR) for the Heart Failure
(HF) prognosis risk evaluation task. Mortality risk after first-diagnosis
HF highly impacts patients’ life quality, and is helpful for physicians
to efficiently monitor patients’ disease progress. How to mine medically
reasonable and interpretable knowledge to assist physicians in evaluat-
ing mortality risk is a non-trivial task. The proposed pipeline leverages
a gradient-boosting-based predictive model to estimate the risk of HF
prognosis, and discovers variables and decision rules from the predictive
model. The mined knowledge is confirmed as interpretable and inspirable
by physicians.
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1 Introduction

HF is a clinical syndrome characterized by blood congestion in pulmonary cir-
culation or systemic circulation, and/or by insufficient blood perfusion in organs
and tissues. HF is the late stage of various heart diseases and it can lead to
serious manifestation. With high mortality and readmission rate, the prognosis
of HF is often not satisfactory, resulting in a certain medical burden.

The incidence rate of HF, in modern society, has been increasing due to ag-
ing of population, change of disease spectrum and improved survival rate of
various cardiovascular diseases [27]. The prevalence of HF in developed coun-
tries is 1.5%-2.0%, and, among people over 70 years old, the prevalence rate is
higher than 10% [26]. To take China as an example, the average life expectancy

? The author is an intern at Yidu Cloud. Copyright © 2021 for this paper by its au-
thors. Use permitted under Creative Commons License Attribution 4.0 International
(CC BY 4.0).



2 S. Wang et al.

grows, more people, especially the elderly, are suffering from chronic diseases.
This causes many complications in HF patients. Technically, poor prognosis con-
ditions of HF cannot be avoided. The 1-year all-cause mortality rate and 1-year
readmission rate were 7.2% and 31.9% in patients with chronic stable HF, and
17.4% and 43.9% in patients with acute HF, respectively [24] .

Some biomarkers have been individually used to predict outcomes of HF, for ex-
ample BNP, age, cystatin C, serum uric acid, D-Dimer, etc. [10, 28]. Traditional
biomarkers closely related to cardiovascular mortality in the general population,
such as body mass index (BMI), serum cholesterol, and blood pressure (BP),
are found useful to predict outcomes of patients with Chronic Heart Failure
(CHF) [5]. Because of the complexity of HF prognosis, analysis towards multi-
biomarkers might be worthy. Multi-biomarker strategies are gaining interest in
tasks like clinical assessment and risk stratification of HF patients. Previous
studies have shown that multi-biomarkers contribute to higher prognostic accu-
racy than an individual one [8].

How multi-biomarkers can affect the mortality rate of HF patients deserves fur-
ther investigation. Predictive models (PM) based on machine learning have ad-
vantages in portraying interactions between biomarkers. Another significant issue
of medical applications is interpretability. Therefore we employ an interpretable
predictive model(IPM) to mine medical knowledge. When it comes to HF, widely
recognized prognostic guidelines are not available, and current research of medi-
cal knowledge mining(MKM) in this field is not sufficient either. The motivation
behind MKM for HF prognosis is to discover knowledge that can be a good sup-
plement to medical guidelines. To the best of our knowledge, this is the first work
regarding knowledge mining for 1-year in-hospital HF mortality risk evaluation.
Our contributions are:

– We apply an interpretable model to understand the decisions made by pre-
dictive models for the task of 1-year in-hospital mortality risk evaluation of
HF patients. The extracted knowledge is human-understandable.

– We set up a pipeline, incorporating medical expertise, to verify extracted
knowledge, thereby the extracted knowledge is medically meaningful.

– We design a knowledge filtering method to extract knowledge that is appli-
cable in both angles of medical logic and statistical analysis.

2 Previous works

2.1 HF Risk Prediction

In recent years, predictive modelling, a powerful risk prediction tool, has been
gaining increasing interests in the study of cardiovascular diseases. Early and
effective intervention according to risk evaluation is of great significance for HF
patients [6, 31]. There are many studies on predicting the outcome of HF based
on statistical or machine learning methods. [20, 21] proposed the Seattle HF
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Model (SHFM) to predict the mortality rate of HF patients. [19] made a pre-
diction model to predict HF mortality called Enhanced Feedback for Effective
Cardiac Treatment (EFFECT), and [10] used a Classification And Regression
Tree (CART) model to predict the in-hospital mortality of acutely decompen-
sated HF and made a risk stratification. Logistic Regression (LR) is often used
in the research of HF prognosis [12], yet it fails to model the non-linear relations
among features. [13] concluded that it was more reasonable to construct a non-
linear model than LR. In our study, we consider a method of applying gradient-
boosting-based algorithms to establish the one-year mortality prediction model
of HF, and we choose Rulefit [11] in the subsequent medical knowledge mining
task.

2.2 Medical Knowledge Mining

MKM aims to extract meaningful patterns from medical datasets, and these pat-
terns are expected to support physicians and patients in the process of screening,
diagnosis, treatment, prognosis, health monitoring and management. A popular
data source of MKM is EHR which records a patient’s routine in a hospital, for
example demographic data, diagnosis, laboratory test results, nursing records
and prescriptions. Compared to the general applications of knowledge mining,
there are some specific difficulties in the study of MKM: data availability and
data standardization [18].

Cancer, heart diseases and diabetes are the top 3 most common diseases that are
considered in previous works, most of which focus on the diagnosis and prognosis
stage [9]. [2] compared the performance of various machine learning models for
the task of heart disease prediction. [3] applied social network analysis, text min-
ing, temporal analysis and higher order feature construction to healthcare data
analysis. [7] used 13 attributes, such as gender and blood pressure, to estimate
the likelihood of a patient being diagnosed with heart disease. [30] evaluated
the performance of machine learning algorithms in four benchmark prediction
tasks and suggested that recurrent neural networks achieved the most promising
results in mortality prediction. According to [15], 64% of cardiology studies are
devoted to classification techniques, and predictive modeling is the second most
popular technique.

Previous research mainly focus on diagnosis-related tasks or onset risk evalua-
tion tasks. Refined-Clinical Knowledge Model (R-CKM) which is a tree-based
PM could produce medical knowledge from EHR [14]. [4] mined some knowledge
through the R-CKM and made it possible to enrich and optimize the medical
guidelines of HF diagnosis. [22] developed a medical knowledge mining pipeline
based on temporal pattern mining for early detection of Congestive HF, and the
mined patterns can make more accurate predictions than PM [22]. In contrast to
previous studies, we interpret extracted patterns through incorporating physi-
cians. The mined knowledge in our work not only conforms to medical common
sense, but also gives supportive evidence to unverified hypotheses.
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2.3 Interpretable Predictive Model

Interpretable machine learning(IML) has been a hot topic in current machine
learning communities, especially due to the popularity of deep learning models.
There is no clear mathematical definition of interpretability, though a natural
language definition by Miller is ‘Interpretability is the degree to which a human
can understand the cause of a decision’ [25]. Some methods, such as neural
network, have very high ability of feature abstraction and nonlinear fitting, yet
the intermediate process is a black box. Medical experts would view these algo-
rithms with suspicion.

IML can be categorized into three groups: interpretable models, model-agnostic
methods and example-based explanation methods. Interpretable models include
algorithms that are interpretable themselves, for instance linear regression, lo-
gistic regression and the decision tree. The RuleFit model employed in this work
is one of interpretable models as well [11]. Model-agnostic methods enjoy high
flexibility because they can be applied to any models, but they might influ-
ence models’ performance adversely, like SHAP [38]. LIME [34], Anchor [35]
and LORE [39] are representative model-agnostic methods that could generate
rule-based explanations, but they can only achieve local interpretability. In the
medical domain, data is represented in a structured format, thereby example-
based explanation methods can not work [36].

Tree-based machine learning has been widely used in medical research as a rea-
son of its self-interpretability, and the decision making process is humanly under-
standable. On the other hand, physicians are interested in figuring out the role of
key variables at the population level. For instance, patients whose BNP is above
35 ng/L and NYHA is less than 40% will be diagnosed as HFrEF, while another
patient whose NYHA level is larger than 49% might be diagnosed with HFpEF
even though his/her NYHA level is around 90%. Given the aforementioned rea-
sons, we employed RuleFit in this work. RuleFits consists of two components:
a tree model and a linear model. The tree model implements classification or
regression tasks, and associated decision rules are extracted from the learned
model. Then the extracted decision rules, together with original features, would
be fitted into the linear model.

3 Method

3.1 Data

In this study, we retrospectively collected EHR data of hospitalized patients di-
agnosed with HF between December 2010 and August 2018. Included patients
are over 18 years old and were diagnosed with HF according to diagnosis guide-
lines. We used off-the-shelf natural language processing tools to structrize and
standardrize collected raw data. Finally, we enrolled 13,602 patients with HF,
and 537 (3.95%) died within 1 year.
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3.2 Outcomes

Firstly, we build a predictive model to predict the mortality risk of HF patients.
Any patients with a clear hospital death record within one year are labelled with
high risk, and the others are considered low risk. Then, we interpret knowledge
learned by the predictive model through calculating feature importance.

3.3 Feature engineering

Variables with filling rate greater than 80% were selected, and, finally, a total
of 73 features were extracted, including demographics (age or sex), living habits
(smoking or drinking), previous medical history (comorbidities or surgery), eti-
ology, vital signs, routine laboratory examinations, interventions and admission
medications.

Given the normal range of each laboratory test item from hospital, we discretize
continuous features through labelling them into three tags(lower , normal and
higher ). For example, the normal range of white blood cell (WBC) is [3.5-
9.5]109/L, and it will be transferred to ‘lower’ if WBC<3.5. This is because
qualitative values are more meaningful than quantitative values in the process
of making clinical assessment. Generally speaking, physicians focus far more on
what items are abnormal.

Some continuous features will be labelled with only two categories, such as Ba-
sophils (BASO), the normal range of BASO is (0,0.06]109/L, and it falls to
two tags (normal and higher). In order to achieve human-understandable inter-
pretability from RuleFit, we adopt one-hot feature representations, examples of
one-hot features are shown in Table 1. After normalization, missing values are
fixed through calculating mean values (for continuous features like age) or mode
numbers (for one-hot features).

Feature One-hot Representation Normal Range Raw Data

WBC low (1,0,0) [3.5,9.5] WBC<3.5
WBC normal (0,1,0) [3.5,9.5] 3.5≤WBC≤9.5
WBC high (0,0,1) [3.5,9.5] WBC>9.5
BASO normal (1,0) (0,0.06] BASO≤0.06
BASO high (0,1) (0,0.06] BASO>0.06

Table 1. One-hot feature representation examples

3.4 Predictive Modelling

We compare the performance of several predictive models: Logistic Regres-
sion(LR), Support Vector Machine(SVM), Gradient Boosting Decision Tree(GBDT)
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and RuleFit. LR is generally considered as a baseline model for classification
tasks, and SVM shows good performance in binary classification tasks. RuleFit
applies a GBDT in the decision rules generation, so a pure GBDT model is
trained to make comparisons.

The prediction outcome of RuleFit is defined as
F (x) = 1/

(
1 + e−g(x)

)
g(x) = â0 +

∑K
k=1 âkrk(x) +

∑n
j=1 b̂j lj(xj)

rk(x) is the feature representation of kth rule, and xj is the original feature.
Considering normalization of input feature xj , it is transformed into lj(xj):
min(δ+j ,max(δ−j , xj)). δ

+
j and δ−j are respectively the upper and lower quan-

tiles of feature xj , then linear parameters can be available with

âk, b̂j = arg minak,bj

∑N
i=1 Loss(yi, F (x)) + λ(

∑K
k=1 |ak|+

∑n
j=1 |b̂j |)

Procedures for choosing the regularization coefficient λ are discussed in [37]. In
this work, a squared-error ramp loss is used to achieve better robustness against
out-of-distribution cases. The loss function is defined as

Loss(yi,F(xi)) = [yi −max(−1,min(1,F(xi)))]
2

3.5 Knowledge Mining

Decision Rules Extraction We decompose the trained GBDT into decision
rules: any path through the root nodes in trees can be converted into decision
rules. The representation of the rule is as: IF x1 > 60 and x2 = 1 and x3 = 0
THEN 1 ELSE 0. Rules rm are defined

rm(x) =
∏

j∈Tm
I(xj ∈ sjm)

Where Tm is the set of features used in the m-th tree, I(.) is the indicator
function that is 1 if feature xj is in the subset of the value sjm and 0 otherwise.
An example of the rule is like

r256(x) = I(is digoxin)I(BIL is high)I(HGB is not low)
r256(x) is 1 if and only if all the three conditions above are met. The total number

of rules derived from the GBDT model K is:
∑M

m=1 2(tm − 1) where tm is the
number of terminal nodes within the mth tree.

Feature Importance RuleFit calculates the importance of the rule feature as:
k-th rule-feature Ik = |α̂k|

√
sk(1− sk), where the first term α̂k is the coefficient

value calculated above, measuring the estimated predictive relevance. And the
second term

√
sk(1− sk) represents the standard deviation, in order to mitigate

the impact of features’ scales. sk = 1
N

∑N
i=1 rk(xi) is the support on the training

data, which means the proportion of data point where the specific decision rule
k can applies on training data. The importance of original feature is calculated
as: Ij = |b̂j |std(lj(xj)). std(lj(xj)) is the standard deviation of lj(j). Ik and
Ij measure global feature importance. An advantage of RuleFit is no variables
or rules are dropped before being fitted into a linear model, while inspirable
decision rules or variables might be excluded if some of them have been removed
for the purpose of dimensional reduction.
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Knowledge Filtering The linear model of RuleFit takes both original features
and features constructed through decision rules into account. The final feature
space is large and is difficult to interpret. It is a straightforward way to rank de-
cision rules and individual variables by feature importance. However, there are
no guarantees that all extracted knowledge are consistent with medical logic.
To maintain reasonable knowledge, we design a filtering method, incorporating
medical experts, to revise extracted knowledge. As shown in table 2, there are
three kinds of criteria. Firstly, decision rules associated with calculated mortal-
ity rate, from original data, lower than 7.2% are rejected, this is because we far
more concern decision rules that are likely to cause death. Secondly, reserved
rules would be ranked by feature importance, and two cardiologists review them
and mark them by two labels: is content with medical common sense and is in-
spirable. The difference of their reviewing results would be re-checked by a more
experienced cardiologist to reach a final decision. All rules marked as NO with
the first label would be filtered out. The second label regrading inspiration aims
to detect knowledge that might be supportive to unverified medical hypotheses.

Criteria Priority Primary

Mortality 1 Yes
Medical Expertise 1 Yes
Feature Importance 2 No
Table 2. Knowledge filtering criteria

3.6 Evaluation Metrics

We adopt sensitivity, specificity, accuracy, AUC and ROC to evaluate perfor-
mance of predictive models. The first two metrics are popular in the medical
domain, and they can mathematically describe the performance of predictive
models on high risk patients and low risk patients.

4 Experimental Results

4.1 Experimental setup

In our study, we divide the original dataset into training set and testing set with
a ratio of 7:3 (training set with 9521 samples and testing set with 4081 samples).
To address the data imbalance issue, we employ the Boarderline SMOTE algo-
rithm [40] which is a over-sampling method generating samples for the minority
class. We implement 10-fold cross validation on the training set. In terms of
the Gradient Boosting Classifier, we train 100 classifiers, and the depth of each
tree model is set to 3, and nodes will not split if there are less than 182 sam-
ples associated with them, the minimum number of samples required to be at a



8 S. Wang et al.

leaf node is set to 15. The decision rules are integrated into additional feature
sets, combined with original feature sets, work as input to the logistic regression
model.

4.2 Performance of the Predictive Models

Fig. 1. ROC curves of PMs

Figure 1 shows ROC curves of four predictive models, the results of evaluation
metrics are available in Table 3. According to Figure 1, RuleFit achieves a AUC
of 0.92 and outperforms other models with a large margin, and SVM is better
than LR and GBDT thanks to its outstanding performance in binary classifica-
tion tasks. The tree model component of RuleFit implements feature interaction
and selection, this proves the advantage of non-linear features. RuleFit enjoys the

Model Accuracy Sensitivity Specificity AUC

LR 0.83 0.66 0.84 0.83
SVM 0.85 0.63 0.85 0.83
GBDT 0.88 0.54 0.89 0.81
RuleFit 0.97 0.45 0.98 0.92

Table 3. Evaluation results



Interpretable Knowledge Mining for Heart Failure Prognosis Risk Evaluation 9

best performance in both accuracy(0.97) and specificity(0.98), but its sensitivity
value of 0.45 is dramatically lower than that of other models. The sensitivity
value of LR(0.66) is the best among four PMs, and all models show worse sen-
sitivity than their specificity values. This means they are not good at detecting
high risk HF patients, but are more likely to make correct decisions for low risk
HF patients. Another reason is the unbalanced source data.

Rule Mortality (%) Importance |Coef| Death toll

Mono% low: no
Urea high: yes 19.74 0.047 0.23 92
CK-MB high: yes

gender: female
hs-cTnl high: yes 19.39 0.090 0.37 145
UA normal: no

temperature low: yes
Ca high : no 17.31 0.014 0.12 9
age>81.5

TP low: yes
cardi-surgery history: yes 15.00 0.016 0.13 12
GGT normal: no

PLT normal: yes
age>81.5 12.96 0.142 0.39 245

Table 4. Examples of Mined Knowledge

4.3 Evaluation of Mined Knowledge

After filtering procedures, there are 110 (34.38% of initial rules) valid rules left.
Table 4 reveals top-ranked decision rules and their statistical characteristics. The
average mortality rate corresponded with extracted rules is 6.26%, and 36 rules
(11.25%) exceed the average Chinese HF mortality rate(7.2%).

According to physicians’ evaluation, there is no any knowledge against medical
common sense. For instance, the second rule in table 4, ‘gender: female hs-cTnI
high: yes UA normal: no’, interprated as ”a female patient with high hs-cTni
and abnormal UA”, is in line with previous findings. [17] confirms hs-cTnI as
a useful biomarker for CHF patients and uric acid is an important prognostic
marker for all-cause mortality of HF [29]. Also, some rules are of inspiration and
are evident to unconfirmed medical hypotheses. For example, the rule ‘Mono%
low: no Urea high: yes CK-MB high: yes’ demonstrates the significance of
Mono% which has been proved by [32] relevant with the pathogenesis of car-
diovascular diseases, but its impact on HF is unclear. The rule ’ALP high: yes
ChE low: yes gender: male’ confirms that higher level of ALP and lower level
of ChE are acceerative factors to the death of HF patients, whereas these two
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biomarkers have not been seriousely considered before and are worthy of further
investigation.

A highly interesting discovery is the rule of ‘PLT normal: yes age >81.5’.
It is well known and has been verified in [19] that age is a high-risky factor
to HF. However, in clinical scenarios, normal level of PLT is generally not an
influential factor not to mention interprating it a more important factor than
age. The inverse association is referred as ”reverse epidemiology” or the ”risk
factor paradox”, and it deserves more research.

5 Conclusion

In this work, we test four predictive models on the task of HF prognosis risk
evaluation, and incorporate RuleFit and medical expertise to mine knowledge in
an interpratable manner. The extracted knowledge, screened by our knowledge
filtering method, is reasonable statistically and medically.

We found that detecting highly risky HF patients is difficult but predicting
outcomes of HF patients with low risks is easier. Our filtering method is help-
ful to reject unacceptable results, though it is not scalable. Some of extracted
knowledge is valuable in providing statistical evidence to support physicians’
hypotheses, and is also inspirable in discovering novel variables that have not
been considered before.

6 Future Work

Despite the compelling results from our models, our work can be improved in
several aspects. Firstly, rules embedded with intrinsic temporal dependencies are
helpful to mine knowledge of different clinical stages. Secondly, RuleFit equally
treats each decision rule derived from the tree model component, conversely
their spatial dependencies should be taken into account in the linear model.
Thirdly, more features can be considered, like the examinations of cardiac ultra-
sound, cardiac synchronization therapy. Last but not least, scalably automatic
evaluation on the extracted knowledge is non-trivial and indispensable. The dif-
ficulty towards automatic evaluation of medical knowledge mining stems from
the medical expertise behind it. We suggest a multi-task learning solution to
mine knowledge from a wide range of heart diseases in order to decrease the
usage of domain knowledge.
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