
Overhead Comparison of OpenTelemetry, inspectIT
and Kieker
David Georg Reichelt

1
, Stefan Kühne

1
and Wilhelm Hasselbring

2

1University Computing Centre, Research and Development, Universität Leipzig
2Software Engineering Group, Christian-Albrechts-Universität zu Kiel

Abstract
Having low performance overhead when monitoring the performance is crucial for exact measurements.

Especially when trying to identify performance changes at code level, the performance overhead needs

to be as low as possible. Due to changes in monitoring frameworks, performance benchmarks need

regular updates. Due to changes in virtual machines, operating systems and hardware environments,

performance benchmarking results also need regular updates.

Therefore, we describe an extension of the benchmark MooBench which includes the emerging mon-

itoring framework OpenTelemetry in MooBench, and the results of its execution on a Rasperry Pi 4 in

this paper. We find that Kieker is creating slightly less overhead than inspectIT and OpenTelemetry

when processing traces.

Keywords
performance measurement, performance monitoring, performance benchmarking, software performance

engineering

1. Introduction

To assure that performance requirements are met, the performance of parts of a system needs

to be measured under real conditions. This measurement in live operation is called monitoring

[1, p. 45]. Monitoring data can be used to identify performance issues, to extract performance

models or for online capacity management. To measure the performance, monitoring tools

add monitoring probes, i.e. pieces of code capable of measuring the resource usage, into the

monitored system and serialize the monitoring records. The instrumentation, the measurement

itself and the serialization cause monitoring overhead. Especially for the identification of

performance changes at code level [2], the monitoring overhead needs to be as low as possible.

Benchmarking compares different methods, techniques and tools and is used widely to

compare the performance of different implementation [3]. Therefore, the MooBench benchmark

has been introduced to compare the performance overhead of different monitoring frameworks

[4]. Originally, MooBench was able to measure the performance of the performance monitoring

frameworks Kieker [5], inspectIT
1

and SPASSmeter [6].

Recently, the monitoring framework OpenTelemetry
2

emerged. It provides monitoring

SSP’21: Symposium on Software Performance, November 09–10, 2021, Leipzig, Germany
{ https://www.urz.uni-leipzig.de/fue/DavidGeorgReichelt/ (D. G. Reichelt)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

https://www.inspectit.rocks/

2

https://opentelemetry.io/

https://www.urz.uni-leipzig.de/fue/DavidGeorgReichelt/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

support for a variety of languages and frameworks, and can therefore be used in different

contexts. This paper presents an extension of MooBench that enables measuring the overhead

of OpenTelemetry and Kieker and results of the execution of the extended MooBench.

In the remainder of this paper, we first describe the benchmark MooBench and our extension

of MooBench for measurement of OpenTelemetry in Section 2. Afterwards, we describe the

measurement results of our extended MooBench version in Section 3. In Section 4, we discuss

related work. Finally, we summarize this paper and give an outlook to future work in Section 5.

2. Supporting OpenTelemetry in MooBench

This section first gives an overview of the benchmark MooBench and describes our extension

of MooBench afterwards.

2.1. MooBench

MooBench is a benchmark for measuring the overhead of monitoring frameworks [4]. Perfor-

mance measurement in the JVM is influenced by non-deterministic effects such as Just-In-Time-

Compilation (JIT), Garbage Collections and memory fragmentation. Therefore, performance

measurements need to be repeated inside of one started JVM, called VM in the remainder. Since

warmup may end up in different steady states, multiple VMs need to be started and their results

need to be analyzed by statistic tests such as T-Test [7].

MooBench provides a basic Java application that repeats busy waiting in the leaf node of a

tree of nodes with only one child with a given recursion depth. For every monitoring framework,

a Bash script automates the VM starts of the benchmark for the correspondent framework

configuration. For the frameworks, the configurations contain (at least) the baseline (no in-

strumentation) and regular monitoring with serialization of the results. They may also contain

deactivated monitoring (but enabled instrumentation) and different monitoring configurations

(e.g. writing the results as generic text or as binary in Kieker). The measurement result of each

VM run is saved as CSV into a result directory with a name denoting the VM configuration.

2.2. Extension of MooBench

To make OpenTelemetry runnable with MooBench, we implemented the instrumentation with

OpenTelemetry. Additionally, the existing benchmarks for inspectIT were updated.

For instrumenting OpenTelemetry, we added a script. This script was built to support

corresponding calls for each Kieker Call, i.e. (1) the baseline (no instrumentation), (2) monitoring

with disabled sampling with otel.traces.sampler=always_off, i.e. no measurement will be done,

but the instrumentation is still present, like Kieker with deactivated probe, (3) logging all method

executions to standard output, like Kieker writing to hard disc, (4) logging all method executions

(spans) to Zipkin and (5) logging metrics of executions to Prometheus, like Kieker writing to

TCP. The measurement of Prometheus is disabled on 32-bit systems, since Prometheus only

runs on 64-bit systems. Since results are saved in the MooBench CSV format, existing R scripts

can be used for data analysis. Our forked version of MooBench is available on GitHub.
3

3

https://github.com/DaGeRe/moobench-fork/

3. Measurement Results

To facilitate reproducibility of our results, we decided to run our benchmarks on a Raspberry

Pi like Knoche and Eichelberger [8]. We used the latest Raspberry Pi 4 running Raspberry OS

(formerly known as Raspbian) 5.10.17-v7l+ in the 32 bit version and OpenJDK 11.0.11. Since

Rasperry OS runs on 32-bit by default, the Jaeger serialization could not be used. To compare

the Raspberry Pi results to a regular Desktop system, we also measured the same benchmarks

on an i7-4770 CPU @ 3.40GHz with 16 GB RAM, running Ubuntu 20.04 and OpenJDK 11.0.11.

We executed the benchmark with call tree depth 10 (like Knoche and Eichelberger [8]) and with

growing call tree depth.

3.1. Call Tree Depth 10

Our results of the execution of 2 000 000 calls with recursion depth 10 and 10 VM starts are

depicted in Table 1 and Table 2. On Raspberry Pi and i7-4770, all relations stay equal, e.g.

deactivated OpenTelemetry is slower than deactivated Kieker both on Raspberry Pi and i7-4770.

Nevertheless, we see that the ratio of execution times changes, e.g. baseline execution is ap-

proximately 25 times faster on i7-4770 than on Raspberry Pi but execution with deactivated

OpenTelemetry instrumentation is only approximately 5 times faster. Due to the limited instruc-

tion set of ARM processors, benchmark results on Raspberry Pi are probably not corresponding

to benchmark results on desktop or server systems. Therefore, Raspberry Pi might not be a

suitable hardware for benchmarking in every use case.

Variant Raspberry Pi i7-4770

95 % CI 𝜎 95 % CI 𝜎

Baseline [1.5;1.5] 0.1 [0.057;0.058] 0.026

Kieker
Deactivated Probe [4.1;4.1] 7.5 [0.4;0.4] 7.1

DumpWriter [51.9;52.0] 14.6 [8.5;8.5] 12.2

Logging (Text) [743.3;799.4] 14315.8 [103.0;103.3] 56.4

Logging (Binary) [59.8;87.8] 7149.4 [3.4;3.4] 15.8

TCP [45.6;45.7] 14.6 [4.6;4.7] 10.4

Table 1: Measurement Results for Kieker

For the configu-

rations, we see the

following results:

Baseline: The Rasp-

berry Pi 4 with cur-

rent software envi-

ronment shows (as

expected) slight im-

provements over

the measurement

values from Knoche

and Eichelberger [8] on Raspberry Pi 3. Deactivated: The execution of Kieker with deactivated

probe creates less overhead than the deactivated execution of OpenTelemetry and inspectIT.

Logging to hard disc: With activated logging to the file system, Kieker with binary logging is

faster than OpenTelemetry. Regular text logging is slower with Kieker. External data processing:

With external data processing, by Zipkin for OpenTelemetry and TCP sending by Kieker, Kieker

is slightly (but significantly) faster than OpenTelemetry and inspectIT. inspectIT is faster when

metrics are processed by Prometheus.

3.2. Growing Call Tree Depth

Figure 1 shows the average of warmed up measured durations of all VMs with growing call tree

depth. Even if call tree depth are discrete values, we chose to draw lines for better visibility.

OpenTelemetry inspectIT
Variant Deactivated StdOut Zipkin Prometheus Deactivated Dump Zipkin Prometheus

Probe Probe Writer
Pi 4
CI [26.8;26.9] [483.0;508.1] [53.4;53.6] [44.4;44.5] [9.9;9.9] [87.2;87.5] [97.2;97.8] [32.3;32.4]
𝜎 20.4 6408.7 46.7 25.2 10.5 78.7 149.6 16.6

i7-4770
CI [4.9;5.0] [56.9;57.7] [6.8;6.9] [6.9;6.9] [1.3;1.4] [10.3;10.4] [10.9;11.2] [4.0;4.0]
𝜎 4.1 222.5 8.5 4.9 8.2 17.4 57.4 4.1

Table 2
Measurement Results for OpenTelemetry and inspectIT

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100 120 140

D
u
ra

ti
o
n
 µ

s

Call Tree Depth

Overview of Method Execution Durations

Baseline
Kieker (TCP)

inspectIT (Zipkin)
OpenTelemetry (Zipkin)

Figure 1: Growing Call Tree Depth with i7-4770

It show two things: (1) The over-

head lineary increases with grow-

ing call tree depth, which is equal

to growing count of instrumented

methods. Therefore, instrument-

ing the whole application will al-

ways create big overhead. (2) The

relations from call tree depth 10

persist: Sending the trace to Zipkin

from OpenTelemetry or inspectIT

creates more overhead then send-

ing the trace using Kieker.

4. Related Work

Benchmarking is widely used for testing the performance of software in continuous integration

[9]. To measure the performance, benchmarking harnesses like the Java Microbenchmarking

Harness jmh
4

provide an execution environment for workload specification and measurement.

According to a study of Stefan et al. [9], only 3,4 % of all open source projects continously

benchmark their software performance. Widespread frameworks like Hadoop [10] or Java itself
5

contain benchmarks for continuous performance evaluation. Besides application monitoring

overhead, other benchmarks cover other system classes as stream processing engines [11] or ML

systems [12]. In contrast to these works, we examined the performance overhead of application

performance monitoring.

Ahmed et al. [13] compare different APM tools by executing a load test on different systems

and researching whether a performance regression could be identified. Afterwards, they check

whether performance issues could be detected by thresholds in the commercial APM tools New

Relic, AppDynamics and Dynatrace, and the open source tool Pinpoint
6
. They did not research

4

http://openjdk.java.net/projects/code-tools/jmh/

5

https://www.spec.org/jvm2008/

6

https://pinpoint-apm.github.io/pinpoint/

the overhead of the tools, but their suitability for identification of performance changes.

In contrast to this work, MooBench [4] measures the overhead of performance monitoring

tools. It is used continuously for measuring the performance overhead of Kieker. MooBench

has been extended and used for testing the replicability of performance measurements on the

Raspberry Pi by Knoche and Eichelberger [8] [14]. They used different benchmarks to assess the

replicability of performance measurements on the Raspberry Pi. They find that the Raspberry

Pi is capable of providing an infrastructure for replicable benchmark execution. In contrast to

our work, they did not consider OpenTelemetry and use a Raspberry Pi 3. OpenTelemetry itself

maintains continuous performance benchmarks for the performance of its python implementa-

tion.
7

While the users of OpenTelemetry do occasional overhead measurement,
8

no continuous

benchmarking or benchmarking against other frameworks is done. Hence, a comparison of the

monitoring overhead of OpenTelemetry in Java and Kieker has not been done so far.

Waller and Hasselbring [15] research the effects of activation of processor cores and mul-

tithreading to the monitoring overhead. They find that using one processor core with hyper-

threading yields the lowest overhead in their configuration, since synchronization overhead

between different processor cores increases the monitoring overhead. In contrast to their work,

this work focusses on the comparison of different monitoring frameworks.

5. Summary and Outlook

We compared the monitoring overhead of OpenTelemetry and Kieker. Therefore, we extended

the MooBench benchmark. By execution of the benchmarks on a Raspberry Pi 4 and a regular

Desktop PC, we found that Kieker has better performance with serialization to hard disc and

with processing the results with TCP. This relation also persists with growing call tree depth.

We also see that the ratios between execution durations on Raspberry Pi 4 and the regular

Desktop PC vary for different benchmark configurations. Therefore, the Raspberry Pi might

not be a suitable hardware for benchmark execution in every use case.

In the future, benchmarks are required that cover real world usages of application monitoring

frameworks better. Therefore, the following extensions are necessary from our point of view:

(1) Real world programs are not built out of single-children trees with workload only in the

one leaf node. The current tree structure leads to a regular execution order consisting of a

constant number of monitored method executions and one busy wait. More complex trees

containing a more complex distribution of the workload would make it possible to measure

more realistic overhead. In a binary tree with busy wait in every leaf, the count of executions

before the leaf node is called would vary. (2) Real world monitoring overhead is also caused by

monitoring of specific frameworks, e.g. Jersey, CXF and Spring. To benchmark the overhead

created by the probes for these frameworks, separate benchmarked application would need

to be created (or adopted for this use case) and maintained. (3) Monitoring overhead is only

one measurable property of monitoring. For practical purposes, like root cause analysis for

performance problems or anomaly detection, accuracy is also a main property. Accuracy could

be checked by how well certain root cause analysis algorithms perform with the examined

7

https://open-telemetry.github.io/opentelemetry-python/benchmarks/index.html

8

https://github.com/open-telemetry/opentelemetry-java-instrumentation/discussions/2104

monitoring framework like Ahmed et al. [13].

Acknowledgments This work is funded by the German Federal Ministry of Education and

Research within the project “Performance Überwachung Effizient Integriert” (PermanEnt, BMBF

01IS20032D).

References

[1] J. Waller, Performance Benchmarking of Application Monitoring Frameworks, BoD–Books

on Demand, 2015.

[2] D. G. Reichelt, S. Kühne, W. Hasselbring, PeASS: A Tool for Identifying Performance

Changes at Code Level, in: Proceedings of the 33rd ACM/IEEE ASE, ACM, 2019. (in press).

[3] W. Hasselbring, Benchmarking as Empirical Standard in Software Engineering Research,

CoRR abs/2105.00272 (2021). URL: https://arxiv.org/abs/2105.00272. arXiv:2105.00272.

[4] J. Waller, N. C. Ehmke, W. Hasselbring, Including Performance Benchmarks into Continu-

ous Integration to Enable DevOps, ACM SIGSOFT Software Engineering Notes 40 (2015)

1–4. URL: http://eprints.uni-kiel.de/28433/. doi:doi:10.1145/2735399.2735416.

[5] W. Hasselbring, A. van Hoorn, Kieker: A monitoring framework for software engineering

research, Software Impacts 5 (2020) 100019. doi:https://doi.org/10.1016/j.simpa.
2020.100019.

[6] H. Eichelberger, K. Schmid, Flexible resource monitoring of Java programs, Journal of

Systems and Software 93 (2014) 163–186.

[7] A. Georges, D. Buytaert, L. Eeckhout, Statistically Rigorous Java Performance Evaluation,

ACM SIGPLAN Notices 42 (2007) 57–76.

[8] H. Knoche, H. Eichelberger, The Raspberry Pi: A Platform for Replicable Performance

Benchmarks?, Softwaretechnik-Trends 37 (2017) 14–16.

[9] P. Stefan, V. Horky, L. Bulej, P. Tuma, Unit Testing Performance in Java Projects: Are We

There Yet?, in: Proceedings of ACM/SPEC ICPE 2017, ACM, 2017, pp. 401–412.

[10] S. Huang, J. Huang, Y. Liu, L. Yi, J. Dai, HiBench: A Representative and Comprehensive

Hadoop Benchmark Suite, in: Proc. ICDE Workshops, 2010, pp. 41–51.

[11] S. Henning, W. Hasselbring, Theodolite: Scalability Benchmarking of Distributed Stream

Processing Engines in Microservice Architectures, Big Data Research 25 (2021) 100209.

[12] P. Mattson, V. J. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter, P. Micikevicius,

D. Patterson, G. Schmuelling, H. Tang, et al., MLPerf: An Industry Standard Benchmark

Suite for Machine Learning Performance, IEEE Micro 40 (2020) 8–16.

[13] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, W. Shang, Studying the Effective-

ness of Application Performance Management (APM) Tools for Detecting Performance

Regressions for Web Applications: An Experience Report, in: IEEE/ACM MSR, IEEE, 2016.

[14] H. Knoche, H. Eichelberger, Using the Raspberry Pi and Docker for Replicable Performance

Experiments: Experience Paper, in: Proceedings of the 2018 ICPE, 2018, pp. 305–316.

[15] J. Waller, W. Hasselbring, A Comparison of the Influence of Different Multi-Core Processors

on the Runtime Overhead for Application-Level Monitoring, in: ICMSEPT, Springer, 2012.

https://arxiv.org/abs/2105.00272
http://arxiv.org/abs/2105.00272
http://eprints.uni-kiel.de/28433/
http://dx.doi.org/doi:10.1145/2735399.2735416
http://dx.doi.org/https://doi.org/10.1016/j.simpa.2020.100019
http://dx.doi.org/https://doi.org/10.1016/j.simpa.2020.100019

	1 Introduction
	2 Supporting OpenTelemetry in MooBench
	2.1 MooBench
	2.2 Extension of MooBench

	3 Measurement Results
	3.1 Call Tree Depth 10
	3.2 Growing Call Tree Depth

	4 Related Work
	5 Summary and Outlook

