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Abstract
The focus of this study to measure the varying irreversibility of stock markets. A fundamental idea
of this study is that financial systems are complex and nonlinear systems that are presented to be
non-Gaussian fractal and chaotic. Their complexity and different aspects of nonlinear properties, such
as time irreversibility, vary over time and for a long-range of scales. Therefore, our work presents
approaches to measure the complexity and irreversibility of the time series. To the presented methods
we include Guzik’s index, Porta’s index, Costa’s index, based on complex networks measures, Multiscale
time irreversibility index and based on permutation patterns measures. Our study presents that the
corresponding measures can be used as indicators or indicator-precursors of crisis states in stock markets.
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1. Introduction

Complex systems are open systems that exchange energy, matter, and information with the
environment. Investigating complex systems in the natural sciences, Prigogine [1] made
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a fundamental generalization, indicating the need for consideration of the phenomena of
irreversibility and non-equilibrium as principles of selection of space-time structures that are
implemented in practice. Later it became clear that this generalization extends to complex
systems of another nature: social, economic, biomedical, etc. [2]. Prigogine believed that
the most important changes in the modern scientific revolution are related to the removal of
previous restrictions in the scientific understanding of time. The nonlinear world is characterized
by features of temporality, i.e., irreversibility and transience of processes and phenomena.
Self-organization is considered as a spontaneous process of formation of integrating complex
systems. It is due to the ambiguity of choice at bifurcation points that time in theories of
self-organization becomes truly irreversible. In contrast to linear dynamic theories – classical,
relativistic, quantum (where time is reversed), in the thermodynamics of dissipative structures
created by Prigogine, time ceases to be a simple parameter and becomes a concept that expresses
the pace and direction of events.
Thus, the irreversibility of time is a fundamental property of non-equilibrium dissipative

systems, and its loss may indicate the development of destructive processes [3, 2].
Considering the statistical properties of a signal under study, its evolution could be called

irreversible if there is the lack of invariance, i.e., the same signal would have been obtained if we
measured it in the opposite direction. The function 𝑓 could be applied to find characteristics that
differ forward and backward versions, i.e., time series would be irreversible if 𝑓 (X𝑑) ≠ 𝑓 (X𝑟).
The main idea of this definition there is no any restrictions on 𝑓.

Our study implies that a stationary process X is called statistically inverse in time if the
probability distributions of the forward and backward in time systems are approximately the
same [4, 5, 6]. The irreversibility of time series indicates the presence of nonlinear dependencies
(memory) [7] in the dynamics of a system far from equilibrium, including non-Gaussian random
processes and dissipative chaos. Since the definition of the irreversibility of the time series
is formal, there is no a priori optimal algorithm for its quantification. Several methods for
measuring the irreversibility of time have been proposed [8, 3, 2, 9, 10, 4, 11, 12, 13, 14]. Such
methods significant as their purpose to deal with signals that exclude linear Gaussian random
processes and, there by, allow to quantify the degree of predictability in the system.
In the first group of methods, the symbolization of time series is performed, and then the

analysis is performed by statistical comparison of the appearance of a string of symbols in the
forward and reverse directions [10]. Sometimes additional compression algorithms are used
[9]. An important step for this group is the symbolization – the conversion of the time series
into a character series requires additional special information (e.g., division of the range or size
of the alphabet) and, therefore, contains the problem of the algorithm’s dependence on these
additional parameters. The second problem arises when considering the large-scale invariance
of complex signals. Since the procedures of typical symbolizations are local, taking into account
different scales can cause some difficulties [3].

Another group of methods in formalizing the index of irreversibility does not use the symbol-
ization procedure but is based on the use of real values of the time series or returns.

One such approaches is based on the asymmetry of the distribution of points of the Poincare
map, built on the basis of the values of the analyzed time series [11, 14].
Recently, a fundamentally new approach to measuring the irreversibility of time series has

been proposed, which uses the methods of complex network theory [4, 13] and which combines
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two tools: the algorithm for visibility of time series recovery into a complex network and the
Kullbak-Leibler divergence algorithm [13]. The first forms a directional network according
to the geometric criterion. The degree of irreversibility of the series is then estimated by the
Kullbak-Leibler divergence (i.e., the resolution) between the distribution of the input and output
stages of the associated count. This method is computationally efficient, does not require any
special symbolization of the process, and, according to the authors, naturally takes into account
multiscale.

In this study, we apply irreversibility analysis and construct indicators or indicators-precursors
of crashes and critical events, which dynamics is associated with luck of irreversibility the
system. To these measures we include Guzik’s index, Porta’s index, Costa’s index, based on
complex networks, multiscale time irreversibility index with measure based on ordinal patterns.
For analyzing and explaining basic characteristics of stock market with time irreversibility

measures, we have chosen Dow Jones Industrial Average index (DJIA) as the most quoted
financial barometer in the world. In order to have better look on its intraday dynamics, we have
separated its time series into two parts: from 2 January 1920 to 3 January 1983 and second part
from 4 January 1983 to 3 March 2021. Both periods of daily values have been obtained through
Yahoo Finance (http://finance.yahoo.com/) and Investing.com (https://www.investing.com/).

Regarding our previous studies [15, 16, 17, 18, 19, 20, 21, 22, 23, 24], we have emphasized 30
crisis events that were classified as crashes and critical events. According to classification:

• Crashes are short, time-localized drops, with strong losing of price each day.
• Critical events are those falls that, during their existence, have not had such serious
changes in price as crashes.

Table 1 shows the major crashes and critical events related to our classification.
As it is seen from the Table, during DJIA existence, many crashes and critical events shook it.

According to our classification, events with number (1, 10, 13, 15, 20) are crashes, all the rest –
critical events.

The calculations of indicators for themwill be carried out within the sliding window approach.
According to the procedure, we emphasize the frame of a predefined length in which the
calculation of the correspondingmeasure is obtained. For this fragmentmeasure of irreversibility
is obtained regarding normalized returns, where returns are calculated as

𝐺 (𝑡) = ln 𝑥 (𝑡 + Δ𝑡) − ln 𝑥 (𝑡) ≅ [𝑥 (𝑡 + Δ𝑡) − 𝑥 (𝑡)] /𝑥 (𝑡) (1)

and normalized (standardized) returns as

g(𝑡) ≅ [𝐺 (𝑡) − ⟨𝐺⟩] /𝜎, (2)

where 𝜎 ≡ √⟨𝐺2⟩ − ⟨𝐺⟩2 is the standard deviation of 𝐺, Δ𝑡 is the time shift (in our case Δ𝑡 = 1),
and ⟨… ⟩ is the average over studied time period.

Then, the time window is shifted along the time by a predefined value, and the procedure is
repeated until the entire series is exhausted. Comparing the calculated measure of irreversibility
(asymmetry) and the actual time series of DJIA, we can analyze changes of complexity in the
system. Our measures can be called indicators or precursors if they behave in a definite way for
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Table 1
Major Historical Corrections of the DJIA price since 1920

№ Interval Days in correction Decline, %

1 03.09.1929-29.10.1929 41 39.64
2 01.03.1938-31.03.1938 23 24.15
3 08.04.1940-05.06.1940 42 25.1
4 21.08.1946-10.09.1946 14 16.35
5 30.07.1957-22.10.1957 60 17.51
6 19.03.1962-28.05.1962 50 19.91
7 18.07.1966-07.10.1966 59 12.84
8 09.04.1970-26.05.1970 34 20.35
9 24.10.1974-04.10.1974 52 27.45
10 02.10.1987-19.10.1987 12 34.16
11 17.07.1990-23.08.1990 28 17.21
12 01.10.1997-21.10.1997 15 12.43
13 17.08.1998-31.08.1998 11 18.44
14 14.08.2002-01.10.2002 34 19.52
15 16.10.2008-15.12.2008 42 30.21
16 09.08.2011-22.09.2011 32 11.94
17 18.08.2015-25.08.2015 6 10.53
18 29.12.2015-20.01.2016 16 11.02
19 03.12.2018-24.12.2018 15 15.62
20 04.03.2020-23.03.2020 13 31.38

all periods of crashes, for example, decreases or increases during the pre-crash or pre-critical
period. For our calculations time frame with the length 500 and step 1 are seemed to be the
most reasonable parameters.

2. Assessing financial crises throughout irreversibility analysis

2.1. Irreversible complexity measures based on Poincaré diagrams

The Poincaré diagram for the time series is a graph on the 𝑥 axis of which the normalized
returns for current time g(𝑡) are plotted, and subsequent values g(𝑡 + 1) on the 𝑦 axis. In Figure
1 the Poincaré diagram for the initial and shuffled series of the DJIA is shown.

All consequent values that are equal to each other (g(𝑡) = g(𝑡 + 1)) are located on the line of
identity (LI). Intervals, representing increasing in returns, above LI (g(𝑡) < g(𝑡 + 1)), whereas
shortenings of two succeeding returns represent points below this line (g(𝑡) > g(𝑡 + 1)). By
assessing the asymmetry of points in the diagram, further, we will present quantitative measures
for varying degree of irreversibility in the DJIA.
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(a)

(b)

Figure 1: The Poincaré diagram (a) and the dependence of the Costa‘s index that will be described
further on time and scale (b).

2.1.1. Guzik’s index

Guzik’s index (GI) was defined as the distance of points above LI to LI divided by the distance
of all points in Poincaré plot except those that are located on LI [25, 11]. Specifically,

𝐺𝐼 =
∑𝑎

𝑖=1 (𝐷
+
𝑖 )

2

∑𝑚
𝑖=1 (𝐷𝑖)

2 , (3)
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where 𝑎 = 𝐶(𝑃+𝑖 ) means the number of points above LI; 𝑚 = 𝐶(𝑃+𝑖 ) + 𝐶(𝑃−𝑖 ) means the number
of points in Poincaré plot except those which are not on LI; 𝐷+

𝑖 is the distance of points above
the line to itself, and 𝐷𝑖 is the distance of point 𝑃𝑖 (g(𝑖), g(𝑖 + 1)) to LI which can be defined as

𝐷𝑖 =
|g(𝑖 + 1) − g(𝑖)|

√2
. (4)

In fugure 2 is illustrated GI for two periods of the DJIA.

(a)

(b)

Figure 2: Guzik’s index with corresponding first (a) and second (b) periods of the DJIA time series.

As we can see from illustration above, GI for crashes and critical events noticeably falling
before deviant event and rising during emerging crises, which makes it as an excellent indicator-
precursor of abnormal events.

2.1.2. Porta’s index

Porta’s index (PI) [14] was defined as the number of points below LI divided by the total number
of points in Poincaré plot except those that are located on LI, specifically

𝑃𝐼 = 𝑏
𝑚
, (5)
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where 𝑏 = 𝐶(𝑃−𝑖 ) is the number of points below LI, and 𝑚 = 𝐶(𝑃+𝑖 ) + 𝐶(𝑃−𝑖 ) is the total number
of points below and above LI.
In figure 3 is illustrated PI for two periods of DJIA.

(a)

(b)

Figure 3: Dynamics of Porta’s index for first (a) and second (b) periods of DJIA time series.

As we can see, according to Porta’s index, irreversibility decreases during crash and critical
events similarly to previous index which makes it appropriate indicator.

2.1.3. Costa’s index

Costa’s index represents a simplified version of [25] where number of increments (𝑥(𝑖+1)−𝑥(𝑖) >
0) and decrements (𝑥(𝑖+1)−𝑥(𝑖) < 0) are taken into account. They are presented to be symmetric
if equal to each other. The procedure is implemented for coarse-grained time series. For scale
𝜏, we consider the time series 𝐺𝜏 = {g(𝑖)} , g(𝑖) = 𝑥(𝑖 + 𝜏) − 𝑥(𝑖), 1 ≤ 𝑖 ≤ 𝑁 − 𝜏. The Costa’s
index [3], which displays the asymmetry of the probability distribution of positive and negative
returns, is calculated by the formula:

𝐶𝐼𝜏 =
∑𝑁−𝜏

𝑖=1 ℋ[−g(𝑖)] − ∑𝑁−𝜏
𝑖=1 ℋ[g(𝑖)]

𝑁 − 𝜏
. (6)
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The generelized Costa’s index according to can be defined as

𝐶𝐼 = 1
𝐿

𝐿
∑
𝜏=1

|𝐶𝐼𝜏|, (7)

where 𝐿 is the maximal scale.
In figure 4 CI presents the similar pehavior for the two periods of DJIA as in previous two

measures.

(a)

(b)

Figure 4: Dynamics of Costa’s index for first (a) and second (b) periods of DJIA time series.

2.2. Complex network methods

Visibility graphs (VGs) are based on a simple mapping from the time series to the network
domain exploiting the local convexity of scalar-valued time series {𝑥𝑖 | 𝑖 = 1, … , 𝑁} where each
observation 𝑥𝑖 is a vertex in a complex network. Two vertices 𝑖 and 𝑗 are linked by an edge (𝑖, 𝑗)
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if for all vertices 𝑘 with 𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗 the following condition is applied [26]:

𝑥𝑘 < 𝑥𝑗 + (𝑥𝑖 − 𝑥𝑗)
𝑡𝑗 − 𝑡𝑘
𝑡𝑗 − 𝑡𝑖

. (8)

This is, the adjacencymatrix (𝐴𝑖𝑗) of the following undirected and unweighted VG is presented
as:

𝐴(𝑉𝐺)
𝑖𝑗 = 𝐴(𝑉𝐺)

𝑗𝑖 =
𝑗−1
∏
𝑘=𝑖+1

ℋ(𝑥𝑘 < 𝑥𝑗 + (𝑥𝑖 − 𝑥𝑗)
𝑡𝑗 − 𝑡𝑘
𝑡𝑗 − 𝑡𝑖

) , (9)

whereℋ(⋅) is the Heaviside function.
Horizontal visibility graphs (HVGs) provide a simplified version of this algorithm [27]. For

a given time series, the vertex sets of VG and HVG are the same, whereas the edge set of the
HVG maps the mutual horizontal visibility of two observations 𝑥𝑖 and 𝑥𝑗, i.e., there is an edge
(𝑖, 𝑗) if 𝑥𝑘 < min(𝑥𝑖, 𝑥𝑗) for all 𝑘 with 𝑡𝑖 < 𝑡𝑘 < 𝑡𝑗, so that

𝐴(𝑉𝐺)
𝑖𝑗 = 𝐴(𝑉𝐺)

𝑗𝑖 =
𝑗−1
∏
𝑘=𝑖+1

ℋ(𝑥𝑖 − 𝑥𝑘)ℋ(𝑥𝑗 − 𝑥𝑘). (10)

VG and HVG capture essentially the same properties of the system under study (e.g., regarding
fractal properties of a time series), since the HVG is a subgraph of the VG with the same vertex
set, but possessing only a subset of the VG’s edges. Note that the VG is invariant under a
superposition of linear trends, whereas the HVG is not.
Since the definition of VGs and HVGs takes the timing (or at least time-ordering) of ob-

servations explicitly into account, the direction of time is intrinsically interwoven with the
resulting network structure. To account for this fact, we define a set of novel statistical network
quanti�ers based on two simple vertex characteristics:

(i) As the number of edges incident to a given vertex 𝑖 can be defined as 𝑘𝑟𝑖 = ∑𝑗𝐴𝑖𝑗, for a
(H)VG, we rewrite this quantity for a vertex of time 𝑡𝑖, regarding its past and future vertices
(prices):

𝑘𝑟𝑖 = ∑𝑗<𝑖𝐴𝑖𝑗, (11)

𝑘𝑎𝑖 = ∑𝑗>𝑖𝐴𝑖𝑗, (12)

where 𝑘𝑖 = 𝑘𝑟𝑖 + 𝑘𝑎𝑖 , and 𝑘
𝑟
𝑖 with 𝑘𝑎𝑖 referred to as the retarded and advanced degrees. As it is

defined in [13], following measures correspond to the in- and out-degrees of time-directed
(H)VGs.

(ii) The local clustering coefficient 𝐶𝑖 = (𝑘𝑖2)
−1

∑𝑗,𝑘𝐴𝑖𝑗𝐴𝑗𝑘𝐴𝑘𝑖 is another vertex property of
higher order characterizing the neighborhood structure of vertex 𝑖 [28]. Similarly to
(11) and (12), for studying the connectivity due to past and future prices, we rewrite the
standard coefficient as the retarded and advanced local clustering coefficients

𝐶 𝑟𝑖 = (
𝑘𝑟𝑖
2
)
−1

∑𝑗<𝑖,𝑘<𝑖𝐴𝑖𝑗𝐴𝑗𝑘𝐴𝑘𝑖, (13)

𝐶𝑎𝑖 = (
𝑘𝑎𝑖
2
)
−1

∑𝑗>𝑖,𝑘>𝑖𝐴𝑖𝑗𝐴𝑗𝑘𝐴𝑘𝑖, (14)
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According to graph-based method, we will utilize the probability density functions (PDFs)
of (11)-(14). If our system is presented to be time-reversible, we conjecture that probability
distributions of forward and backward in time characteristics should be the same. For irreversible
processes, we expect to find statistical non-equivalence. According to Lacasa et al. [13], this
deviation will be defined through Kullback-Leibler divergence:

𝐷𝐾𝐿(𝑝 ‖ 𝑞) =
𝑁
∑
𝑖=1

𝑝 (𝑥𝑖) ⋅ log
𝑝 (𝑥𝑖)
𝑞 (𝑥𝑖)

, (15)

where, in our case, 𝑝 responds to a distribution of the retarded characteristics and 𝑞 is of the
advanced.

Figure 5 presents 𝐷𝐾𝐿 measure for the distribution of degrees and local clustering coefficients.
As it can be seen for figure 5 and b, both irreversibility measures for degrees and local

clustering decrease during crashes and critical events which tells about luck of irreversibility
during them. Also, it is shown in figure 4 that the first period of the DJIA is presented to be more
reversible as the distance between distribution of degrees is close to zero for almost the entire
period. Local clustering coefficient is seemed to be more robust and informative comparing to
degree.

2.3. Multiscale time irreversibility index

For the following procedure [25], first of all, we need to construct goarse-grained time series
which can be defined as

𝑦𝜏(𝑗) =
1
𝜏

𝑗𝜏
∑

𝑖=(𝑗−1)𝜏+1
g(𝑖), for 1 ≤ 𝑗 ≤ 𝑁

𝜏
. (16)

Then, using a statistical physics approach, we make the simplifying assumptions that each
transition (increase or decrease of 𝑦𝜏(𝑗)) is independent and requires a specific amount of
“energy” 𝐸. The probability density function of this class of system [29] can be assumed to follow
𝜌 ∝ exp(−𝛽𝐸 − 𝛾𝑄) where 𝑄 represents the non-equilibrium heat flux across the boundary of
the system, and 𝛽 and 𝛾 are the Lagrange multipliers derived from the constraints on the average
value of the energy 𝐸 per transition and the average contribution of each transition to the heat
flux 𝑄.

Since the time reversal operation on the original financial index time series inverts an increase
to a decrease and vice versa, the difference between the average energy for the activation of
information rate, i.e., ⟨ 𝛽𝐸 + 𝛾𝑄⟩𝑦𝜏>0, and the relaxation of information rate, i.e., ⟨ 𝛽𝐸 + 𝛾𝑄⟩𝑦𝜏<0,
can be used as measurement of time reversal asymmetry.

Taking into consideration that the assumption of the distribution function 𝜌 links the energy
to the empirical distribution, we, following , define the next measure of temporal irreversibility:

𝑎(𝜏) =

∞
∫
0
[𝜌(𝑦𝜏) ln 𝜌(𝑦𝜏) − 𝜌(−𝑦𝜏) ln 𝜌(−𝑦𝜏)]

2 𝑑𝑦𝜏
∞
∫

−∞
𝜌(𝑦𝜏) ln 𝜌(𝑦𝜏)𝑑𝑦𝜏

(17)
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(a)

(b)

(c)

(d)

Figure 5: Dynamics of graph-based time irreversibility measures for the first (a, b) and second (c, d)
periods of DJIA time series.
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The time series is called reversivle if 𝑎(𝜏) = 0.
Sometimes it is important for us to know not only the degree of irreversibility but also whether

it reversed in time or not. For this purpose, we will replace equation (17) by the following one:

𝐴(𝜏) =

∞
∫
0
[𝜌(𝑦𝜏) ln 𝜌(𝑦𝜏) − 𝜌(−𝑦𝜏) ln 𝜌(−𝑦𝜏)] 𝑑𝑦𝜏

∞
∫

−∞
𝜌(𝑦𝜏) ln 𝜌(𝑦𝜏)𝑑𝑦𝜏

(18)

The time series is said to be irreversible for all scale 𝜏 if 𝐴(𝜏) > 0. In case when 𝐴(𝜏) = 0, the
time series may be reversible or not for scale 𝜏.
For the analysis of discrete values, equation (18) can be presented as:

�̂�(𝜏 ) =
∑𝑦𝜏>0 Pr(𝑦𝜏) ln [Pr(𝑦𝜏)]

∑𝑦𝜏 Pr(𝑦𝜏) ln [Pr(𝑦𝜏)]
−
∑𝑦𝜏<0 Pr(𝑦𝜏) ln [Pr(𝑦𝜏)]

∑𝑦𝜏 Pr(𝑦𝜏) ln [Pr(𝑦𝜏)]
. (19)

The generalizedmultiscale asymmetry index (𝐴𝐼) is defined as the summation of �̂�(𝜏 ) obtained
for a predefined range of scales, i.e.,

𝐴𝐼 =
𝐿
∑
𝜏=1

�̂�(𝜏 ). (20)

The figures illustrate that time series are significantly irreversible. For initial time series (for
approximately 5-10 scales), the transition of prices is presented to be reversible (symmetric).
After it, transitions presented to be asymmetric. Draws attention and noticeable unevenness
introduced measures, which correlate with the fluctuations of the input time series. Identifying
significant changes in the time series and comparing them with the corresponding changes of
non-reversible measures of complexity, it is possible to construct the corresponding indicators.

2.4. Time series irreversibility measure based on permutation patterns

The idea of analyzing the permutation patterns (PP) was initially introduced by Bandt and
Pompe [30] to provide researchers with a simple and efficient tool to characterize the complexity
of the real systems dynamics. With respect to other approaches, as entropies, fractal dimensions,
or Lyapunov exponents, it avoids amplitude threshold and instead dealing with casual values
inhereted from time series dynamics, deals with ordinal permutation patterns [31]. Their
frequencies allow us to distinguish deterministic processes from completely random.

The calculations of PP assume that the time series is partitioned with the embedding dimension
𝑑𝐸 (number of elements to be compared) and the embedding delay 𝜏 (time separation between
elements). In our opinion, 𝑑𝐸 ∈ {3, 4} and 𝜏 ∈ {2, 3} are the best parameters that encapsulate all
the necessary quantitative information.
Further, all embedded patterns are assigned to their ordinal rankings. As an example, let us

consider a fragment of the DJIA time series for period 18.08.2015-26.08.2015:

X = {17511.34, 17348.73, 16990.69, 16459.75,
15871.35, 15666.44, 16285.51}.
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(a)

(b)

(c)

Figure 6: Dynamics of asymmetry index for first (a) and second (b) periods.

According to mentioned steps, we will construct embedded matrix of overlapping column
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vectors with 𝑑𝐸 = 3 and 𝜏 = 2. Our sampled data is partitioned as follows:

X𝑑𝐸,𝜏
𝑡 = [

17511.34 16990.69 15871.35
17348.73 16459.75 15666.44
16990.69 15871.35 16285.51

] . (21)

After it, our time-delayed vectors are mapped to permutations or ordinal patterns of the same
size. Our example consists 3! = 6 different ordinal patterns in total:

𝜋1 = {0, 1, 2}
𝜋2 = {0, 2, 1}
𝜋3 = {1, 0, 2}
𝜋4 = {1, 2, 0}
𝜋5 = {2, 0, 1}
𝜋6 = {2, 1, 0}

As an example, the corresponding permutation of the first column from (21) would be
𝜙([17511.34, 17348.73, 16990.69]) = 210 since 𝑥(3) ≤ 𝑥(2) ≤ 𝑥(1). Therefore, after mapping
from the time-series data into a series of permutations (𝜙 ∶ ℝ𝑑𝐸 → 𝑆𝑑𝐸), we obtain the ordinal
matrix:

[
2 2 1
1 1 0
0 0 2

] . (22)

Finally, the probability of each pattern is calculated as

𝑝(𝜋) =
#{𝑡 ≤ 𝑁 − (𝑑𝐸 − 1)𝜏 , 𝜙(X𝑑𝐸,𝜏

𝑡 ) = 𝜋}
𝑁 − (𝑑𝐸 − 1)𝜏

, (23)

where # {⋅} denotes the cardinality of a set, and permutation entropy is calculated regarding a
probability distribution 𝑃, whose elements 𝑝𝑖 ≡ 𝑝(𝜋𝑖) are the probabilities associated with the
𝑖th permutation pattern, 𝑖 = 1, … , 𝑑𝐸!:

𝑆[𝑃] = −
𝑑𝐸!
∑
𝑖=1

𝑝𝑖 log2 𝑝𝑖. (24)

Interesting for us time irreversibility of permutation patterns is not related on (24), but
on the probability distribution of ordinal patterns. That is, we find probabilities of finding
corresponding ordinal patterns for both initial and reversed times series. Correspondingly, if
both types have approximately the same probability distributions of their patterns, time series
is presented to be reversible and the opposite conclusion for the other case.
The difference between distributions of direct time series (𝑃𝑑) and reversed (𝑃 𝑟) can be

estimated with equation (15).
From the presented figures it can be seen that as financial crisis comes, the distance between

two distributions becomes more close to zero, denoting that those period is less irreversible and
efficient. Moreover, in this case we see that 𝐷𝐾𝐿 for permutaiton patterns acts as a measure of
complexity. The dynamics before crisis events starts do decrease, presenting trend to be more
predictable, and after them it increases, demonstrating the increasing complexity.
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(a)

(b)

Figure 7: Dynamics of permutation-based time irreversibility measure for first (a) and second (b)
periods.

3. Conclusions

Financial systems does not always evolve with precisely the same values. Instead, their prices
increase or decrease over time due to different market conditions, political, and economical
situations in concrete countries or in the word.
In this work we have presented how to deal with (statistical) time irreversibility, varying

over time. Using the time series of Dow Jones Industrial Average index and the sliding window
procedure, first of all, we have presented our classification of crisis events in DJIA index, and we
have constructed econophysical and econometrical indicators of financial crashes and critical
events. Our study affirms ranging degrees of irreversibility in DJIA stock index. Some of
its periods of existence are presented to be more irreversible comparing to others. Namely,
periods of financial stress are characterized by higher irreversibility and, thus, by increasing
predictability and less efficiency.
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