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Abstract  
The severity of the course of bronchial asthma depends on many factors. Clinical and 

laboratory studies were carried out on 90 children aged 6 to 18. 70 children with bronchial 

asthma of various degrees of severity as well as 20 healthy school-aged children were included 

into the main group. 142 predictors were studied, 11 factors were selected from the bottom in 

accordance with the selection method. Multivariate linear regression models have been 

developed and analyzed to predict the severity of bronchial asthma disease. The dependence 

of the forecast quality of the observed value on the number of model regressors is analyzed. 

The MSE value was used as a characteristic of forecast quality. An estimate of the number of 

regressors required for a significant increase in the forecast quality is presented. The law of 

distribution of the error in predicting the severity of bronchial asthma disease in a multifactorial 

linear regression model has been substantiated. The visual representation of multivariate 

models is made using the residual plot. 
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1. Introduction 

Bronchial asthma is a severe heterogeneous chronic lung disease. Numerous studies have revealed 

that the prevalence of bronchial asthma does not depend on the level of wealth of the country and is 

4 – 10 % among the adult population [1, 2].The severity of the course of bronchial asthma depends on 

a sufficiently large number of factors that, presumably, have the same effect on the clinical 

manifestations of the disease. The first clinical symptoms may appear already in early childhood, very 

often similar to the symptoms of other childhood diseases [3, 4]. The relationship between the early age 

at which the first manifestations of the disease appeared and the severity of the course in the patient's 

adult life has been proven [5]. 

Despite similar symptoms of bronchial asthma among patients, the result of treatment and further 

prognosis of the disease is very different. Investigations have confirmed the presence of various 

phenotypes of the disease and the influence of a huge number of factors on the occurrence of bronchial 

asthma and the peculiarities of its course [6, 7].  

Currently, the tactics of treatment and observation of patients have been developed to increase the 

level of disease control [8], based on the use of stepwise therapy. However, there is a fairly large 

category of patients who are characterized by an uncontrolled or severe course of the disease [9], which 

confirms the presence of different pathogenetic mechanisms of occurrence of bronchial asthma [10, 

11]. 
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Studying not only the factors, but also determining their relationship with each other, is an important 

step in understanding the course of the disease in each individual case. Analysis of the multifactorial 

nature of bronchial asthma underlies the prediction of the disease and its course [12]. Numerous studies 

have examined various categories of factors. Commonly used factors include age, gender of the child, 

whistling breath, allergic sensitization, Ig E [13, 14].  

 To assess the prognosis of a severe course of bronchial asthma, both linear and nonlinear 

multifactorial models are used, containing a different number of regressors (Table 1), aimed at 

determining predictors that are unambiguously significant in determining the severity of the course of 

bronchial asthma disease [15]. 

In this case, the values of the regressors are determined by both quantitative and qualitative values.  

Table 1 presents data on some common types of models for predicting the severity of bronchial asthma 

and on the number of predictors in these models.  

 

Table 1 
The number of regressors in models for predicting the severity of bronchial asthma 

Number of regressors Linear Logistic Machine learning 

2-3 [24] [22] - 
4-7 - [17, 21] - 

8-10 - [16, 19, 20] - 
>10 - - [18, 23, 25] 

 

It should be noted that the models presented in Table 1 with the same number of regressors are used 

to analyze the prediction of the severity of bronchial asthma by different initial factors.  

2.  Formulation of the problem 

The presence of a large number of models with different numbers of regressors makes the issue of 

choosing both the type of model and the number of regressors in the model relevant. In this research, 

we analyze the dependence of the forecast quality on the number of model regressors.  

The process of building a linear regression model with a large number of regressors is quite 

laborious. The computational complexity of the algorithm for constructing a regression model grows in 

proportion to the square of the number of regressors in the model. Therefore, when analyzing the 

severity of bronchial asthma, linear models are usually used with the number of regressors, the number 

of which does not exceed 5-7 (Table 1). Linear models with a small number of regressors can be 

considered as a tool for preliminary analysis of a set of experimental data. A deeper analysis requires 

an increase in the number of regressors in the model. Due to the fact that the results of predicting the 

severity of the course of bronchial asthma depend on a sufficiently large number of weakly dependent 

factors with approximately the same scale of formation of the explained value, an increase in the number 

of regressors in the model leads to a slight increase in the quality of the prediction of the observed value. 

On the other hand, the presence of a large number of weakly dependent factors with approximately the 

same scale of formation of the value of the explained quantity leads to the fact that linear regression 

models are a good tool for predicting the severity of the progression of bronchial asthma disease due to 

the fact that the distribution of the prediction error for the quantity of the regressors 10K  satisfies 

the normal distribution law. However, the issue arises, how many regressors the model should contain 

and how much the prediction accuracy of the model will be estimated to increase with an increase in 

the number of regressors. This work is devoted to the analysis of this problem. 

The regression model that allows you to determine the severity of the course of the bronchial asthma 

can be summarized as follows: 

  iki XXXFY  ,...,, 21       (1) 

where mX  is the value of m-the regressor; iY  is the numerical value of the characterizing the severity 

of the course of the disease of bronchial asthma; i  is an error in predicting the numerical value for the 

i – the test.  



To analyze the influence of the number of regressors on the quality of predicting the severity of the 

disease of bronchial asthma, we will use the data set formed during the examination of 90 children with 

a diagnosis of bronchial asthma aged 6 to 18 years. The investigation contains data from the anamnesis 

of life and diseases of patients, laboratory and diagnostic indicators of the examination. The study was 

conducted with respect for human rights and in accordance with international ethical requirements; it 

doesn't violate any scientific ethical standards and standards of biomedical research. To analyze the 

dependence of the parameters on the quality of prediction, 142 factors were selected, which were 

encoded. As a result of the studies, for each examined patient, the values of 142 factors were recorded, 

on which, it is assumed, the severity of the course of the bronchial asthma disease may depend. As a 

result of preliminary analysis, invalid data were excluded from this set. The resulting dataset in the form 

of a 90x142 matrix [26] was used to build a regression model. As a result of the phased elimination, 11 

factors were identified that match the criterion 

max 
mxyr , min

vmxxr .     (2) 

which are used in this work. Based on criterion (2), out of a total of 142 factors, those with a correlation 

mxyr   between the regressor and the observed value is the highest, and the correlation 
vmxxr  between the 

regressors has the lowest value was selected. In other words, out of 142 factors, 11 factors were selected 

that have the largest correlation 
mxyr    values between the regressor and the observed value. Thus, it is 

assumed that the selected factors have the most important influence on the severity of bronchial asthma 

disease. The selected factors are tested for the condition min
vmxxr , in order to exclude those factors 

that are highly correlated with each other. These factors are replaced by the following factors from the 

condition max 
mxyr . As a result of several iterations, the factors were determined, the numerical 

characteristics    are presented in Table 2. Each factor is characterized by mathematical expectation   

xm , standard deviation x  and correlation coefficient with the observed value yxr .  

 

Table 2 
Numerical characteristics of the factors selected to build models that determine the severity of the 
course of bronchial asthma disease  

Code Regressor name xm  x  yxr  

X1 Allergic rhinitis 0.4494 0.4974 0.3223 
X2 Atopic dermatitis 0.0562 0.2303 0.3767 

X3 Number of years from the first symptoms 5.5281 4.4396 0.3023   
X4 Bronchial asthma in father 0.0864 0.281 0.0309 
X5 Bronchial asthma in relatives of second generation 0.0658 0.2479 0.4157 
X6 Eosinophils % 3.913 3.4462 0.2646 
X7 Domestic dust 2.2319 1.1312 0.3116 
X8 Pillow feather 0.7536 0.8059 0.3681 
X9 Rabbit hair 0.5652 0.8925 0.2236 
X10 Sheep wool 0.5217 0.6507 0.3373 
X11 CD25 10*3 cells  0.6937 0.3087 0.2198 

 

The selected factors are used in this work to construct linear regression models for predicting the 

severity of bronchial asthma disease. The type of model is determined by criteria (2). The criterion 

min
vmxxr  indicates that the factors presented in Table 2 are weakly dependent on each other.  

Due to the fact that to assess the severity of the course of bronchial asthma disease, a large number of 

weakly dependent factors with approximately the same resulting contribution of the predicted 

observable value, proportional yxr , were selected, choice for prediction  a linear model for prediction 

suggests that the error   has a normal distribution with distribution characteristics: 

0)( iE  , 22 )(  i , 0),(2 ji  , ij  .    (3) 



This feature, characteristic of models for predicting the severity of bronchial asthma disease, will be 

used to compare the prediction accuracy of linear models with different numbers of regressors. 

It should also be added that the spread of error values i  for each range of predictor values mX  obeys 

a probability distribution with mathematical expectation 0)( iE   and standard deviation  )( i .  

3. Research methodology 

The first step of the study after the choice of factors (Table 2) is to build a set of linear regression 

models for predicting the severity of bronchial asthma disease and comparing the quality of the 

prediction of the observed value for a different number of model regressors. As a criterion for 

comparing models, we will use the MSE value  






n

i

i
n

MSE

1

21
 .      (4) 

For comparison, consider 1, 2, 3, 5 and 10 factor linear regression models, for the construction of which 

we used the factors from Table 2.  

3.1. Construction and analysis of 10-factor linear regression models 

For the eleven factors presented in Table 2, we construct 11 models with ten factors (Table 3). 

 

Table 3  

Coefficients for a ten-factor linear regression model. 

№ model Number of 
examined 

MSE A X1 X2  X3 X4 X5 X6 X7 X8 X9 X10 X11 

1 56 

0
.0

7
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.2

1
 

0
.1

2
 

0
.4

5
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.0

0
 

-0
.0

6 

0
.3

9
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.0

2
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.0

1
 

0
.0

8
 

0
.0

3
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8
 

- 

2 56 

0
.0

8
 

-0
.2

1
 

0
.1

1
 

0
.4

7
 

0
.0

0
 

-0
.0

5
 

0
.4

2
 

0
.0

2
 

0
.0

1
 

0
.0

9
 

0
.0

5
 

- 

0
.0

2
 

3 56 

0
.0

7
 

-0
.2

2
 

0
.1

1
 

0
.4

5
 

0
.0

1
 

-0
.0

3
 

0
.3

9
 

0
.0

2
 

0
.0

1
 

0
.0

8
 

- 

0
.0

9
 

0
.0

2
 

4 56 

0
.0

8 

-0
.2

 

0
.1

4 

0
.4

6 

0
.0

0
 

-0
.0

7
 

0
.4

6
 

0
.0

2
 

0
.0

1 

- 

0
.0

4 

0
.1

 

0
.0

2 

5 56 

0
.0

7 

-

0
.2

1
7

 
0

.1
2 

0
.4

5 

0
.0

1 

-0
.0

6
 

0
.4

 

0
.0

2 

- 

0
.0

8 

0
.0

3 

0
.0

8
 

0
.0

2
 

6 56 

0
.0

7 

-0
.1

7
 

0
.1

5 

0
.4

6 

0
.0

0 

-0
.1

 

0
.4

 

- 

0
.0

2 

0
.0

7
 

0
.0

4
 

0
.0

8
 

0
.0

1 
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The columns labeled «Xm» show the values of the coefficients before the regressor code Xm, which 

can be identified using Table 2. The free term of an equation are presented in the table in column "A". 

Linear regression model №1 and № 10 are designated as 1Y , 10Y  has the form: 

 76543211 01.002.039.006.0045.012.021.0 XXXXXXXY  

1098 08.003.008.0 XXX   

(5) 

 876543110 08.002.002.032.004.001.01.027.0 XXXXXXXY  

11109 01.01.004.0 XXX  . 

(6) 

Residual plots presented in Figure 1 and Figure 2 match  the linear regression models 1Y , 10Y , 2Y , 

7Y . By virtue of the above-justified assumption, that error   has a normal distribution, it follows that 

the points characterizing the value of residuals ie  for the value of prediction errors i , should lie on a 

small neighborhood one straight line. Anomalous values are shown in circles on the graphs. The outliers 

were probably due to errors in the operation of the equipment used to change the values of quantitative 

factors or to the carelessness of the personnel in the preparation of raw survey data. Also, abnormal 

values can be associated with the presence of incorrect answers of patients in the personal survey sheet 

submitted for the study. 

 

 
  a)          b)  

Figure 1: Residual plot for 10-factor linear regression model: a) model 1Y ; b) model 10Y . 

 

 
 a)         b)  

Figure 2: Residual plot for 10-factor linear regression model: a) model 7Y ; b) model 2Y   

 

The presence of outliers can lead to a significant distortion of the form of the regression model, and, 

accordingly, to an increase in the error. In this regard, the anomalous values of the regressors in the 

prepared dataset should be changed or excluded from the set that will be used to build a linear regression 



model. Table 3 shows the MSE value for each of the models 101 YY  . Models 1Y , 10Y  correspond to 

the lowest and highest MSE values. Each of the models in Table 3 has a significant number of 

anomalous values. The MSE value for each of the model 101 YY   is approximately the same (Table 3).  

To improve the prediction accuracy of the regression model, exclude outliers from the dataset and 

rebuild the models 101 YY   based on the changed data. There are a number of methods for correcting 

the anomalous values that are presented in the dataset. We will take advantage of excluding rows from 

the dataset that correspond to patients with abnormal values of one or more regressors. After excluding 

six rows from the dataset, each of which corresponds to the outlier in Figure 1, the coefficients for the 

linear regression models were recalculated. Linear regression models 1Y , 10Y   (5), (6) after recalculation 

of the coefficients have the form: 

  76543211 01.002.031.002.001.031.011.019.0 XXXXXXXY  

1098 08.003.008.0 XXX  , 

(7) 

 876543110 03.002.002.029.003.0002.01.023.0 XXXXXXXY  

11109 01.009.005.0 XXX  . 

(8) 

Linear regression models 1Y , 10Y , correspond to Residual plots, presented in Figure 1. 

 

  
        a)          b)  

Figure 3: Residual plot for 10--factor linear regression model after excluding outliers: a) model 1Y ; b) 

model 10Y . 

 

The final results of the analysis of the models after excluding outliers are presented in Table 4. For 

each model, the MSE value was determined before and after excluding anomalous values. There is a 

decrease in the MSE value by several times. For the model 1Y  the MSE value decreased from 0.071 to 

0.027, and for the model 10Y  the MSE value decreased from 0.088 to 0.037. As before excluding 

outliers, the model 1Y  has the best indicator according to the MSE criterion (4), and the model 10Y  has 

the worst indicator. The characteristics of the models after excluding the anomalous values are 

presented in Table 4. As expected, the trend of decreasing MSE value for each of the models 

corresponds to the trend of decreasing MSE for the models 1Y , 10Y . Additionally, for each of the models 

presented in Table 4, a Residual plot is built and outliers are determined that are less significant than 

the initial ones and which can be used for a more in-depth analysis of the dataset. The headings of the 

table columns indicate the coded patient numbers to which the detected outliers correspond. The 

presence of a "+" symbol in the column indicates the presence of an outlier. The symbol " " 

corresponds to a situation where the emission is negligible. 

Analysis of the results presented in the table shows that the models 1Y , 5Y , 8Y  contain almost the 

same outliers with coded patient numbers 66, 39, 49, 35, 20, 26. Models 2Y , 4Y  also contain almost the 

same outliers with coded patients 66, 39, 35, 20, 26 and 66, 49, 35, 20, 26. Models 6Y , 9Y , 11Y  contain 

outliers with coded patient numbers 66, 49, 39, 35, 20, 26. 



 
Table 4 
Characteristics for a 10-way linear regression model after eliminating outliers 

№ № 
model 

MSE 
before 

   Number of patients MSE 
after 

19 20 25 26 35 36 39 48 49 66 69 

1 1 0.071  +  + +  +  + +  0,027 

2 5 0.071  +  + +  +  + +  0,028 

3 8 0.071  +  + +  +  + +  0,028 

4 3 0.072  +  + +        +   0,03 

5 11 0.072  +  + +  +  + +  0,027 

6 9 0.073  +  + +  +  + +  0,026 

7 6 0.074  +  + +  +  + +  0,033 

8 4 0.075  +  + +    + +  0,028 

9 2 0.076  +  + +  +   +  0,031 

10 7 0.079  + + + + + + + +  + 0,034 

11 10 0.088 + +  + +  +  + + + 0,037 

 
 

Models 7Y , 10Y  also contain almost the same outliers with coded patient numbers 69, 48 ,49, 36, 20, 

39, 25, 26 and 66, 39, 19, 69, 25, 20, 49, 26. The sequence is indicated in ascending order of the residual 

error value. Analysis of the results of Table 4 allows us to form a set of rows to which outliers 

correspond and which are candidates for exclusion of the dataset. 

3.2. Construction and analysis of 7-factor linear regression models 

The next step of the study is the construction of 7-factor linear regression models. To build the 

models, we use the factors from Table 2. From the eleven factors, 330 seven-factor models were built 

and analyzed 

330
)!711(!7

!117
11 


C , (9) 

  
coefficients for some of them are presented in table 5. 

Models are selected from Table 5 according to the smallest and largest values of MSE, 78Y

(MSE=0.025) и 182Y =(MSE=0.061): 

 

1096542178 1.004.003.035.002.027.009.018.0 XXXXXXXY  , (10) 

111098731182 03.008.007.004.004.001.013.015.0 XXXXXXXY  . (11) 

  
The values of these indicators will be used to analyze the quality of prediction for models with a 

different number of regressors. 

The residual plots shown in Figure 4 correspond to the linear regression models 78Y , 182Y . We see 

that the residual plot for the model 182Y  (Figure 4) (Figure 4) contains a sufficiently large number of 

anomalous values for the residuals ie , which led to a significant increase in the MSE value of the model 

182Y .  

 

 



Table 5 
Coefficients for a seven-factor linear regression mode. 

№ №  
model 

Number of 
examined 

MSE A X1 X2  X3 X4 X5 X6 X7 X8 X9 X10 X11 

1 78 50 

0
.0

24
5

 

-0
.1

8
 

0
.0

9
 

0
.2

7
 

- 

0
.0

2
 

 
0

.3
5
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- - 

0
.0
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0
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- 
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0
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.0
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1
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0
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0
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- 

3 112 50 
0

.0
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0
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0
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0
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0
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0
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- 

…. …. . . .  . . . … …      
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    a)          b)  

Figure 4: Residual plot for 7-factor linear regression model: a) model 78Y ; b) model 182Y  

 

Note that for the seven-factor linear regression model, anomalous values for the residuals are shown, 

but not excluded ie , which correspond to certain outliers for the ten-factor model. The models have not 

been improved to allow comparison of the prediction accuracy of models built on the same dataset. 

 

3.3. Construction and analysis of 5-factor linear regression models 

When we construct five-factor models, we use the same approach that was used to build seven-factor 

models. To build the models, we use the factors from Table 2. From the eleven factors, 462 five-factor 

models were built and analyzed 

462
)!511(!5

!115
11 


C , (12) 



coefficients for some of them are presented in table 6. 

To graphically represent the analysis results, residual plots were selected for the model 309Y  , with 

the lowest MSE value and for the model 133Y  with the lowest MSE value and for the model (Figure 5). 

 

 
 a)          b  

Figure 5: Residual plot for 5-factor linear regression model: a) model 309Y ; b) model 133Y  

 

Table 6 
Coefficients for a five-factor linear regression model 

№ №  
model 

Number of 
examined 

MSE A X1 X2  X3 X4 X5 X6 X7 X8 X9 X10 X11 

1 309 50 

0
.0

24
5

 

-0
.1

5 

- 

0
.2

9
 

- -  
0

.3
6

 

0
.0

3
 

- - 

0
.0

5
 

0
.0

8
 

- 

2 34 70 

0
.0
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4
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.0

0
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- - - - - 
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Model 309Y  with the lowest MSE and the model 133Y  with the highest MSE have an analytic view: 

109652309 09.005.003.036.029.015.0 XXXXXY  , (13) 

118731133 04.008.004.0001.01.011.0 XXXXXY  , (14) 

The model 133Y  with the highest MSE contain a sufficient number of anomalous values for the residuals 

ie , which, as in the case of constructing seven-factor models, explains the high MSE value. It should 

be noted that the points characterizing the residual values ie  for the models 133Y , 309Y , with the 



exception of a few outliers, practically lie on one straight line. This allows us to assume that for the 

considered five-factor models, the error   is distributed according to the normal law.  

3.4. Construction and analysis of 3-factor, 2-factor, and paired linear 
regression models 

Three-factor models are not widely used in the analysis of the severity of bronchial asthma disease. 

These models are used as an indicator for superficially determining the severity. However, we believe 

that three-factor models are worth considering for a general understanding of the issue of how much 

the forecast accuracy increases when moving from a three-factor linear regression model to a five-factor 

or seven-factor linear regression model. To build three-factor models, the factors from Table 2 were 

used. Of the eleven factors, 165 three-factor models were constructed and analyzed 

165
)!311(!3

!113
11 


C , (15) 

coefficients for some of them are presented in table 7. To demonstrate the analysis results, residual plots 

were selected for the model 3Y  and 103Y (Figure 6). 

 

Table 7 
Coefficients for a three-factor linear regression model. 

№ №  
model 

 Number of 
examined 

MSE A X1 X2  X3 X4 X5 X6 X7 X8 X9 X10 X11 
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As in previous multivariate model analyzes, the first model 3Y  corresponds to the lowest MSE, and 

the second model corresponds to the highest MSE of the analyzed number from three-factor models. 

The analytical presentation of the models has the form: 

5213 48.036.012.011.0 XXXY  ,    1173103 09.006.0004.002.0 XXXY  , (16) 

The minimum and maximum MSE for three-factor models does not differ much from the minimum 

and maximum MSE for five-factor models. 



The jump-like dependence of the values for the residuals  ie  from valuez  is explained by the fact that 

for the forecast regressors are used, which are represented by qualitative values (for example, there is 

the presence of a feature or there is no presence of a feature).  

 

         
   a)            b)  

Figure 6: Residual plot for a 3-factor linear regression model: a) model 3Y ; b) model 103Y  

 

Indeed, [Allergic rhinitis], [Atopic dermatitis] and [Bronchial asthma in relatives of second 

generation] were chosen as regressors for predicting the severity of bronchial asthma disease for the 

model corresponding to the best result in terms of the quality of  fit (4).  

 

Table 8 
Coefficients for a two-factor linear regression model 

№ №  
model 

Number of 
examined 

MSE A X1 X2  X3 X4 X5 X6 X7 X8 X9 X10 X11 
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These factors are decisive in the superficial diagnosis of the observed value. In contrast to the model 

3Y  (Figure 6.а), for the model 103Y  the points characterizing the values of the residuals lie on one 

straight line, with the exception of several outliers ie  which contains each of the models considered 

above. Model 103Y  is presented by regressors [Number of years from the first symptoms], [Domestic 

dust], [CD25 10*3 cells], among which the values of the two regressors are given by quantitative 



continuous variables. Thus, in three-factor models, the use of bronchial disease to predict the severity 

of the course of the disease is not appropriate. 

 

Table 9 
Model Coefficients for paired regression  

№ № model Number of 
examined 

MSE A X1 X2  X3 X4 X5 X6 X7 X8 X9 X10 X11 
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In conclusion, we will consider two-factor (Table 8) and one-factor (Table 9) linear regression 

models. As a result of the analysis, 55 two-factor models and 11 paired regression models were 

considered: 

55
)!211(!2

!112
11 


C ,  11

)!111(!1

!111
11 


C , (17) 

coefficients for some of them are presented in tables 8 and 9. 

Analytical representation of the two-factor model 21Y , 23Y  is: 

5421 5.001.001.0 XXY  , 7323 06.001.01.0 XXY  .  (18) 

The model 21Y  corresponds to the lowest MSE and the model 23Y  corresponds to the highest MSE. 

Note to MSE that the paired regression model contains the same factor that is present in the two-factor 

model: 

55 47.005.0 XY  , 77 06.007.0 XY  . (19) 

Thus, a two-factor linear regression model is a refinement of a paired regression model. An 

important note is that the paired regression model with the minimum MSE contains the [Bronchial 

asthma in relatives of second generation] regressor, which in the two-parameter model is supplemented 

by the [Bronchial asthma in father] factor, and in the three-parameter model [Allergic rhinitis], [Atopic 

dermatitis]. The prediction accuracy of the two-parameter regression model is quite close to the 

prediction accuracy of the three-parameter regression model. 

4. Analysis of results 

In the previous section, a detailed analysis of multivariate linear regression models, consisting of ten, 

seven, five, three, two factors, as well as an analysis of the paired regression model was carried out.  

For each category of models, the model with the lowest and highest MSE values was found.  The 



obtained MSE values are used to compare the quality of predicting the observed value, presented in 

Figure 7. The dotted line in the graph shows the average value MSE, which is half the sum of the 

smallest and largest values. 

  

 
Figure 7: Criterion for the quality of predicting the severity of the course of bronchial asthma 
 

The results obtained clearly show that for linear regression models dependent on two to five factors, 

the value MSE  has almost the same value. Improving the forecasting quality is achieved by increasing 

the number of regressors. With an increase in the number of regressors, the range of variation of the 

value is significantly narrowed  maxmin;MSEMSEMSE . In this case minMSE  the value changes 

slowly with an increase in the number of regressors. When moving from a five-factor linear regression 

model to a ten-factor linear regression model, the the average value MSE (the dotted line)               

decreased by an amount not exceeding 20%.  Approximately the same value minMSE  is explained by 

the fact that when the number of factors decreases, outliers are excluded.  

Indeed, on the one hand, a decrease in the number of factors should lead to an increase in the error. 

On the other hand, a model with fewer factors contains only outliers that correspond to the model 

factors, which accordingly improves the model's accuracy. In this regard, an important conclusion 

should be made about the need for preliminary data processing. The presence of outliers can lead to a 

decrease in accuracy with an increase in the number of regressors. 

As shown in this work, due to the fact that for models with ten or more factors, the error   has a 

normal distribution with distribution characteristics (3), and therefore, the linear regression model is the 

most successful for predicting the severity of bronchial asthma. However, the construction of regression 

models for predicting an observed value with a number of factors significantly greater than ten factors 

is associated with significant computational difficulties. A slow decrease in the value minMSE with an 

increase in the number of model regressors practically makes it impossible to significantly increase the 

accuracy of the forecasting model by increasing the number of factors. The performed numerical 

experiments showed that the computational time required to calculate the coefficients of the linear 

regression model quadratically depends on the number of regressors in the model. 

5. Conclusion 

In this work, we performed a comparative analysis of the quality of predicting the severity of the course 

of bronchial asthma depending on the number of regressors in the model. For comparative analysis, a 

multivariate linear regression model was used. The substantiation of the distribution law for the 

forecasting error  is given. The comparative analysis of values MSE  for multivariate linear regression 

models using the example of the considered dataset shows that the use of models with less than six 

factors is inappropriate. The results obtained indicate that linear regression models with a small number 

of factors have approximately the same value MSE . As a result of performing this study, an important 

conclusion was obtained that the value MSE  slowly decreases with an increase in the number of model 



regressors. This raises the relevance of the search for new methods for predicting the severity of 

bronchial asthma disease, including the use of Machine learning. A prospect for further research is to 

analyze the quality of fit the observed value depending on the number of regressors for different types 

of nonlinear regression models. 
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