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Abstract

Probing tasks are frequently used to eval-
uate whether the representations of Neural
Language Models (NLMs) encode linguis-
tic information. However, it is still ques-
tioned if probing classification tasks really
enable such investigation or they simply
hint for surface patterns in the data. We
present a method to investigate this ques-
tion by comparing the accuracies of a set
of probing tasks on gold and automatically
generated control datasets. Our results
suggest that probing tasks can be used
as reliable diagnostic methods to investi-
gate the linguistic information encoded in
NLMs representations.

1 Introduction

In recent years we saw the raise of a consistent
body of work dealing with the use of probing tasks
to test the linguistic competence learned by Neural
Language Models (NLMs) (Conneau et al., 2018;
Warstadt et al., 2019; Hewitt and Liang, 2019; Mi-
aschi et al., 2020). The idea behind the probing
paradigm is actually quite simple: using a diag-
nostic classifier, the probing model or probe, that
takes the output representations of a NLM as input
to perform a probing task, e.g. predict a given lan-
guage property. If the probing model will predict
the property correctly, then we can assume that
the representations somehow encode that property.
Studies relying on this method reported that NLMs
representations do encode several properties re-
lated to morphological, syntactic and semantic in-
formation.

Despite the amount of work, there are still
several open questions concerning their use (Be-
linkov, 2021): which probing model should we use
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for assessing the linguistic competence of a NLM?
Are probes the most effective strategy to achieve
such goal? These questions fostered two comple-
mentary lines of research. The first one is devoted
to modifying the architecture of the current prob-
ing models; the other one is focused on evaluating
the effectiveness of probing models. Both are still
not well investigated issues, although their impor-
tance for advancing the research on the evaluation
of NLMs linguistic competences has been widely
recognized.

Among the first line of research, dealing with
the design of probing classifiers, several works in-
vestigate which model should be used as probe
and which metric should be employed to mea-
sure their performance. With this respect, it is
still questioned if one should rely on simple mod-
els (Hewitt and Manning, 2019; Liu et al., 2019;
Hall Maudslay et al., 2020) or complex ones
(Pimentel et al., 2020; Voita and Titov, 2020)
in terms of model parametrization. Specifically,
Voita and Titov (2020) suggest to design alterna-
tive probes using a novel information-theoretic ap-
proach which balances the probe inner complexity
with its task performance.

Concerning works facing the issue of investigat-
ing the effectiveness of the probing paradigm, He-
witt and Liang (2019) observe that probing tasks
might conceal the information about the NLM rep-
resentation behind the ability of the probe to learn
surface patterns in the data. To test this idea, they
introduced control tasks, a set of tasks that asso-
ciate word types with random outputs that can be
solved by simply learning regularities. Along the
same line, Ravichander et al. (2021) test probing
tasks by creating control datasets where a property
is always reported in a dataset with the same value,
thus it is not discriminative for testing the informa-
tion contained in the representations. Their exper-
iments highlight that the probe may learn a prop-
erty also incidentally, thus casting doubts on the



effectiveness of probing tasks.
The scenario defined by the latter two works is

the one we deal with in this paper. Specifically,
we introduce a new approach to put increasingly
under pressure the effectiveness of a suite of prob-
ing tasks to test the linguistic knowledge implic-
itly encoded by BERT (Devlin et al., 2019), one of
the most prominent NLMs. To achieve this goal,
we set up a number of experiments (see Section 2)
aimed at comparing the performance of a regres-
sion model trained with BERT representations to
predict the values of a set of linguistic properties
extracted from the Italian Universal Dependency
Treebank (Zeman et al., 2020) and from a suite of
control datasets we specifically built for the pur-
pose of this study. We define a control dataset as a
set of linguistic features whose values were auto-
matically altered in order to be increasingly differ-
ent from the values in the treebank, referred to as
gold values. Our underlying hypothesis is that if
the predictions of the increasingly altered values
progressively diverge from the predictions of the
gold values, this possibly suggests that the corre-
sponding probing tasks are effective strategies to
test the linguistic knowledge embedded in BERT
representation We will discuss the results of our
experiments in light of this hypothesis in Section
3. In Section 4 we will draw the conclusions.

Note that this is one of the few studies focused
on non-English NLMs. In fact, with the excep-
tion of (de Vries et al., 2020; Miaschi et al., 2021;
Guarasci et al., 2021), the majority of research re-
lated to interpretability issues is focused on En-
glish or, at most, multilingual models.

Contributions To the best of our knowledge this
is the first paper that (i) introduces a methodology
to test the reliability of probing tasks by building
control tasks at increasing level of complexity, (ii)
puts under pressure the probing approach consid-
ering the Italian language.

2 Methodology

Our methodology seeks to investigate the effec-
tiveness of probing tasks for evaluating the lin-
guistic competences encoded in NLM representa-
tions. To this aim, we trained a probing model (de-
scribed in Section 2.1) using BERT sentence rep-
resentations and then tested its performance when
predicting the values of a set of linguistic features
(see Section 2.3) in multiple scenarios. In one sce-
nario, the model shall predict gold values, thus

corresponding to the real values of the features in
the corpus. In the other scenarios, we automati-
cally altered the feature values at different control
levels each corresponding to increasing degrees of
pressure for the probing model, as discussed in
Section 2.4.

Our methodology will allow us to test whether
the probing model really encodes linguistic com-
petences or simply learns regularities in the task
and data distributions by checking the results ob-
tained in the different scenarios. If the predictions
of the probing model will be more similar to the
gold values than to the automatically altered ones,
then we might assume that the information cap-
tured by the probed feature is encoded in the rep-
resentations.

2.1 Model

Our model is a pre-trained Italian BERT. Specif-
ically, we used the base cased BERT devel-
oped by the MDZ Digital Library Team, avail-
able trough the Huggingface’s Transformers li-
brary (Wolf et al., 2020)1. The model was trained
using Wikipedia and the OPUS corpus (Tiede-
mann and Nygaard, 2004). For the sentence-
level representations, we leveraged the activation
of the first input token [CLS]. The probing model
is a linear Support Vector Regression model (Lin-
earSVR).

2.2 Data

Our experiments are carried out on the Italian
Universal Dependencies Treebank (IUDT), ver-
sion 2.5 (Zeman et al., 2020), containing a total
of 35,480 sentences. Due to the IUDT high vari-
ability in terms of sentence length2, we focused
on a sub-set of sentences with a ±10 tokens vari-
ation with respect to the median sentence length
(i.e. 20 tokens). As a result, we selected 21,991
sentences whose length ranges between 10 and 30
tokens. This way our dataset is balanced, viz., the
amount of sentences with exact same length con-
sidered for the experiments is comparable. Specif-
ically, our dataset accounts for around 1,000 sen-
tences for each reported value of sentence length,
which makes the results of our analyses reliable
and comparable.

1https://huggingface.co/dbmdz/bert-base-italian-xxl-
cased

2IUDT contains sentences ranging from 1 to 308 token
long.



Morphosyntactic information
Distibution of UD POS
Lexical density
Inflectional morphology
Distribution of lexical verbs and auxiliaries for inflectional categories
(tense, mood, person, number)
Verbal Predicate Structure
Distribution of verbal heads and verbal roots
Average verb arity and distribution of verbs by arity
Global and Local Parsed Tree Structures
Depth of the whole syntactic tree
Average length of dependency links and of the longest link
Average length of prepositional chains and distribution by depth
Average clause length
Relative order of elements
Distribution of subjects and objects in post- and pre-verbal position
Syntactic Relations
Distribution of dependency relations
Use of Subordination
Distribution of subordinate and principal clauses
Average length of subordination chains and distribution by depth
Distribution of subordinates in post- and pre-principal clause position

Table 1: Linguistic features probed in the experi-
ments.

2.3 Linguistic Features

The probing tasks we defined consist in predict-
ing the value of multiple linguistic features, each
corresponding to a specific property of sentence
structure. The set includes 77 linguistic features
and it is based on the ones described in Brunato et
al. (2020) modeling 7 main aspects of the struc-
ture of a sentence, which are reported in Table
1. They range from morpho-syntactic and inflec-
tional properties, to more complex aspects of sen-
tence structure (e.g. the depth of the whole syn-
tactic tree), to features referring to the structure
of specific sub-trees, such as the order of subjects
and objects with respect to the verb, to the use of
subordination.

We chose to rely on these features for two main
reasons. Firstly, they have been shown to be
highly predictive when leveraged by traditional
learning models on a variety of classification prob-
lems where the linguistic information plays a fun-
damental role. In addition, they are multilingual as
they are based on the Universal Dependency for-
malism for sentence representation (Nivre, 2015).
In fact, they have been successfully used to pro-
file the knowledge encoded in the language repre-
sentations of contextual NLMs for both the Italian
(Miaschi et al., 2021) and English language (Mi-
aschi et al., 2020).

In this study, the values of each feature acquired
from IUDT represent the gold dataset and they
have been automatically altered in order to gen-
erate additional control datasets.

Figure 1: 2-dimensional PCA projection of the
feature values in the gold and control datasets. All
Swapped datasets overlap with the Gold one.

2.4 Control Datasets

We created two main types of control datasets, ob-
tained by automatically altering gold feature val-
ues. The first main type (hereafter referred to as
Swapped) is built by shuffling the original val-
ues of each feature across sentences; while the
second type (Random) contains values randomly
generated within the maximum and the minimum
value that each feature shows in the whole gold
dataset. To clarify, consider the following example
involving the feature average link length,
which captures the average linear distance be-
tween dependents and their syntactic head within a
sentence. In the Swapped variant we simply swap
the feature values, thus a sentence which origi-
nally showed an average link length of,
e.g., 2.86 could be changed to 8.83. Note that both
are real values extracted from our dataset. When
building the Random variant, all sentences consid-
ered for the study show a feature value randomly
generated between 1.33 and 9.78, which are the re-
ported minimum and maximum average link
length values in the dataset, respectively associ-
ated to sentences with length 11 and 21.

Since the values of the considered features are
strongly related to the length of the sentence, for
each type of control dataset we built two sub-types
of datasets. In a first sub-type (Bins), we grouped
sentences falling into the same predefined range
of sentence lengths (i.e., 10-15, 15-20, 20-25 and
25-30 tokens). In a second sub-type (Lengths),
we included groups of sentences having exactly
the same length. This motivates the choice of



Figure 2: Average probing scores (as Spearman
correlation) obtained by the LinearSVR model
when predicting gold and control linguistic fea-
tures. Results are reported for each feature group
and on average (‘AVG’ column).

sentences whose length ranges in an interval for
which we have a reliable amount of instances (as
introduced in Section 2.2).

Note that the different data altering strategies
are conceived to represent increasingly challeng-
ing testbeds to assess the effectiveness of our prob-
ing tasks. The Swapped control datasets are the
most challenging ones as the swapped feature val-
ues might be quite similar to the gold ones, thus
possibly predicted with an high accuracy by the
probing model. Such intuition is confirmed by the
results of the 2-dimensional Principal Component
Analysis (PCA) reported in Figure 13. As we can
see, all the data points representing the feature val-
ues contained in the Swapped datasets fully over-
lap with the gold ones, thus confirming their simi-
larity. On the contrary, randomly generated values
are progressively more distant being less plausi-
ble, even if the constraints of sentence length yield
values that are closer to the gold ones.

3 Results

For both gold and control datasets, probing scores
are computed as a Spearman correlation between
the feature values predicted by the probing model
and the values contained in each dataset. Such
correlation values are computed by averaging the

3PCA is a classical data analysis method that reduces the
dimensionality of the data while retaining most of the vari-
ation in the data set by identifying n principal components,
along which the variation of the data is maximal (Jolliffe and
Cadima, 2016).

Figure 3: Error reduction rates reporting the dif-
ference between the probing scores obtained on
the Gold dataset and each control dataset. Result
are reported for each feature group and on average
(‘AVG’ column).

NLM’s layer–wise scores as, for all datasets, we
observed small differences between the scores ob-
tained across the 12 layers. We experimentally
verified that these differences were not significant
by computing the slope of a linear regression line
between BERT layers and the scores of the gold
dataset, obtaining -0.0017 as mean value consid-
ering all features. Our intuition is that the small
range of lengths of the sentences here consid-
ered may have yielded such insignificant variation
across layers, which on the contrary Miaschi et al.
(2021) showed to be significant on the whole set of
IUDT sentences. Namely, being highly related to
the length of the sentence, the feature values have
little variations. However, a more in-depth inves-
tigation of the underlying reasons of this outcome
is one of the future directions of this work.

Figure 2 shows the scores obtained on the
gold and the 6 control datasets, both for the 7
macro-groups of linguistic features and on average
(AVG). Additionally, in order to properly appreci-
ate the differences between the results obtained on
the gold and control datasets, in Figure 3 we report
the error reduction rate for each control dataset
computed as the difference between the scores ob-
tained when predicting gold and altered features.

General Results. We can observe that on aver-
age the highest probing scores are obtained on the
gold dataset and that, accordingly, there is a great
difference (i.e. almost 1.0, see Figure 3) between



the accuracy of the probing model when predict-
ing the authentic and altered feature values. This
seems suggesting that the model is able to recog-
nize that the feature values contained in the con-
trol datasets have been altered, even when they are
not fully random but plausible, i.e. in the Swapped
datasets. As a consequence, we can hypothesize
that the model is relying on some implicit linguis-
tic knowledge when it predicts the authentic fea-
ture values, rather than learning some regularities
possibly found in the dataset.

However, if we take a closer look at the scores
obtained for the Random and Swapped datasets
when we constrain the length of the sentences, we
can observe that the accuracy in predicting the fea-
ture values contained in the Swapped datasets is
sightly higher than in the Random ones (see ‘AVG’
column in Figure 2). This is in line with our
starting hypothesis and shows that feature values
artificially created simply by shuffling gold ones
across sentences of the same lengths (or of the
same range of lengths) are more similar to the gold
values and thus are predicted with higher accuracy
than randomly altered values. Nevertheless, their
error rate, namely the difference from the accuracy
of gold predictions, is still quite high, i.e. about
0.80 (see the ‘AVG’ column, Figure 3).

Linguistic Features Analysis. Also when we
focus on the results obtained with respect to the
7 macro-groups of linguistic features, we can ob-
serve that the probing model is more accurate in
the prediction of the gold values. Again, the scores
on the control datasets are slightly higher when
we constrain the values with respect to sentence
length, since we narrow the range of possible val-
ues. In particular, we see that the feature values
related to the sentence tree structure are those pre-
dicted most closely to the gold ones (see column
‘TreeStructure’, Figure 3). Note that these sen-
tence properties are the most sensitive to the sen-
tence length, that BERT encodes with a very high
accuracy. This may suggest that in the resolution
of these tasks the probing model is possibly rely-
ing on some regularities related to sentence length.

Similar observations hold for the results
achieved in the resolution of the probing tasks
related to the use of subordination, which heav-
ily depends on sentence length. Interestingly, we
can note that the values of all the other groups of
features contained in the control datasets are pre-
dicted by the probing model with a very low accu-

Dataset Spearman correlation
Random 0.08
Random Bins 0.46 *
Random Lengths 0.33 *
Swapped -0.15
Swapped Bins 0.05
Swapped Lengths 0.06

Table 2: Spearman correlations between the rank-
ings of features obtained with the Gold dataset and
the 6 control datasets. Statistically significant cor-
relations are marked with * (p-value < 0.05).

Gold Random Bins Swapped Lengths
dep dist root dep dist root dep dist root
dep dist punct avg max links len avg max links len
upos dist PUNCT max links len max links len
xpos dist FS xpos dist FB avg max depth
upos dist ADP avg token per clause verbal head per sent
dep dist det xpos dist FS xpos dist FS
upos dist PROPN n prep chains avg links len
upos dist DET avg max depth subord prop dist
xpos dist RD verbal head per sent avg subord chain len
dep dist case xpos dist RI n prep chains
verbal head per sent dep dist cop subord post
xpos dist FF xpos dist PC subord dist 1
xpos dist SP dep dist conj avg prep chain len
xpos dist E xpos dist B obj post
upos dist NOUN xpos dist VA avg verb edges

Table 3: 15 top-ranked Gold and control features
(Random Bins and Swapped Lengths) predicted by
BERT sentence-level representations.

racy, possibly making the results not significant.

Features Correlations. Once we showed that
the probing tasks accuracy is very different if the
feature values are authentic or altered, in this sec-
tion we compare the ranking of linguistic features
ordered by decreasing prediction accuracy in the
gold and control scenarios. As we can see in Ta-
ble 2, which reports the Spearman correlations be-
tween the rankings, the control rankings are al-
most not related to the gold one and the exist-
ing correlations in most cases are not even statis-
tically significant. The only exceptions are rep-
resented by the rankings of values that were ran-
domly generated with sentence length constraints,
which have a weak and moderate correlation. Note
that however, as shown before, the probing scores
are very low.

A more qualitative feature ranking analysis can
be carried out by inspecting Table 3 where we re-
port the first 15 top-ranked features predicted in
the gold and in the two most highly correlated
Swapped and Random datasets. As we can see,
the gold ranking diverges from the rankings of
the altered values with respect to the majority of



top-ranked features. The most visible exception
is represented by the distribution of syntactic root
(dep dist root) that the probing model always pre-
dicts with the highest accuracy. The result is quite
expected since this feature can be seen as a proxy
of the length of the sentence, a linguistic prop-
erty properly encoded by BERT. Similarly, other
two features influenced by sentence length appear,
as expected, on the top positions of all rankings,
namely the distribution of the sentence bound-
ary punctuation (xpos dist FS) and of verbal heads
(verbal head per sent).

4 Discussion and Conclusion

In this paper we described a methodology to test
the effectiveness of a suite of probing tasks for
evaluating the linguistic competence encoded by
NLMs. To this aim, we analysed the performance
of a probing model trained with BERT representa-
tions to predict the authentic and automatically al-
tered values of a set of linguistic features derived
from IUDT. We observed general higher perfor-
mance in the prediction of authentic values, thus
suggesting that the probing model relies on lin-
guistic competences to predict linguistic proper-
ties. However, when we constrained automatically
altered values with respect to sentence length, the
model tends to learn surface patterns in the data.

As a general remark, it should be pointed out
that our analyses dealt only with sentences show-
ing a standard length (i.e., between 10 and 30 to-
kens per sentence). This choice, if on the one hand
made our results more directly comparable across
bins of sentences sharing the same length, on the
other hand excluded from the analyses the short-
est and the longest sentences of IUDT. Our future
work will be devoted to replicate the probing task
experiments described in this paper also on control
datasets comprising sentences whose length is out-
side of the range considered here. To this aim, we
performed preliminary analyses to test the scores
of probing tasks on gold IUDT sentences that are
less than 10-token and more than 30-token long.
Interestingly, we noticed that the probing model
is less accurate when predicting the linguistic fea-
tures extracted from the group of IUDT short sen-
tences. Specifically, the average Spearman corre-
lation obtained on such group is 0.47, while prob-
ing scores on longer sentences (+30-token long)
and on those used in our experiments achieved an
average correlation of 0.56 and 0.66 respectively.

Starting from this preliminary finding, a possible
future investigation could focus on whether using
longer or shorter sentences would also have an ef-
fect on the probing scores obtained with the con-
trol datasets.

In future work we also plan to investigate which
features are more diagnostic of the linguistic com-
petence encoded by a NLM and which ones, on
the contrary, are more influenced by confounders,
such as sentence length.
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