
Modification of the Permanent Decomposition Method for the
Meeting Schedule Problem
Yurii Turbal

a
, Sergii Babych

,b
, Larysa Bachyshyna

a
, Nataliia Kunanets

,c
 and Nataliia

Kovalchuk
a

a National university of water and environmental engineering, Soborna st.,11, Rivne, 33022, Ucraine
b College of National University of Life and Environmental Sciences of Ukraine, Software engineering,

Kopernyka St., 44, Rivne, 33000, Ukraine
c Lviv Politechnic National University, 12 Bandera street, Lviv, Ukraine, 79013

Abstract
In this paper are considered meeting schedule problem and permanent decomposition

methods (PD), which was investigated in reseant years. PD-approach to the combinatorial

objects generetion is based on the procedure of the incidence matrices permanent

decomposition with “memorization” of the columns identifier elements – process of the

algebraic permanent decomposition by row includes addidional function for the column

identifiers writing into corresponding data structures. In fact, algebraic permanent in not

calculated, but we get a specific recursive algorithm for generating a combinatorial object.

In this paper we present a new modification of the PD-algorithn which includes

modification of the incidenсe matrix and procedure of the permanent decomposition.
Our modification allows to build all possible variants of meeting schedules according to the

system of different representatives, which cad be formed by the base PD-algorithm. For

effective software implementation of the proposed modifications special additive-disjunctive

forms is proposed. It it considered data structures and some aspect of the program realisation.

Keywords 1
Algorithm; permanent ; decomposition; sheduling ; ADF.

1. Introduction

 The tasks of calendar planning have not lost their relevance in recent years, despite the presence
of a large number of theoretical results and practical approaches to their solution. Sheduling problems
is the most widely studied problems in computer sciense. There are wellknown Job-shop scheduling or
the job-shop problem, the nurse operations research problem of finding an optimal way to assign
nurses to shifts. We will consider only the most popular problem areas for the use of planning tasks.

Job shop scheduling problem (JSP) is the core part of production management in job shop system.
The efficient completion of production tasks requires reasonable job shop scheduling. Therefore, the
study of job shop scheduling problem has very important theoretical significance and application
value. Job shop scheduling problem is one of the typical complex scheduling problems with high
complexity and difficulty. It has a strong engineering application background [1],[5].

Task scheduling problem is the one of the most critical issues in cloud computing environment
because cloud performance depends mainly on it. There are various types of scheduling algorithms;
some of them are static scheduling algorithms that are considered suitable for small or medium scale
cloud computing; and dynamic scheduling algorithms that are considered suitable for large scale
cloud computing environments. Worth mentioning the most popular three static task scheduling

ITTAP’2021: 1nd International Workshop on Information Technologies: Theoretical and Applied Problems, November 16–18, 2021,

Ternopil, Ukraine

EMAIL: turbaly@gmail.com (A. 1); asha.maneteren@mail.com (A. 2); l.d.bachyshyna@nuwm.edu.ua (A. 3); n.s.kovalchuk@nuwm.edu.ua
(A. 4); nek@lviv.ua (A. 5)

ORCID: 0000-0002-5727-5334 (A. 1); 0000-0002-8669-7288 (A. 2); 0000-0002-7060-1747 (A. 3); 0000-0002-4723-4934 (A. 4); 0000-

0003-3007-2462 (A. 5)

 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

https://en.wikipedia.org/wiki/Operations_research

algorithms performance there are: first come first service (FCFS), short job first scheduling (SJF),
MAX-MIN. The CloudSim simulator has been used to measure their impact on algorithm complexity,
resource availability, total execution time (TET), total waiting time (TWT), and total finish time
(TFT) [2],[4].[8].

In a Big data computing, the processing of data requires a large amount of CPU cycles and
network bandwidth and disk I/O. Dataflow is a programming model for processing Big data which
consists of tasks organized in a graph structure.Scheduling these tasks is one of the key active
research areas which mainly aims to place the tasks on available resources. It is essential to
effectively schedule the tasks, in a manner that minimizes task completion time and increases
utilization of resources. In recent years, researchers have discussed and presented different task
scheduling algorithms. Especially often there are scientific works in the areas the state-of-art of
various task scheduling algorithms, scheduling considerations for batch and streaming processing, and
task scheduling algorithms in the wellknown open-source big data platforms. Furthermore, this study
proposes a new task scheduling system to alleviate the problems persists in the existing task
scheduling for big data [3],[6],[8]].

These are just a few areas of use of scheduling tasks, but among them we can trace the use of
algorithms, analogous to which is the algorithm in this article.

The complexity of the corresponding algorithms in such problems is a critical parameter that
allows us to assess the possibility of using a particular algorithm in practice [1]. In particular, the
complexity of scheduling algorithms (NP-complete problems) was pointed out in [1], where is
proposing a solution by a method close to the exact method for a certain criterion of optimality,
because "the implementation of the tasks of scheduling by the method of search, as well as search
with return, is not effective" [2]. Therefore, in modern scientific works, heuristic approaches are
preferred, because the real size of the obtained problems does not yet allow to solve them in practice
with existing precise methods for quadratic programming problems. The results that this or that
ordering leads to differ significantly. In some practical cases, these differences are determined by
another value, or take a cost nature.

In the paper [1] were considered meeting schedule problem and was proposed the algorithm of the
meeting schedule construction which is based on the procedure of incidence matrix decomposition. In
the paper [2] were considered a similar aprouch to the generation of generalized combinatorial objects
of special structure that are well suited for some scheduling tasks (schedule of meetings). At the heart
of this approach are procedures for the permanent decomposition of incidence matrices with
memorization of identifier elements. This approuch was called PD-method. Main rezult of PD-
procedure was creation the system of different representatives of the list of sets. In this paper we
present a new modification of thePD-algorithn which includes modification the incidence matrix
construction and procedure of the permanent decomposition. The new modification allows to build all
possible variants of schedules according to the system of different representatives. For effective
software implementation of the proposed modifications, the use of special additive-disjunctive forms is
proposed.

2. Main idea of the PD-algorithm modification

Let consider m teams which must met whith the n single persons (teachers, project

managers, SCRAM-masters ect.) nPPP ,...,, 21 during any period of time T. It is known the

times of possible meetings for every day and numbers of meetings for every person whith

appropriated teams. Obviously, the schedule can be represented in the form of the matrix, in

which the columns can be matched by teams, rows-time indicators, and the elements of the

matrix will be identifiers (numbers) of persons:

S=

(

)

 (1)

We will call such a matrix a matrix of schedules. If we consider the columns of the matrix

S, we get sets and the occurrence of the same element several times is allowed.

Information about which elements are included in the corresponding sets will be given in the

incidence matrix of the form:

(

)

 (2)

where {

 ̅

. The elements will be called the identifiers of the

columns of the incidence matrix.

Identifier elements are devided on regular and stream . If the element is “stream”,
then it must be simultaneously written in all positions of the sample vector, where the

correspondent incidence matrix column contains non-zero elements.

. The system of different representatives (SDR) will be called a vector of the form:

(), .

 An arbitrary vector of samples(or a matrix, the rows of which are samples) will be

called a schedule .

The schedule (() () ()) will be

considered correct under the conditions :

1. * + { } * … },

 * +

2. * + , elements are non-stream.

 Note that incidence matrix (1) does not provide comprehensive information for scheduling.

Therefore, consider a modification of the incidence matrix, whуку is the number of occurrences

of the element in the set .

Suppose, for example, that we have a schedule matrix of the form:

 (

) (3)

Than we have such incidene matrix:

(

) (4)

Let's build the process of decomposition of the modified permanent with "memorization" on the

first line:

10011

02010

00111

43211

3

2

1

mod пper =

100

020

432

3

2

mod1
1
1 per + 11

1
1
п

+

101

020

431

3

2

mod1
2
1 per

=)per(

1

4

0

2

3

mod21
3
2

1
1 + 11

1
1
п

+)per(

1

4

1

1

3

mod21
3
2

2
1 =

4
3

3
2

2
1

1
3

3
2

2
1

1
1

4
3

3
2

1
1 1211211121

п
.

Thus, SDR are:{(1,3,4),(п
1),(2,3,1),(2,3,4)}.

Consider in more detail the procedure of decomposing the permanent. Note that the non-zero

element in the row of the matrix in the first step means that the corresponding component must be

present in the schedule. The first group must contain elements 1,2, п
1 .,. Then in the process of

decomposition is branching and various situations arise. In the process of calculating the permanent,

we simply use the operation of adding +. However, from the point of view of constructing a schedule,

the logic of the addition operation is completely different here, it actually means "disjunction", the

possibility of choosing one of the options for SDR. If an element with a value greater than 1 is

multiplied, the situation of inclusion of several components is possible. For example, in the expression
4
3

3
2

1
3

3
2

3
2 1*21*2

1

4

1

1

3

mod2

per addition means the mandatory inclusion of both components,

because 3 is included twice, the element of the incidence matrix is 2. At the same time, in the

expression
4
3

3
2

1
3

3
2

3
2 1*11*1

1

4

1

1

3

mod1

per addition means choice of one of two options, because

element 3 is used only once.

3. Additive-disjunctive forms (ADF) and they properties.

Thus, we have two operations: selection and mandatory inclusion. An expression containing

elements(string) using the specified operations will be called an additive-disjunctive form(ADF). In

the future, the selection operation will be marked with the icon. In addition, when using the

corresponding column element, which corresponds to a non-zero element of the incidence matrix, for

mandatory inclusion, we can reduce the value of the element of the incidence matrix by 1. Therefore,

,1*1 1*1

1

4

1

1

3

mod1
4

3

3

2

1

3

3

2

3

2

per

,1*11*1

1

4

1

1

3

mod2
4

3

3

2

1

3

3

2

3

2

per

,1*11*11*11*11*11*1

1 1

5 4

1

1

3

mod1
5

3

3

2

4

3

3

2

1

3

3

2

5

3

3

2

4

3

3

2

1

3

3

2

3

2

 ADFper

),1*11*(1)1*11*1(

)1*11*1(1*21*21*2

1 1

5 4

1

1

3

mod2

5

3

3

2

4

3

3

2

5

3

3

2

1

3

3

2

4

3

3

2

1

3

3

2

5

3

3

2

4

3

3

2

1

3

3

2

3

2

 ADFper

.1*11*11*11*31*31*3

1 1

5 4

1

1

3

mod3
5

3

3

2

4

3

3

2

1

3

3

2

5

3

3

2

4

3

3

2

1

3

3

2

3

2

 ADFper

 Therefore, the value of the incidence matrix element is equal to the number of inclusions of the

corresponding index in the final ADF in the expressions of mandatory inclusion. Therefore, in the

case when the value of the multiplier element is less than the number of non-zero elements of the

decomposition line, we have options for interpreting the initial sum in the form of ADF. Thus, ADF is

an expression that includes strings elements and two operations: + mandatory inclusion and binary

selection .

 Let us consider a simple properties of ADF:

1. aaa ;

2. },{ aaaa ;

3. abba ;

4. abba ;

5.)()(cabacba ;

6. cbacaba)()(;

7.

).()()()(

)()()()(

ecadcaebadba

edcaedbaedcabaedcba

4. Algorithms of the correct schedule ADF construction.

Now we can modify the permanent decomposition procedure to get the correct ADF. To do this, at

each iteration of the permanent decomposition we will analyze the occurrence of the same elements in

all components of the mandatory inclusion. Obviously, the condition must be met - the total number

of occurrences of the element in the block of mandatory inclusion should be equal to its index. If this

condition is found to be violated, the mandatory inclusion block will be considered invalid and should

be removed. Let consider previous example and build correct ADF:

10011

02010

00111

43211

3

2

1

mod пper =

100

020

432

3

2

mod1
1
1 per + 11

1
1
п

+

101

020

431

3

2

mod1
2
1 per =

=)per(

1

4

0

2

3

mod21
3
2

1
1 + 11

1
1
п

+)per(

1

4

1

1

3

mod21
3
2

2
1 =

)per(

1

4

0

2

3

mod11
3
2

1
1 + 11

1
1
п

+)per(

1

4

1

1

3

mod11
3
2

2
1 =

4
3

3
2

2
1

1
3

3
2

2
1

1
1

4
3

3
2

1
1 1111111111

п
.=

= .1111111)1111111()111111(1
1

3

3

2

2

1

1

1

4

3

3

2

1

1

4

3

3

2

2

1

1

1

4

3

3

2

1

1

1

3

3

2

2

1

1

1

4

3

3

2

1

1
ппп

In the process of decomposition, in the last step, incorrect mandatory inclusion blocks are

removed. In last example such block is 4

3

3

2

2

1

1

1

4

3

3

2

1

1 1111111
п

.

If we apply a recursive algorithm for the decomposition of the permanent, then in this case it is
difficult to implement control of the occurrence of the corresponding elements in the blocks of
mandatory inclusion. Therefore, the approach described above in the recursive organization of the
program is difficult to implement. Consider a slightly different approach. We will build ADF on the
basis of the already built system of PSA. With this approach, it is good to adhere to the OOP
paradigm.

We can modified procedure of ADF creation using list of all correct SDR, creating by base
procedure of permanent decomposition. Thus we can propose algorithm of generation all correct
variants of schedule using ADF (we call this algarithm ADF-algorithm):

1. Formation of the initial general block.

1.1 Review the first row of the incidence matrix and find all non-zero elements and their identifiers
(corresponding elements of the zero row of the incidence matrix). The list of SDR is divided into
groups, each SPRS from one group contains the first identical elements-identifiers.

1.2 The sign of obligatory inclusion + is put between groups.

1.3 If the index of the corresponding element of the first line is 1, then a selection operation is
placed between all elements of the group. Otherwise, all possible combinations of group elements are
formed, which are connected by the oleration +, the number of SDR in which is equal to the index of
the element, between which the selection operation is placed.

2. Second line analysis.

2.1 Consider the second row of the incidence matrix, similarly determine the non-zero elements
and their identifiers.

 2.2 For each non-zero element :

2.2.1 Determine in which SDR list it is present. Then we determine all possible options so that it is
included depending on its index. To do this, number all SDR, where the second is our running
element, consider all possible combinations with SDRS, containing our second element and the
number of which is equal to its index and check the required number of its occurrences, taking into
account the operations of mandatory inclusions. index.

2.2.2 For each selected correct combination we form a new general block, which is built in the
following way - from each disjunctive block containing SDR with our second element, include only
selected in this combination SDR, and all others containing our second element are removed.

3. Next, similarly analyzed the third line, fourth, etc. Moreover, the condition of the correct
occurrence of each element is analyzed for each common block.

Thus, the modification of the procedure of decomposition of the permanent incidence matrix by
constructing ADP allows to obtain all possible correct variants of schedules. The proposed procedure
solves not only the problem of matching the schedule elements in the rows, but also immediately
obtain the required number of identical elements in the columns in accordance with the input data
recorded in the modified incidence matrix.

Let’s consider an example. We have system of SDR: {(1,3,4),(1,1,1), (2,3,1), (2,3,4)},

incidence matrix (5).

1. Analysis of the first row of the incidence matrix:

{[(1,3,4)]+[(1,1,1)]+ [(2,3,1) (2,3,4)]}.

2. Second row:

п

1 :{[(1,3,4)]+[(1,1,1)]+ [(2,3,1) (2,3,4)]},

 3: {[(1,3,4)]+[(1,1,1)]+ [(2,3,1)]} {[(1,3,4)]+[(1,1,1)]+ [(2,3,4)]}.

3. Third row:

1: {[(1,3,4)]+[(1,1,1)]+ [(2,3,1)]} {[(1,3,4)]+[(1,1,1)]+ [(2,3,4)]},
п

1 :{[(1,3,4)]+[(1,1,1)]+ [(2,3,1)]} {[(1,3,4)]+[(1,1,1)]+ [(2,3,4)]},

4: {[(1,3,4)]+[(1,1,1)]+ [(2,3,1)]} .

5. Data structures and program realisation

In accordance with our algorithm, to store information about all schedule options, we will use a

list of instances of the class, which should contain information about the corresponding SDR, as well

as symbols of ADF operations and possible parentheses that define disjunctive blocks. We can use

C++ notation and create class ADF:

class ADF

{

 public:

 SDR* context;

 char * after;

 char * before;

 ADF *next;

 int delflag;

 ADF()

 {after=new char[2];

 before=new char[2];

 delflag=0;

 }

 };

class SDR

{ public:

 int nlast;

 int nmax;

 char *s;

 SDR *next;

 SDR()

 {

 s=new char [20];

 nlast=0;

 next=NULL;

 }

}

For the matrix of incidence, we can use class incydent :

class incydent

{ public:

 int nmaxrow, nmaxcol, **r;

 incydent(int nrow, int ncol)

 { // class body

 }

 incydent(void){}

 ~incydent()

 {//class body }

};

In class ADF we must store additional information about symbols of ADF operations and possible

parentheses and use arrays before[2] and after[2]. Field delflag we can use as a flag,that informs about
deleting this element at last step of our algorithm. Let’s consider the main functions of our software
implementation.

Function ADF* startgener (SDR *head) generates the initial ADP from the list of SDR, analyzing
the first elements of the lines of SDR:

ADF* startgener (SDR *head)

{

ADF *rez;

ADF* last=new ADF;

SDR* lasthead=head;

last->before[1]='(';

if(head!=NULL) last->context=head;

last->next=NULL;

rez=last;

head=head->next;

while(head!=NULL)

 {

 ADF* current=new ADF;

 current->context=head;

 current->next=NULL;

 int i=0,j=0;

 while(lasthead->s[i]==lasthead->s[i+1]) i++;

 while(head->s[j]==head->s[j+1]) j++;

if((lasthead->s[0]==head->s[0]) && (i==j))

{

last->after[1]='v';

current->before[0]='v';

}

else

{ last->after[0]=')';

last->after[1]='+';

current->before[0]='+';

current->before[1]='0';

}

last->next=current;

last=current;

lasthead=head;

head=head->next;

if(head->next==NULL) current->after[0]=')';

}

return rez;

}

Function int ident(int m,int j,SDR* si, incydent* pi) analizes SDR and checks stream

correctness:

int ident(int m,int j,SDR* si, incydent* pi)

{ if(si->s[j]==pi->r[0][j])

{if((j>0)&&(pi->r[0][j]!=pi->r[0][j-1])|| (j==0))

return 1;

else

{for(int k=1;k<pi->nmaxrow;k++)

if((pi->r[k][j]>0)&&(si->s[k-1]!=pi->r[0][j])) return 0;

return 1;

}}}

Function int generlexc(int n,int k, int *mas) generates the next closest combination of the mas in in
lexicographic order.

Function int goodblock(ADF* head, int *mas, int k, int m,int j,incydent* pi) checks whether 2
SDRs falls into one disjunctive subblock and also whether the index for quantity of correct occurrences
is not bigger.

Function ADF* copyblock(ADF* startblock) copies the block of obligatory inclusion at once for
startblock .

Function void genernewblock (int m,int j, int* mas,int size,ADF* startblock, incydent* pi)
generates a new block with the inclusion of elements in accordance with the selected combination of
mas numbers of the SDRs elements to be included. It works after goodblock .

Function ADF* nextblockadr(ADF* head) returns the start address of the next block of mandatory
inclusion or NULL

Function int mjgeneric(ADF* head ,incydent* pi,int m,int j) generates all blocks of mandatory
inclusion on the m-j element of the matrix incidence and writes after head:

 int mjgeneric(ADF* head ,incydent* pi,int m,int j)

 {

if(pi->r[m][j]>0)

{

while(head!=NULL)

{ADF* tmp=head;

ADF* nexthead =nextblockadr(head);

int kv=0;

while(tmp!=nexthead)

{

if(ident(m,j,tmp->context, pi)==1) kv++;

tmp=tmp->next;

}

int index=pi->r[m][j];

int *nu=new int[index];

for(int fi=0;fi<index;fi++) nu[fi]=fi;

for(int i=0;i<factorial(kv)/(factorial(index)* factorial(kv-index));i++)

{tmp=head;

if(goodblock(tmp, nu, index, m, j, pi))

 genernewblock(m,j,nu,index,tmp,pi);

generlexc(kv,index,nu);

} //end for

head=nexthead;

head->delflag=1;

}}}
Function ADF* ostgeneric(SDR* head, incydent* pi) realizes full procedure of the schedule

generation:

ADF* ostgeneric(SDR* head, incydent* pi)

{ADF* rozklad=startgener(head);

for(int j=0;j<pi->nmaxcol;j++)

for(int m=1;m< pi->nmaxrow;m++)

if(pi->r[m][j]>0)

{mjgeneric(rozklad,pi,m,j);

if((j>0)&&(pi->r[0][j]==pi->r[0][j-1]))

{for(int k=m;k<pi->nmaxrow;k++)

if(pi->r[k][j]>0) pi->r[k][j]=0;}

}

ADF* current=rozklad;

while(current->next->next!=NULL)

{

if(current->next->delflag==1) {

ADF* tmp= current->next->next;

delete current->next;

current->next=tmp;}

}

return rozklad;

}

6. Conclusions

Thus, the paper considers a modification of the PD algorithm for generating systems of different

representatives, which allows to immediately obtain all possible admissible schedules. Our

modification is based on the use of special forms, which we called additive-disjunctive forms. Such

forms can be useful for a wide range of tasks of generating combinatorial objects, scheduling. Clear

algorithms are proposed for constructing meeting schedules based on ADF, one of which uses a

system of different representatives (SDR) as input data, which is built on the basis of a basic PD-

algorithm. This approach easily fits into the object-oriented programming paradigm [9] ,[10] and can

be easily implemented using any object-oriented programming language.

7. References

 [1] Yu Yingchen, A Research Review on Job Shop Scheduling Problem. E3S Web of Conferences.

International Conference on Environmental and Engineering Management 253 (2021).

doi:10.1051/e3sconf/202125302024.

[2] T. Aladwani, Types of Task Scheduling Algorithms in Cloud Computing Environment, in:

Rodrigo da Rosa Righi, Scheduling Problems - New Applications and Trends, IntechOpen,

United Kingdom, London, 2020. doi:10.5772/intechopen.86873.

[3] K. Govindarajan, S. Kamburugamuve, P. Wickramasinghe, V. Abeykoon, G. Fox, Task

Scheduling in Big Data - Review, Research Challenges, and Prospects, in: Ninth International

Conference on Advanced Computing, 2017. doi:10.1109/ICoAC.2017.8441494.

[4] A. Khalfay, A. Crispin, K. A. Crockett, A review of technician and task scheduling problems,

datasets and solution approaches, in: Intelligent Systems Conference (IntelliSys), Computer

Science, 2017. doi: 10.1109/INTELLISYS.2017.8324306

[5] B. Peng, Z. Lu, T.C.E. Cheng, A tabu search/path relinking algorithm to solve the job shop

scheduling problem- Computers & Operations Research, Elsevier Science Publishing Company,

United Kingdom, London, 2016. doi:10/1016/j.cor.2014.08.006.

[6] L. Williams, CPU Scheduling Algorithms in Operating Systems, 2021. URL:

https://www.guru99.com/cpu-scheduling-algorithms.html.

[7] L. Kuang, L. Zhang, A new task scheduling algorithm based on value and time for cloud platform,

AIP Conference Proceeding 1864 (2017). doi:10/1063/1.4992834.

[8] E. C. da Silva, P. H. R. Gabriel, A Comprehensive Review of Evolutionary Algorithms for

Multiprocessor DAG Scheduling, Computation, MPDI, 2020, 8, 26 р.

[9] B. Stroustrup: A Tour of C++ (Second Edition), Addison-Wesley, 2018, 240 p.

[10] B. Stroustrup: Programming --Principles and Practice Using C++ (Second Edition), Addison-

Wesley, 2014, 1312 p.

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Rodrigo+da+Rosa+Righi&text=Rodrigo+da+Rosa+Righi&sort=relevancerank&search-alias=books
https://ieeexplore.ieee.org/author/37971151300
https://ieeexplore.ieee.org/author/38467772400
https://ieeexplore.ieee.org/author/37085997260
https://www.researchgate.net/profile/Vibhatha-Abeykoon
https://ieeexplore.ieee.org/author/37268873900
https://www.semanticscholar.org/author/Amy-Khalfay/40810412
https://www.semanticscholar.org/author/Alan-Crispin/40175692
https://www.semanticscholar.org/author/Keeley-A.-Crockett/2627074
https://doi.org/10.1109/INTELLISYS.2017.8324306
https://elibrary.ru/publisher_about.asp?pubsid=1

