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Abstract

English. Crossword clues represent an
extremely challenging form of Question
Answering, due to their intentional ambi-
guity. Databases of previously answered
clues are a vital source for the retrieval
of candidate answers lists in Automatic
Crossword Puzzles (CPs) resolution sys-
tems. In this paper, we exploit language
neural representations for the retrieval and
ranking of crossword clues and answers.
We assess the performances of several em-
bedding models, both static and contex-
tual, on Italian and English CPs. Results
indicate that embeddings usually outper-
form the baseline. Moreover, the use of
embeddings for retrieval allows different
ranking strategies, which turned out to be
complementary, and lead to better results
when used in combination.

Italiano. Le domande dei cruciverba
rappresentano una forma di Question
Answering particolarmente complessa a
causa della loro intenzionale ambiguità. I
risolutori automatici di cruciverba sfrut-
tano ampiamente basi di dati di domande
precedentemente risposte. In questo arti-
colo proponiamo l’uso di embeddings per
la ricerca semantica di domande-risposte
da tali databases. Le performances sono
valutate in cruciverba di lingua sia ital-
iana che inglese, confrontando diversi tipi
di embeddings, sia contestuali che statici.
I risultati suggeriscono che la ricerca se-
mantica è migliore della baseline. Inoltre,
l’utilizzo di embeddings permette di appli-
care differenti strategie di retrieval, che,
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migliorano la qualità dei risultati quando
usate congiuntamente.

1 Introduction

Crossword Puzzles (CPs) resolution is a popular
game. As almost any other human game, it is
possible to tackle the problem automatically. CPs
solvers frame it into a constraint satisfaction task,
where the goal is to maximize the probability of
filling the grid with answers consistent with their
clues and coherent to the puzzle scheme. These
systems (Littman et al., 2002; Ernandes et al.,
2005; Ginsberg, 2011) heavily rely on lists of can-
didate answers for each clue. Candidates’ quality
is crucial to CPs resolution. If the correct answer
is not present in the candidates’ list, the Crossword
Puzzle cannot be solved correctly. Moreover, even
a poorly ranked correct answer can lead to a failure
in the crossword puzzle filling. Answers lists can
come from multiple solvers, where each solver is
typically specialized in solving different kinds of
clues, and/or exploits different source of informa-
tion. Such lists are mainly retrieved with two
techniques: (1) by querying the web with search
engines using clue representations; (2) interrogat-
ing clue-answer databases that contain previously
answered clues. In this work, we focus on the lat-
ter.

In the problem of candidate answers retrieval
from clue-answer knowledge sources, answers are
ranked according to the similarity between a query
clue and the clues in the DB. The similarity is pro-
vided by the search engine that assigns a score to
each retrieved answer. Several approaches have
been carried out to re-rank the candidates’ list by
means of learning to rank strategies (Barlacchi et
al., 2014a; Barlacchi et al., 2014b; Nicosia et al.,
2015; Nicosia and Moschitti, 2016; Severyn et al.,
2015). These approaches require a training phase
to learn how to rank and mostly differ for the re-



ranking model or strategy adopted. In particular,
pre-trained distributed representations and neural
networks are used for re-ranking clues in (Severyn
et al., 2015).

The re-ranking of answer candidates attempts to
improve the quality of candidates’ lists, assuming
that the correct answer belongs to the list. Dif-
ferently from previous work, we aim at directly
retrieving richer lists of answer candidates from a
clue-answer database. In order to do so, we ex-
ploit both static and contextual distributed repre-
sentations to perform a semantic search on the DB.
An embedding-based search extends the retrieval
to semantically related clues that may be phrased
differently. Moreover, it also allows us to map
in the same space questions and answers, which
opens the way for ranking answers directly based
on their similarity with respect to the query clue.
Our approach requires no training on CPs data and
it can be applied with any pre-trained embedding
model.

In summary, the contributions of this work are:
(1) a semantic search approach to candidate an-
swer retrieval in automatic crossword resolution;
(2) two complementary retrieval methodologies
(namely QC and QA) detecting candidate answers
that when combined together (even naively) pro-
duce a better set of candidates; (3) a comparison
between different pre-trained language represen-
tations (either static or contextual).

The paper is organized as follows. First, we de-
scribe in Section 2 distributed representations of
language. In Section 3, we present the two answer
retrieval approaches proposed in this work. Then,
in Section 4 we outline the experiments in detail,
and discuss the obtained results. Finally, we draw
our conclusions in Section 5.

2 Language Representations

Assigning meaningful representations to language
is a long standing problem. Since the inception
of the first text mining solutions, the bag-of-words
technique has been widely adopted as one of the
standard approaches to text representation. In-
verted indices and statistical weighting schemes
(as TF-IDF or BM25) are still to this day com-
monly paired with bag-of-words, providing a scal-
able and effective approach to document retrieval.
On the other hand, in the last decade, we have
assisted to tremendous progress in the field of
Natural Language Processing. Huge credit goes

to the diffusion of distributed representations of
words (Bengio et al., 2003; Mikolov et al., 2013a;
Mikolov et al., 2013b; Collobert et al., 2011;
Mikolov et al., 2018; Devlin et al., 2018) learned
through Language Modeling related tasks on large
corpora.

In general, the goal is to assign a fixed length
representation of size d, aka embedding, to a tex-
tual passage s such that similar text passages -
syntactically and/or semantically - are represented
closely in such space. An embedding model fe is
a function mapping s to a d-dimensional vector,
i.e: fe : s → Rd. Since language is a composition
of symbols (typically words), embedding models
first tokenize text and then process such tokens in
order to compute the representation of such textual
passage.

Nowadays, there are lots of embedding mod-
els, and for some of them pre-trained embed-
dings are available in a plethora of languages (Ya-
mada et al., 2020; Grave et al., 2018; Yang et
al., 2019). Early methods like (Mikolov et al.,
2013a) produce dense representations for single
tokens - mainly words - therefore further process-
ing is needed to obtain the actual representation of
s, when s is composed of multiple words. These
kinds of embeddings are also referred to as static
embeddings, since the representation of a token is
always the same regardless of the context in which
it appears. In (Mikolov et al., 2018), authors ex-
tend (Mikolov et al., 2013a) introducing n-gram
and sub-word information and in (Le and Mikolov,
2014), distributed representations are learned di-
rectly for sentences and documents.

Most of the proposed methods for contextual
embeddings were based on recurrent neural lan-
guage models (Melamud et al., 2016; Yang et al.,
2019; Chidambaram et al., 2018; Mikolov et al.,
2010; Marra et al., 2018; Peters et al., 2018),
until the introduction of transformer architectures
(Vaswani et al., 2017; Devlin et al., 2018; Liu et
al., 2019) which are currently the state-of-the-art
models. In the next Section we will discuss how
such representations can be used to perform se-
mantic search. In the experiments, we will exploit
some of these embedding models - both static and
contextual.

3 Semantic Search

Traditional CPs solvers rely on Similar Clue Re-
trieval mechanisms. The idea is to find possible
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Figure 1: Sketch of the two answer candidates re-
trieval approaches: QC (on the left), QA (on the
right). In QC, ranking is based on the similarity
between the query embedding and all the clues in
the DB, while in QA the similarity is computed be-
tween the query and the answers in the database.

answers from clues in the database that are simi-
lar to the given query. This is particularly effec-
tive for crosswords, since the same clues tend to
be repeated over time, or may have little lexical
variations. Retrieval of similar clues is based on
search engines based on classical IR algorithms
such as TF-IDF or BM25, representing clues in the
database as documents to retrieve, given the target
clue as query.

Here instead, we retrieve and rank documents
with semantic search. We propose two strategies,
namely QC and QA. QC is analogous to classical
similar clues retrieval systems, with the difference
that text is represented with a dense representa-
tion. The approach retrieves and ranks from the
DB clues similar to the query and returns in out-
put the answers associated to those clues. QA, in-
stead, ranks the answers directly by computing the
cosine distance between the query and the answers
themselves. Intuitively, the latter approach ranks
well answers semantically correlated to the ques-
tion itself, particularly useful for clues about syn-
onyms. As we will show in Section 4, due to their
different nature, the list of candidates retrieved by
the two approaches are strongly complementary.
A sketch of the two approaches is outlined in Fig.
1. Let us describe them separately.

3.1 Similar Clues Retrieval

We are given a query clue which is a sequence of n
words q := (w1, . . . , wn), and a clue-answer DB

(C,A) constituted by M clue-answer pairs, where
C and A indicate the list of all the clues and an-
swers, respectively, while we denote a clue-answer
pair as: (c, a).

We assign a fixed-length representation qe ∈ Rd

to the query clue q, computed with an embedding
model:

qe = fe(q). (1)

For contextual embeddings fe is the model itself,
since they work directly on the sequence, whereas
for static embeddings we have to collapse n word
representations together into a single vector. For
simplicity, we simply average such embeddings.

Analogously, each clue c ∈ C is encoded as in
Equation 1. Then, we measure the cosine similar-
ity between the query and each clue:

score(q, (c, a)) = cos(qe, fe(c)), (2)

where cos(·, ·) denotes the cosine similarity. Thus,
we obtain a similarity score for each clue-answer
pair. In order to finally rank answers we average
all clue-answer pairs having the same answer:

score(q, a) =
1

|A|
·
∑
ak∈A

score(q, (c, ak)), (3)

where A indicates the set of clue-answer pairs
where the answer ak is equal to a. All the answers
in A are then ranked. Since we know a priori the
length of a query answer, candidates with incorrect
lengths are filtered out. We refer to this approach
as QC (Query-Clue).

3.2 Similar Answers Retrieval
Since we can map text into a fixed-length space,
we can also rank by measuring the similarity be-
tween the query and the answer itself. The query
is encoded exactly as in Equation 1. In this case
however we only need the clue-answer DB to re-
trieve the set of unique answers, denoted as A.
Similarly to Equation 2, we compute the cosine
similarity between query and answer embeddings:

score(q, a) = cos(qe, fe(a)), (4)

for each a ∈ A, then we rank as in QC. We
call it QA (Query-Answer). It is important to re-
mark that QA is only feasible using latent repre-
sentations, traditional methods like TF-IDF are not
suited because of their sparsity of representations.
Moreover, QA is somewhat an orthogonal strategy
with respect to QC. We will see in Section 4, how
even a trivial ensemble of QA and QC is beneficial
to the performances.



4 Experiments

In the experiments we aim to prove the effective-
ness of semantic search to retrieve accurate lists
of candidate answers, and to show that the QA
approach carries out complementary information
that can increase the coverage of the retrieval.

4.1 Experimental Setup

We considered for our experiments three
well known embedding models, two static
(Word2Vec12, FastText3) and one contextual
(Universal Sentence Encoder4), briefly denoted
as W2V, FT and USE, respectively. We exploited
pre-trained models for all of them. In absence
of an Italian USE model, we used for the Italian
crosswords database, the multilingual version of
USE, that was trained on 16 languages (Italian in-
cluded). Embedding models are compared against
TF-IDF, which is a typical text representation in
document retrieval problems.

To measure performances, we used well known
metrics of Retrieval systems. In particular we con-
sidered Mean Hit at k (MH@k) and Mean Re-
ciprocal Rank (MRR). Hit at k is 1 if the cor-
rect answer is within the first k elements of the
list, 0 otherwise. The hits at k are evaluated for
k = {1, 5, 20, 100}. MRR is defined as follows:
1
n

∑n
q=1

1
rank(q) .

4.2 Datasets

We consider two different clue-answer databases
for our experimentation. In particular, experi-
ments were carried out on two languages, Italian
and English, respectively on CWDB dataset (Bar-
lacchi et al., 2014a) and New York Times Cross-
words. We apply the same pre-processing pipeline
in both corpora. (1) We discarded clue-answer
pairs having answers with more than three char-
acters, because they are typically about linguistic
puzzles and they are addressed differently in CPs
solvers. (2) Answer and clues containing special
characters are erased. (3) Text has been lower-
cased and punctuation removed. (4) We kept only
answers appearing in at least two clues.

1English: https://code.google.com/archiv
e/p/word2vec/

2Italian: https://wikipedia2vec.github.io/
wikipedia2vec/

3https://fasttext.cc/
4https://tfhub.dev/google/collections

/universal-sentence-encoder/1
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Figure 2: Comparison between cumulative density
functions of ranking using USE (blue) and TF-IDF
(orange) methods on English crosswords.

English Crosswords. The data consist of a col-
lection of clue-answer pairs for crossword puz-
zles published in the New York Times5 in 1997
and 2005, previously collected in (Ernandes et
al., 2008). Overall, there are about 61, 000 clue-
answer pair samples. Clues, answers and clue-
answer pairs may occur multiple times. A clue
is generally a short sentence, while answers are
usually made up of a single word, but there are
cases of multi-word answers. In such a case the
answer is a string made of multiple words without
any word separator. After pre-processing we ob-
tain a corpus with 31, 808 pairs in which 27, 527
questions and 8, 324 answers are unique.

Italian Crosswords. The clue-answer database
for Italian was constructed from CWDB v0.1 it
corpus6 (Barlacchi et al., 2014a). We combined
pairs from both train and test splits, since we did
not perform any training in our experiments and
we opportunely omitted the clue-answer pair itself
during its evaluation. From the original 62, 011
pairs, it remains 25, 545 pairs after pre-processing,
constituted of 5, 813 unique answers and 16, 970
unique questions.

4.3 Results
All the results for Italian and English cross-
words are outlined in Tables 1 and 2, respec-
tively. From them, we can catch several interest-
ing insights. First of all, contextual representa-
tions from Universal Sentence Encoders are gen-

5https://www.nytimes.com/
6https://ikernels-portal.disi.unitn.i

t/projects/webcrow



Model Strategy MH@1 MH@5 MH@20 MH@100 MRR
W2V QA 14.97 32.55 50.35 71.59 23.80
FT QA 6.78 14.47 26.88 52.46 11.44
USE QA 7.89 17.81 29.30 46.80 13.24
TF-IDF QC 60.79 66.43 68.53 72.62 63.54
W2V QC 52.34 64.75 72.58 82.66 58.26
FT QC 23.50 34.13 45.94 64.09 29.05
USE QC 60.69 70.93 76.81 84.70 65.57
EnsembleUSE−W2V QC-QA - 73.59 82.39 91.22 -

Table 1: Evaluation of performances on CWDB Italian data. The best values of each column and strategy
are marked in bold for both QC and QA methods.

Model Strategy MH@1 MH@5 MH@20 MH@100 MRR
W2V QA 7.58 17.27 27.78 42.62 12.66
FT QA 7.72 17.35 27.29 43.42 12.75
USE QA 8.63 19.69 30.01 45.17 14.25
TF-IDF QC 26.15 37.62 44.09 49.54 31.46
W2V QC 19.63 31.69 42.66 57.38 25.65
FT QC 15.72 24.32 32.67 46.64 20.20
USE QC 25.78 38.57 49.34 63.35 32.12
EnsembleUSE−USE QC-QA - 41.40 54.34 69.00 -

Table 2: Evaluation of performances on English data. The best values of each column and strategy are
marked in bold for both QC and QA methods.

erally the most effective ones, especially on sim-
ilar clues retrieval (QC), where both the query
and the elements to rank are textual sequences.
Nonetheless, Word2vec embeddings work surpris-
ingly well, outperforming FastText almost all the
times. Furthermore, they are the best ones on QA
search in Italian database. We believe the reason
why Word2Vec outperforms USE on Italian QA
is twofold. First, the advantage of contextual em-
beddings is less evident in QA setup, indeed USE
brings less benefits on English QA as well. Sec-
ond, USE is a multilingual model, therefore its
embeddings are less specialized than Word2Vec
which was instead trained for Italian only.

When comparing semantic search models
against the baseline (TF-IDF) - which is only pos-
sible in QC - we can notice that, static embed-
dings struggle to outperform it. Indeed, the sparse
nature of TF-IDF induces crisp similarity scores,
very high for clues sharing the same keywords, ex-
tremely low for all the rest. On the contrary, sim-
ilarity scores are more blurred with dense embed-
dings. As a consequence, TF-IDF achieves high
MH@1 and MH@5 scores (and MRR too). How-
ever, TF-IDF leads to a poorer coverage when the

candidates list grows (MH@20 and MH@100).
This behavior is also evident in Fig. 2, where
we compare the cumulative distributions of rank-
ing with USE and TF-IDF. After the initial bump,
TF-IDF hits growth is almost linear (i.e. random),
whereas the Universal Sentence Encoder keeps
growing significantly.

Ensembling QC and QA. Analyzing the re-
sults, we observed that ranks from QA and QC
had low levels of overlaps. We reported in the last
line of Tables 1 and 2, performances of a naive
ensemble approach to combine QC and QA strate-
gies. Due to the limited levels of overlaps, we de-
cided to merge the two ranks taking the first K/2
ranks from each strategy to compute MH@K,
K = {5, 20, 100}7. We chose the best embed-
ding model on each strategy. Despite its simplic-
ity and the large room for improvements, the en-
semble significantly improved the performances in
both languages. This suggests possible directions
for further improving the retrieval of CPs solvers.

7Since K=5 is not even, we took the first 3 ranks from QC
and the first two ranks from QA.



5 Conclusions

In this paper, we proposed two different seman-
tic search strategies (QC and QA) for ranking and
retrieving answer candidates to CPs clues. We
exploited pre-trained state-of-the-art embeddings,
both static and contextual, to rank clue-answer
pairs from databases. Embedding-based retrieval
overcomes some of the limitations of inverted in-
dices models, leading to higher coverage ranks,
and allowing similar answers retrieval (QA). Fi-
nally, we observed that, even a simple ensembling
that combines QC and QA, is effective and im-
proves overall retrieval performances.

This opens further research directions, where
learning to rank methods could be exploited in or-
der to better combine candidate answer lists from
complementary approaches like QC and QA.

Acknowledgments

We thank Nicola Landolfi and Marco Maggini for
the great support and fruitful discussions.

References
Gianni Barlacchi, Massimo Nicosia, and Alessandro

Moschitti. 2014a. Learning to rank answer candi-
dates for automatic resolution of crossword puzzles.
In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, pages
39–48.

Gianni Barlacchi, Massimo Nicosia, and Alessandro
Moschitti. 2014b. A retrieval model for automatic
resolution of crossword puzzles in italian language.
In The First Italian Conference on Computational
Linguistics CLiC-it 2014, page 33.
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